ON ABELIAN EXTENSIONS OF RINGS II

Dedicated to Professor Takeshi Inagaki for his 60th birthday

KAZUO KISHIMOTO

Introduction. In [5], the author has studied abelian extensions of an algebra over GF(p) with Galois group of order p^f . In the present paper, as a continuation of [5], we shall continue our study on Kummer case. This paper, as well as [5], depends on [1], [3], [4] and [6], and the reader should consult them for relevant definitions and basic properties of Galois extensions of rings.

In this paper, we assume the following:

- 1) \mathfrak{G} (resp. \mathfrak{G}^*) is a cyclic group of order n with a generator σ (resp. σ^*) or a direct product of cyclic groups (σ_i) (resp. (σ_i^*)) of order n_i , $i=1, 2, \dots, e$, such that $\prod_{i=1}^r n_i = n$.
- 2) B is a ring without proper central idempotents whose center Z contains a primitive n-th root ζ of 1 and n, $1-\zeta^i$, $i=1, 2, \dots, n-1$, are units in Z.
- 3) Galois extensions are always Galois extensions without proper central idempotents and the base ring is contained in the extension ring as a right (as well as left) direct summand.

Definition 1. A ring extension T/S will be called an abelian (\mathfrak{H}, ζ) -extension (resp. a cyclic (\mathfrak{H}, ζ) -extension) if S is a ring extension of B and T is a Galois extension of S with an abelian Galois group \mathfrak{H} (resp. with a cyclic Galois group \mathfrak{H}) such that the center of T contains ζ .

Definition 2. Let $\mathfrak{G}=(\sigma_1)\times(\sigma_2)\times\cdots\times(\sigma_r)$. A ring extension T/S will be called a strongly abelian (\mathfrak{G},ζ) -extension (resp. a strongly cyclic (\mathfrak{G},ζ) -extension) if T/S is an abelian (\mathfrak{G},ζ) -extension (resp. a cyclic (\mathfrak{G},ζ) -extension with $\mathfrak{G}=(\sigma_1)$) and $\{\sum_{k=0}^{n_i-1}\zeta_i^k\sigma_i^k(x)|x\in S_i\}\cap U(S_i)^{1}\neq\emptyset$ for each $i=1,2,\cdots,e$, where $\zeta_i=\zeta^{n_in_i},S_i=T^{\mathfrak{G}_i}$ and $\mathfrak{G}_i=(\sigma_1)\times(\sigma_2)\times\cdots\times(\sigma_{i-1})\times(\sigma_{i+1})\times\cdots\times(\sigma_r)$.

The purpose of this paper is to give

¹⁾ Let T be a ring. Then, by U(T) we denote the set of unit elements of T.

- I) necessary and sufficient conditions for B to have strongly abelian (\mathfrak{G}, ζ) -extensions;
- II) necessary and sufficient conditions for an abelian (\mathfrak{T}, ζ) -extension T/B to be embedded in an abelian (\mathfrak{D}, ζ) -extension A/B in such a way that A/T is a strongly abelian (\mathfrak{D}, ζ) -extension, $T = (\tau_1) \times (\tau_2) \times \cdots \times (\tau_e)$, $\mathfrak{D} = (\gamma_1) \times (\gamma_2) \times \cdots \times (\gamma_e)$, $\gamma_i \mid T = \tau_i$ and $\sigma_i = \gamma_i^{m_i}$ where m_i is the order of τ_i ;
- III) sufficient conditions for a cyclic (\mathfrak{G} , ζ)-extension of a commutative ring to be strongly cyclic.
 - In §1, we restrict our attention to the case that \(\mathbb{G} \) is cyclic.
- In §2, as a generalization of §1, we consider the case $\mathfrak{G}=(\sigma_1)\times(\sigma_2)\times\cdots\times(\sigma_r)$.
- In §3, we consider a cyclic (\mathfrak{G}, ζ) -extension A of B such that B is a commutative ring and A is an algebra over B. Then A is also commutative ([2, Theorem 11]). Firstly, we shall show that if A has a \mathfrak{G} -normal basis then it is strongly cyclic. Moreover, if B is semi-local then the converse is true. As an application of this fact, I) and II) are given for the case of semi-local rings.

§4 deals with an abelian (\mathfrak{G} , ζ)-extension of commutative rings.

The author wishes to express his thanks to Professor H. Tominaga, Professor T. Nagahara and Mr. A. Nakajima for helpful discussion and advice.

1. Cyclic (\mathfrak{D},ζ) -extension with $\mathfrak{D}=(\gamma)$ of order nm

Throughout the present section, we assume that \mathfrak{G} is a cyclic group of order n with a generator σ . In a cyclic (\mathfrak{G}, ζ) -extension A of B, an element x will be called a σ -generator for A/B if $\sigma(x) = x\zeta^{-1}(=\zeta^{-1}x)$ and x is a unit in A.

Lemma 1.1. Let A/B be a cyclic (\mathfrak{G}, ζ) -extension. Then there exists a non-zero element x in A with $\sigma(x)=x\zeta^{-1}$. If A/B is strongly cyclic then there exists a σ -generator for A/B, and conversely².

Proof. We set $f(a) = a + \zeta \sigma(a) + \dots + \zeta^{n-1} \sigma^{n-1}(a)$, $a \in A$. Then there exists an element c in A with $f(c) \neq 0$. Hence $\sigma(f(c)) = f(c)\zeta^{-1}$. If $x \in A$ and $\sigma(x) = x\zeta^{-1}$ then f(x) = nx. This implies our assertion.

The first theorem of this section is the following

Theorem 1.1. In order that B have a strongly cyclic (\mathfrak{G}, ζ) -exten-

²⁾ Cf. [7, Theorem 10.6].

sion A, it is necessary and sufficient that there exist an automorphism ρ of B and an element b_0 in U(B) satisfying

- (a) $\rho^n = \widetilde{b}_0^{-1}$, $\rho(b_0) = b_0$ and $\rho(\zeta) = \zeta$,
- (b) $X^n b_0$ is directly indecomposable in $B[X; \rho]$.

More precisely, if there exist ρ , b_0 satisfying (a) and (b), then $M = (X^n - b_0) B[X; \rho] = \{(X^n - b_0) f(X) | f(X) \in B[X; \rho]\}$ is a two-sided ideal of $B[X; \rho]$ and $A^* = B[y] = B[X; \rho]/M$ is a strongly cyclic (\mathfrak{G}^*, ζ) extension of B where y is the residue class of X modulo M and \mathfrak{G}^* is the cyclic group of order n generated by σ^* defined by $\sigma^*(y) = y\zeta^{-1}$. Conversely, if A is a strongly cyclic (\mathfrak{G}, ζ)-extension of B, then we can find such ρ , b_0 satisfying (a) and (b) that there exists a B-isomorphism $\varphi^*: A^* \longrightarrow A$ with $\varphi^* \sigma^* = \sigma \varphi^*$.

Proof. Necessity: Let A be a strongly cyclic (⑤, ζ)-extension of B. Then there exists a σ -generator x for A/B by Lemma 1. 1. Since $\sigma(x^{-1}bx) = x^{-1}bx$ for each $b \in B$, the inner automorphism \tilde{x}^{-1} of A effected by x^{-1} induces an automorphism of B. Now we set $\rho = \tilde{x}^{-1} \mid B$. Then $\sigma(x^n) = (x\zeta^{-1})^n = x^n$ shows that $b_0 = x^n \in U(B)$. Thus ρ , b_0 satisfy (a). If we note that $bx = x\rho(b)$ for each $b \in B$, $T = B + xB + \cdots + x^{n-1}B$ forms a subring of A with $\sigma(T) \subseteq T$. In the following, we shall show $T = B \bigoplus xB \bigoplus \cdots \bigoplus x^{n-1}B = A$. Let $T \supseteq t = \sum_{i=0}^{n-1} x^i d_i = 0$ ($d_i \in B$). Then $\sigma(t) - t = x(\sum_{i=1}^{n-1} x^{i-1} d_i (\zeta^{-i} - 1))$, and hence $t_1 = \sum_{i=1}^{n-1} x^{i-1} d_i (\zeta^{-i} - 1) = 0$. Since $\zeta^i - 1$ is a unit for each $i = 1, 2, \cdots, n-1$, repeating the same procedure, we have $d_{n-1} = d_{n-2} = \cdots = d_1 = d_0 = 0$. Therefore $T = B \bigoplus xB \bigoplus \cdots \bigoplus x^{n-1}B$. To be easily seen, $X^nb_0^{-1} - 1$ is central in $B[X; \rho]$, $T^c = B$ and $T \cong B[X; \rho]/(X^n - b_0)B[X; \rho]$. Now, for $\tau \in \mathbb{G}$ we have

$$\delta_{1,\tau} = \prod_{j=1}^{n-1} \{ (\zeta^{-j} - 1)^{-1} x^{-1} \sigma^j(x) - (\zeta^{-j} - 1)^{-1} x^{-1} \tau(x) \},$$

whence we obtain $\delta_{1,-} = \sum_{k=0}^{n-1} a_k \tau(x^k)$ with some a_k in T. Hence, we see that $\{a_0, a_1, \dots, a_{n-1}; 1, x, \dots, x^{n-1}\}$ is a \mathfrak{G} -Galois coordinate system for A/B. Since $a_0, a_1, \dots, a_{n-1}, x$ are elements of T, it follows from [6, T] Theorem 2.3] that T = A and $X^n - b_0$ is directly indecomposable in $B[X; \rho]$.

Sufficiency: Assume that there exist an automorphism ρ and an element b_0 satisfying the conditions (a) and (b). Let Ψ be the map of $B[X; \rho]$ defined by $f(X) \mapsto f(X\zeta^{-1})$. Then Ψ is an automorphism of $B[X; \rho]$ of order n with $\Psi(X^nb_0^{-1}-1)=X^nb_0^{-1}-1$ where $X^nb_0^{-1}-1$ is a central polynomial. Hence Ψ induces an automorphism σ^* of order n in $A^*=B \oplus yB \oplus \cdots \oplus y^{n-1}B = B[X; \rho]/(X^nb_0^{-1}-1)=B[X; \rho]/M$ and $\sigma^*(y)=y\zeta^{-1}$,

where y is the residue class of X modulo M. Since $y^nb_0^{-1}=1$, y is a unit in A^* . Noting n is a unit in A^* , we have $\sum_{i=0}^{n-1} \zeta^i \sigma^{*i}(y) = ny \in U(A^*)$. The existence of (σ^*) -Galois coordinate system for A^*/B will be seen in the same way as in the proof of the necessity. The rest of the proof will be almost evident.

Corollary 1.1. Let A be a strongly cyclic (\S , ζ)-extension of B. Then A/B has a σ -generator and if x is a σ -generator for A/B then A=B[x] and $\{1, x, x^2, \dots, x^{n-1}\}$ is a right free B-basis for A.

Let A/B be a strongly cyclic (\mathfrak{G} , ζ)-extension with $\sigma = \tilde{v}$ for some $v \in A$. Then we have $v \in V = V_A(B)$. Hence $v \in V^{\tilde{v}} = B \cap V = Z$. Further, since $x\zeta^{-1} = \tilde{v}(x) = vxv^{-1}$ for a σ -generator x for A/B, we have $v\zeta^{-1} = x^{-1}vx$. Thus we have proved the necessity in the following

Corollary 1.2. In order that B have a strongly cyclic (\S , ζ)-extension with $\sigma = \tilde{v}$, it is necessary and sufficient that there exist an automorphism ρ of B, an element $b_0 \in U(B)$ and an element $z \in U(Z)$ satisfying

- (a) $\rho^n = \tilde{b}_0^{-1}$, $\rho(b_0) = b_0$ and $\rho(\zeta) = \zeta$,
- (b) $X'' b_0$ is directly indecomposable in $B[X; \rho]$,
- (c) $\rho(z) = z\zeta^{-1}$.

Proof. We shall prove the sufficiency. Under the same notations as in the proof of Theorem 1.1, we set $A^* = B \oplus y B \oplus \cdots \oplus y^{n-1} B = B[X; \rho]/M$. If $\rho(z) = z\zeta^{-1}$ for some $z \in U(Z)$, then $zyz^{-1} = y\rho(z)z^{-1} = y\zeta^{-1} = \sigma^*(y)$, and hence $\sigma^*(a) = zaz^{-1}$ for every $a \in A^*$. This implies $\sigma^* = \tilde{z}$, that is, $(\sigma^*) = (\tilde{z})$.

Now we shall prove the following embedding theorem.

Theorem 1.2. Let T be a cyclic (\mathfrak{T}, ζ) -extension of B where \mathfrak{T} is of order m and generated by τ . Let \mathfrak{D} be a cyclic group of order nm with a generator η . In order that B have a cyclic (\mathfrak{D}, ζ) -extension A such that $A \supseteq T$, A/T is a strongly cyclic (\mathfrak{D}, ζ) -extension, $\tau \mid T = \tau$, and $\tau^m = \sigma$, it is necessary and sufficient that there exist an automorphism ρ of T and elements t_0 , u in U(T) satisfying

- (a) $\rho^n = \widetilde{t_0}^{-1}$, $\rho(t_0) = t_0$ and $\rho(\zeta) = \zeta$,
- (b) X^n-t_0 is directly indecomposable in $T[X; \rho]$,
- (c) $\rho \tau \rho^{-1} \tau^{-1} = \tilde{u}$,
- (d) $RN_m(u;\tau)(=u\tau(u)z^2(u)\cdots z^{m-1}(u))=\zeta^{-1}$,
- (e) $LN_n(u; \rho) (= \rho^{n-1}(u)\rho^{n-2}(u)\cdots\rho(u)u) = t_0^{-1}z(t_0).$

Proof. Let A be a cyclic (Φ, ζ)-extension of B such that $A \supseteq T$, A/T is a strongly cyclic (Φ, ζ)-extension, η | T = τ and $γ^m = σ$. Then there exists a $η^m$ -generator x for A/T. Set $t_0 = x^n$. Then $x^n \in U(T)$. Since $η^m(x^{-1}tx) = x^{-1}tx$ for each $t \in T$, $ρ = \widetilde{x}^{-1}$ is an automorphism of T with $ρ(t_0) = t_0$. Set $u = x^{-1}γ(x)$. Then $η^m(u) = x^{-1}ζη(x)ζ^{-2} = x^{-1}γ(x) = u$ shows that $u \in U(T)$. For $t \in T$, $ρτρ^{-1}τ^{-1}(t) = ρτ(xτ^{-1}(t)x^{-1}) = ρ(γ(x)tη(x^{-1})) = x^{-1}γ(x)t$ $η(x)x = \overline{u}(t)$. This implies $ρτρ^{-1}τ^{-1} = \widetilde{u}$. Further, $RN_m(u, τ) = (x^{-1}γ(x))η(x^{-1}γ(x))η^2(x^{-1}γ(x)) \cdots η^{m-1}(x^{-1}γ(x)) = x^{-1}γ^m(x) = ζ^{-1}$. Next, $LN_n(u; ρ) = ρ^{n-1}(x^{-1}γ(x))ρ^{n-2}(x^{-1}γ(x)) \cdots ρ(x^{-1}γ(x))x^{-1}γ(x) = x^{-n}γ(x^n) = t_0^{-1}τ(t_0)$. Consequently, we can see that there exist an automorphism ρ and elements t_0 , u satisfying the conditions (a) -(e).

Conversely, assume that there exist an automorphism ρ and elements t_0 , u satisfying the conditions (a)—(e). Then the map Ψ of $T[X;\rho]$ defined by $\sum_i X^i u_i \longrightarrow \sum_i (Xu)^i \tau(u_i)$ ($u_i \in T$) is an automorphism of order nm. For, $\Psi(tX) = \Upsilon(X\rho(t)) = Xu\tau\rho(t)$ and $\Psi(t) \Psi(X) = \tau(t)Xu = X\rho\tau(t)u$ show that Ψ is a homomorphism if and only if there holds (c). Noting that $\Psi^m(X) = XRN_m(u;\tau)$, (d) implies that $T^{nm} = 1$, and hence Ψ is an automorphism. $\Psi(X^n - t_0) = (Xu)^n - \tau(t_0) = X^n L N_n(u;\rho) - \tau(t_0) = (X^n - t_0) L N_n(u;\rho)$ by (e). Thus Ψ induces an automorphism η^* of order nm in $T[X;\rho]/(X^n-t_0)=T\oplus yT\oplus \cdots \oplus y^{n-1}T=A^*$, where y is the residue class of X modulo (X^n-t_0) . By Theorem 1. 1, it is clear that $(\eta^*)_T \equiv \{\nu \in (\eta^*)\}$ $\nu(t)=t$ for all $t\in T\}=(\eta^{*m})$, A^*/B is a cyclic $((\eta^*), \xi)$ -extension by [5, Lemma 1. 1].

2. Abelian (\mathfrak{H}, ζ) -extension with $\mathfrak{H} = (\gamma_1) \times (\gamma_2) \times \cdots \times (\gamma_e)$

In this section, we assume that $\mathfrak{G}=(\sigma_1)\times(\sigma_2)\times\cdots\times(\sigma_e)$ where every (σ_i) is a cyclic group of order n_i generated by σ_i and $n=\prod_{i=1}^e n_i$. Firstly, we shall state several remaks without proofs.

Let ρ_i $(i=1, 2, \dots, e)$ be automorphisms of B, b_i $(i=1, 2, \dots, e)$ elements of U(B) and b_{ij} $(i, j=1, 2, \dots, e)$ elements of U(B) with $b_{ij}=b_{ji}^{-1}$ and $b_{ii}=1$. If they satisfy

$$\rho_{i}\rho_{j}\rho_{i}^{-1}\rho_{j}^{-1} = \tilde{b}_{ij} \quad \text{and}
b_{ij}(\rho_{j}b_{ik})b_{ik} = \rho_{i}(b_{ik})b_{ik}\rho_{k}(b_{ij}),$$

then the set of polynomials of e indeterminates $\mathscr{B} \equiv B[X_1, X_2, \dots, X_e; \rho_1, \rho_2, \dots, \rho_e] = \{\sum X_1^{\gamma_1} X_2^{\gamma_2} \dots X_e^{\gamma_e} b_{\gamma_1 \dots \gamma_e} | b_{\gamma_1 \dots \gamma_e} \in B \}$ forms a ring if we define the multiplication by the distributive law and the rules $bX_i = X_i \rho_i(b)$ $(b \in B)$ and $X_i X_j = X_j X_i b_{ij}$ [4, Proposition 2. 2]. Further, if there holds

$$\rho_i^{n_i} = \tilde{b}_i^{-1}, \quad \rho_i(b_i) = b_i \quad \text{and} \quad RN_{n_i}(b_{j_i}; \, \rho_i) = \rho_j(b_i^{-1})b_i,$$

then the polynomials $X_i^{n_i}b_i^{-1}-1$ are central in \mathscr{B} .

Let $k \leq e$, and π an arbitrary permutation of $\{1, 2, \dots, k\}$. Then $B[X_1, X_2, \dots, X_k; \rho_1, \rho_2, \dots, \rho_k] \cong B[X_{\pi(1)}, X_{\pi(2)}, \dots, X_{\pi(k)}; \rho_{\pi(1)}, \rho_{\pi(2)}, \dots, \rho_{\pi(k)}]$ ([4, Proposition 2. 2]).

Let $M_{k-1} = (X_1^{n_1} - b_1, X_2^{n_2} - b_2, \cdots, X_{k-1}^{n_k-1} - b_{k-1})$. Then $B[X_1, X_2, \cdots, X_{k-1}; \rho_1, \rho_2, \cdots, \rho_{k-1}]/M_{k-1} = B[y_1, y_2, \cdots, y_{k-1}] = \bigoplus_{0 \le v_i < n_i} y_1^{v_1} y_2^{v_2} \cdots y_{k-1}^{v_{k-1}} B$, where y_i is the residue class of X_i modulo M_{k-1} . Further, $B[y_1, y_2, \cdots, y_{k-1}][X_k; \rho_k] = \{\sum X_k^{v_i} a_v | a_v \in B[y_1, y_2, \cdots, y_{k-1}]\}$ forms a ring if we define the multiplication by the distributive law and the rule $aX_k = X_k P_k(a)$ $(a_v \in B[y_1, y_2, \cdots, y_{k-1}])$, where P_k is an automorphism of $B[y_1, y_2, \cdots, y_{k-1}]$ defined by $P_k | B = \rho_k$ and $P_k(y_i) = y_i b_{ik}$. Moreover, the polynomial $X_k^{n_k} b_k^{-1} - 1$ is a central polynomial of $B[y_1, y_2, \cdots, y_{k-1}][X_k; \rho_k]$ and $B[y_1, y_2, \cdots, y_k] \cong B[y_1, y_2, \cdots, y_{k-1}][X_k; \rho_k]/(X_k^{n_k} - b_k) B[y_1, y_2, \cdots, y_{k-1}][X_k; \rho_k]$. We denote this residue class ring by A_k .

Now the set of polynomials $\{X_1^{n_1}-b_1, X_2^{n_2}-b_2, X_3^{n_2}-b_3, \dots, X_c^{n_c}-b_e\}$ of \mathscr{B} will be called a system of directly indecomposable polynomials if $X_k^{n_k}-b_k$ is directly indecomposable in $B[y_1, y_2, \dots, y_{k-1}][X_k; \rho_k]$.

Corresponding to Theorem 1.1, we shall prove the following

Theorem 2.1. In order that B have a strongly abelian (\mathfrak{G}, ζ) -extension A such that for every $\mathfrak{G}_i = (\sigma_{i+1}) \times (\sigma_{i+2}) \times \cdots \times (\sigma_e)$ $(0 \le i \le e-1)$, $A^{\mathfrak{G}_i}$ has no proper central idempotents, it is necessary and sufficient that there exist automorphisms $\{\rho_i; i=1, 2, \cdots, e\}$ of B, and elements $\{b_i, b_{ij} | i, j=1, 2, \cdots, e\}$ in U(B) with $b_{ij} = b_{ji}^{-1}$ and $b_{ii} = 1$ such that

- (a) $\rho_i \rho_i \rho_i^{-1} \rho_i^{-1} = \tilde{b}_{ii}$
- (b) $b_{ij}(\rho_j b_{ik})b_{jk} = \rho_i(b_{jk})b_{ik}\rho_k(b_{ij}),$
- (c) $\rho_i^{n_i} = \tilde{b}_i^{-1}$, $\rho_i(b_i) = b_i$ and $\rho_i(\zeta) = \zeta$,
- (d) $RN_n(b_i; \rho_i) = \rho_i(b_i^{-1})b_i$,
- (e) $\{X_i^{n_i}-b_i|i=1,2,\cdots,e\}$ is a system of directly indecomposable polynomials.

More precisely, if there exist automorphisms $\{\rho_i | i=1, 2, \dots, e\}$, elements $\{b_i, b_{ij} | i, j=1, 2, \dots, e\}$ with $b_{ij} = b_{ji}^{-1}$ and $b_{ii} = 1$ satisfying (a)—(e), then $M_i = (X_1^{n_1} - b_i, X_2^{n_2} - b_2, \dots, X_i^{n_i} - b_i)B_1^- X_1, X_2, \dots, X_i; \rho_1, \rho_2, \dots, \rho_i]$ is a two sided ideal of $B[X_1, X_2, \dots, X_i; \rho_1, \rho_2, \dots, \rho_i]$ and $A_i^* = B[y_1, y_2, \dots, y_i] = B[X_1, X_2, \dots, X_i; \rho_1, \rho_2, \dots, \rho_i]/M_i$ is a strongly abelian

 $(\mathfrak{G}_{i}^{*}, \zeta^{n_{1}\cdots n_{i}})$ -extension with $\mathfrak{G}_{i}^{*}=(\sigma_{i+1}^{*})\times(\sigma_{i+2}^{*})\times\cdots\times(\sigma_{e}^{*})$, where y_{j} is the residue class of X_{j} modulo M_{i} and σ_{s}^{*} is defined by $\sigma_{s}^{*}(y_{s})=y_{s}\zeta^{n_{i}n_{s}}$, $\sigma_{s}^{*}(y_{j})=y_{j}$ for $j\neq s$.

Conversely, if A is a strongly abelian (\mathfrak{G} , ζ)-extension of B such that $A^{\mathfrak{G}_i}$ has no proper central idempotents, then we can find such $\{\rho_i|i=1,2,\cdots,e\}, \{b_i,b_{ij}|i,j=1,2,\cdots,e\}$ with $b_{ij}=b_{ji}^{-1}$, $b_{ii}=1$ satisfying (a)—(e) that there exists a B-isomorphism $\varphi_i^*:A_i^*\longrightarrow A^{\mathfrak{G}_i}$ with $\varphi_i^*\sigma_j^*=\sigma_j\varphi_i^*$ for every $i,j=1,2,\cdots,e$.

Proof. Necessity: Let A be a strongly abelian (\mathfrak{G}, ζ) -extension of B such that $A^{\mathfrak{G}_i}$ has no proper central idempotents for $i=1, 2, \dots, e$. By Definition 2 and by making use of the same method as in the proof of Lemma 1.1, we obtain elements $x_i \in U(B_i)$ $(1 \leq i \leq e)$ such that $\sigma_i(x_i) = x_i \zeta_i^{-1}$ and $\sigma_i(x_j) = x_j$ for $i \neq j$ where $\zeta_i = \zeta_i^{n/n_i}$ and $B_i = A^{\mathfrak{G}_i}$. Then it is clear that $x_i^{-1}bx_i \in B(b \in B)$ and $x_i^{n_i}, x_ix_jx_i^{-1}x_j^{-1} \in U(B)$. We set $\rho_i = \tilde{x}_i^{-1}, b_i = x_i^{n_i}$ and $b_{ij} = x_i^{-1}x_j^{-1}x_ix_j$. Then they satisfy (c).

(a)
$$\rho_i \rho_j \rho_i^{-1} \rho_i^{-1}(b) = x_i^{-1} x_j^{-1} x_i x_j b x_j^{-1} x_i^{-1} x_j x_i = b_{ij} b b_{ij}^{-1} = \tilde{b}_{ij}(b)$$
.

(b)
$$b_{i,j}\rho_{J}(b_{ik})b_{jk} = x_{i}^{-1}x_{j}^{-1}x_{i}x_{J}(x_{j}^{-1}x_{i}^{-1}x_{k}^{-1}x_{i}x_{k}x_{j}) \cdot x_{j}^{-1}x_{k}^{-1}x_{j}x_{k}$$

 $= x_{i}^{-1}x_{j}^{-1}x_{k}^{-1}x_{i}x_{j}x_{k} = (x_{i}^{-1}x_{j}^{-1}x_{k}^{-1}x_{j}x_{k}x_{i})(x_{i}^{-1}x_{k}^{-1}x_{i}x_{k}) \cdot (x_{k}^{-1}x_{i}^{-1}x_{j}^{-1}x_{i}x_{j}x_{k}) = \rho_{i}(b_{jk})b_{ik}\rho_{k}(b_{ij}).$

(d)
$$RN_{n_j}(b_{ji}; \rho_i) = (x_j^{-1}x_i^{-1}x_jx_i)x_i^{-1}(x_j^{-1}x_i^{-1}x_jx_i)x_ix_i^2(x_j^{-1}x_i^{-1}x_jx_i)x_i^2\cdots x_i^{1-n_i}(x_j^{-1}\cdot x_i^{-1}x_jx_i)x_i^{n_i-1} = x_jx_i^{-n_i}x_jx_i^{n_i} = \rho_j(b_i^{-1})b_i.$$

As to (e), we first consider $T=B[x_1, x_2, \cdots, x_e] = \sum_{0 \leq \nu_i < n_i} x_1^{\nu_i} x_2^{\nu_2} \cdots x_e^{\nu_e} B$. Then T is a \mathfrak{G} -(setwise) invariant subring of A with $T^{\mathfrak{G}}=B$. By the similar method as in the proof of [4, Theorem 2.1], we can easily see that $\{x_1^{\nu_1} x_2^{\nu_2} \cdots x_e^{\nu_e} | 0 \leq \nu_i < n_i\}$ is a B-right linearly independent set. Let $\tau = \sigma_1^{l_1} \sigma_2^{l_2} \cdots \sigma_i^{l_i} \cdots \sigma_e^{l_e}$ be an arbitrary element of \mathfrak{G} . Then by making use of the same method as in the proof of Theorem 1.1, we can easily see the existence of elements $\{c_1^{(i)}, c_2^{(i)}, \cdots, c_i^{(i)}; d_1^{(i)}, d_2^{(i)}, \cdots, d_i^{(i)}\}$ in $B[x_i]$ such that

$$\delta_{1,\tau_i} = \sum_j c_j^{(i)} \tau_i (d_j^{(i)})$$
 for $\tau_i = \sigma_i^{l_i}$.

Since $\sum_{j} c_{j}^{(i)} \tau(d_{j}^{(i)}) = \sum_{j} c_{j}^{(i)} \sigma_{i}^{(i)}(d_{j}^{(i)})$, it follows that

$$\hat{\sigma}_{1,\tau} = \sum_{(j_e, j_{e-1}, \cdots, j_1)} c_{j_e}^{(c)} c_{j_{e-1}}^{(c-1)} \cdots c_{j_1}^{(1)} \tau (d_{j_1}^{(1)} d_{j_2}^{(2)} \cdots d_{j_e}^{(c)}).$$

This means the existence of a \mathfrak{G} -Galois coordinate system for T/B. Thus we obtain T=A. Noting here that $A^{\mathfrak{G}_i}/B$ is $(\sigma_1)\times(\sigma_2)\times\cdots\times(\sigma_i)$ -Galois, the above argument enables us to see $A^{\mathfrak{G}_i}=B[x_1,x_2,\cdots,x_i]$. While,

 $B[X_1, X_2, \dots, X_i; \rho_1, \rho_2, \dots, \rho_i]/M_i \cong A_{i-1}[X_i; \rho_i]/(X_i^{n_i} - b_i)A_{i-1}[X_i; \rho_i] \cong A^{\otimes i}$. Hence there holds (e).

Let φ^* be the map of \mathscr{B} to $A=B[x_1, x_2, \dots, x_e]$ defined by $f(X_1, X_2, \dots, X_e) \longmapsto f(x_1, x_2, \dots, x_e)$. Then φ^* is a B-(ring) epimorphism and its kernel contains M_c . On the other hand, we can write $f(X_1, X_2, \dots, X_e) = (X_1^{n_1} - b_1) g_1(X_1, X_2, \dots, X_e) + (X_2^{n_2} - b_2) g_2(X_1, X_2, \dots, X_e) + \dots + (X_c^{n_e} - b_e) g_e(X_1, X_2, \dots, X_e) + r(X_1, X_2, \dots, X_e)$ with a polynomial $r(X_1, X_2, \dots, X_e)$ whose degree with respect to each X_i is smaller than n_i . Hence we have $\mathscr{B}/M_e \cong A$.

Sufficiency: Assume that there exist automorphisms $\{\rho_i | i=1, 2, \dots, e\}$ and $\{b_i, b_{ij} | i, j=1, 2, \dots, e\}$ with $b_{ij} = b_{ji}^{-1}$ and $b_{ii} = 1$ satisfying (a)—(e). Then, by (e), $A^* = \bigoplus_{0 \le v_i < a_i} y_1^{v_1} y_2^{v_2} \cdots y_e^{v_e} B \cong \mathscr{B} / M_e$ has no proper central idempotents, where y_i is the residue class of X_i modulo M_e . By (c), the map ψ_i of \mathscr{B} defined by $f(X_i, X_2, \dots, X_i, \dots, X_e) \mapsto f(X_i, X_2, \dots, X_i \zeta_i^{-1}, \dots, X_e)$ is an automorphism of order n_i and each $X_j^{n_i} b_j^{-1} - 1$ is central by (d), ψ_i induces an automorphism σ_i^* of order n_i of A^* . If \mathfrak{G}^* is the group generated by $\sigma_1^*, \sigma_2^*, \dots, \sigma_e^*$, then $\mathfrak{G}^* = (\sigma_1^*) \times (\sigma_2^*) \times \dots \times (\sigma_e^*)$ and $A^*\mathfrak{G}^* = B$. Since $B_i^* = A^*\mathfrak{G}^*_i = B[y_i], y_i + \zeta_i \sigma_i^*(y_i) + \dots + \zeta_i^{n_i-1} \sigma_i^{*n_i-1}(y_i) = n_i y_i$ is a unit. The existence of a \mathfrak{G}^* -Galois coordinate system for A^*/B will be seen as in the necessity part. Finally, $A^*\mathfrak{G}_i^* = B[y_i, y_2, \dots, y_{i-1}][X_i; \rho_i]/(X_i^{n_i} - b_i) B[y_i, y_2, \dots, y_{i-1}][X_i; \rho_i]$, which contains no proper central idempotents by (e). The rest of the proof will be almost evident.

Corollary 2.1. If A is a strongly abelian (\mathfrak{G}, ζ) -extension of B such that $A^{\mathfrak{G}_i}$ has no proper central idempotents for each $i=1, 2, \dots, e$, then A is B-free.

Now, corresponding to Theorem 1.2, we shall prove the following

Theorem 2.2. Let T be an abelian (\mathfrak{T}, ζ) -extension of B where $\mathfrak{T}=(\tau_1)\times(\tau_2)\times\cdots\times(\tau_e)$ is a direct product of cyclic groups (τ_i) of order m_i . Let $\mathfrak{D}=(r_1)\times(r_2)\times\cdots\times(r_e)$ a direct product of cyclic groups (τ_i) of order n_im_i , and $\prod_{i=1}^e n_i=n$. Then, in order that B have an abelian (\mathfrak{D}, ζ) -extension A such that $A\supseteq T$, A/T is a strongly abelian (\mathfrak{D}, ζ) -extension, $r_i|T=\tau_i$, $r_i=\sigma_i$ and the fixring of $\mathfrak{D}_i=(\sigma_{i+1})\times(\sigma_{i+2})\times\cdots\times(\sigma_e)$ in A has no proper central idempotents $(i=1, 2, \cdots, e)$, it is necessary and sufficient that there exist automorphisms $\{\rho_i|i=1, 2, \cdots, e\}$ of T, elements $\{t_i, t_{i,j}|i, j=1, 2, \cdots, e\}$ in U(T) with $t_{i,j}=t_{j,i}^{-1}, t_{i,i}=1$ satisfying the conditions (a)-(e) of Theorem 2.1 (T replacing B) and there exist

elements $\{u_{ij}; i, j=1, 2, \dots, e\}$ in U(T) satisfying

- (f) $\tau_i \rho_j \tau_i^{-1} \rho_j^{-1} = \tilde{u}_{ii}^{-1}$,
- (g) $RN_{m_i}(u_{ii}; \tau_i) = \zeta_i^{-1}$, $RN_{m_i}(u_{ij}; \tau_j) = 1$ $(i \neq j)$,
- (h) $LN_{n_i}(u_{ji}; \rho_j) = t_j^{-1} \tau_i(t_j),$
- (i) $t_{ij}(\rho_j u_{ik})u_{jk} = (\rho_i u_{jk}) z_k(t_{ij}),$
- (j) $u_{ki}\tau_i(u_{ik})=u_{kj}\tau_i(u_{ki}).$

Proof. Necessity: Let A be an extension requested in the theorem. Then there exist elements x_1, x_2, \dots, x_e in U(T) such that $\gamma_i^{m_i}(x_i) = x_i \xi_i^{-1}$ and $\gamma_i^{m_i}(x_j) = x_j$ for each $i \neq j$ where $\rho_i = \xi^{m_i}$ (see the proof of Theorem 2. 1). We set $t_i = x_i^{n_i} \in U(T)$, $t_{ij} = x_i^{-1} x_j^{-1} x_i x_j \in U(T)$ and $\rho_i = \tilde{x}_i^{-1}$. Then they satisfy the conditions (a)—(e), and $A = T[x_1, x_2, \dots, x_e] \cong \mathcal{F}/M$ by $x_i \longrightarrow X_i + M$ where $\mathcal{F} = T[X_1, X_2, \dots, X_e; \rho_i, \rho_2, \dots, \rho_e]$ and $M = (X_1^{m_1} - t_i, X_2^{m_2} - t_2, \dots, X_e^{m_e} - t_e)$. Now, we set $u_{ij} = x_i^{-1} \gamma_j(x_i)$. Then $\gamma_k^{m_k}(u_{ij}) = u_{ij}$ for each $k = 1, 2, \dots, e$. Hence $u_{ij} \in U(T)$. In the following, we shall show that u_{ij} satisfies the conditions (f)—(j).

(f)
$$\tau_i \rho_j \tau_i^{-1} \rho_j^{-1}(t) = \tau_i \rho_j (t_i^{-1}(x_j) \eta_i^{-1}(t) \eta_i^{-1}(x_j^{-1})) = \tau_i (x_j^{-1} \eta_i^{-1}(x_j) \eta_i^{-1}(t) \eta_i^{-1}(x_j^{-1})) = \tau_i (x_j^{-1} \eta_i^{-1}(x_j) \eta_i^{-1}(t) \eta_i^{-1}(x_j^{-1}) x_j + \eta_i (x_j^{-1}) x_j$$

(g)
$$RN_{m_i}(u_{ii}; \tau_i) = x_i^{-1} \gamma_i(x_i) \gamma_i(x_i^{-1}) \gamma_i^2(x_i) \cdots \gamma_i^{m_i-1}(x_i^{-1}) \gamma_i^{m_i}(x_i) = x_i^{-1} \gamma_i^{m_i}(x_i) = \xi_i^{-1}$$
.

$$RN_{m_j}(u_{ij}; \tau_j) = (x_i^{-1} \gamma_j(x_i)) (\gamma_j(x_i^{-1}) \gamma_j^2(x_i)) \cdots (\gamma_j^{m_j-1}(x_i^{-1}) \gamma_j^{m_j}(x_i)) = x_i^{-1} \gamma_j^{m_j}(x_i) = 1.$$

- (h) $LN_{n_j}(u_{ji}; \rho_j) = x_j^{1-n_j}x_j^{-1}\eta_i(x_j)x_j^{n_j-1}x_j^{-1}\eta_i(x_j)x_j^{n_j-1} \cdots x_j^{-1}x_j^{-1}\eta_i(x_j)$ $x_jx_j^{-1}\eta_i(x_j) = x_j^{-n_j}\eta_i(x_j^{n_j}) = t_j^{-1}\tau_i(t_j).$
 - (i) $t_{ij}(\rho_j u_{ik})u_{jk} = x_i^{-1}x_j^{-1}x_ix_j(x_j^{-1}x_i^{-1}\gamma_k(x_i)x_j)x_j^{-1}\gamma_k(x_j) = \rho_i(u_{jk})u_{ik}(\tau_k(t_{ij})).$
- (j) $u_{ki}(\tau_i u_{kj}) = x_k^{-1} \gamma_i(x_k) \gamma_i(x_k^{-1} \gamma_j(x_k)) = x_k^{-1} \gamma_i \gamma_j(x_k) = x_k^{-1} \gamma_j \gamma_i(x_k) = x_k^{-1} \gamma_j \gamma_i(x_k) = x_k^{-1} \gamma_j \gamma_i(x_k) = x_k^{-1} \gamma_j \gamma_i(x_k) = x_k^{-1} \gamma_i(x_k$

Sufficiency: Assume there exist $\{\rho_i, t_i, t_{ij} \text{ and } u_{ij} | i, j=1, 2, \cdots, e\}$ satisfying the conditions (a)—(j). Then the map Ψ_i of \mathscr{T} defined by $\sum X_1^{\nu_1} X_2^{\nu_2} \cdots X_e^{\nu_e} t_{\nu_1 \cdots \nu_e} \longmapsto \sum (X_1 u_{ii})^{\nu_i} (X_2 u_{2i})^{\nu_2} \cdots (X_e u_{ei})^{\nu_e} \varepsilon_i (t_{\nu_1 \cdots \nu_e})$ is an automorphism by (f) and (h), and its order is $n_i m_i$ by (g) ([4, Theorem 4. 2]). Next, $\Psi_i(X_j^{n_j} - t_j) = X_j^{n_j} L N_{n_j}(u_{ji}; \rho_j) - \varepsilon_i(t_j)$ implies $\Psi_i(X_j^{n_j} - t_j) = (X_j^{n_j} - t_j) t_j^{-1} \varepsilon_i(t_j)$ by (h). Hence each Ψ_i induces respectively ε_i and an automorphism η_i^* of order $n_i m_i$ on T and $A^* = \bigoplus_{0 \le \nu_i < n_i} y_1^{\nu_i} y_2^{\nu_2} \cdots y_e^{\nu_e} T = \mathscr{T}/M_e$,

where each y_i is the residue class of X_i modulo M_e . Now $\gamma_i^*\gamma_j^*(y_k) = \gamma_i^*(y_k u_{kj}) = y_k u_{ki} \tau_i(u_{kj})$ and $\gamma_j^*\gamma_i^*(y_k) = \gamma_j^*(y_k u_{ki}) = y_k u_{kj} \tau_j(u_{ki})$ show that $\gamma_i^*\gamma_j^* = \gamma_j^*\gamma_i^*$ by (j). By a brief computation, we can see that the group \mathfrak{F}^* generated by $\gamma_i^*, \gamma_i^*, \cdots, \gamma_e^*$ is $(\gamma_i^*) \times (\gamma_i^*) \times \cdots \times (\gamma_e^*)$ and $A^*\mathfrak{F}^* = B$. Let $\mathfrak{F}^* = (\gamma_i^{*m_i}) \times (\gamma_i^{*m_i}) \times \cdots \times (\gamma_e^{*m_e})$. Then by (g), we have $\gamma_i^{*m_i}(y_i) = y_i \zeta_i^{-1}$ and $\gamma_i^{*m_i}(y_j) = y_j$ for $i \neq j$. Hence A^*/T is a strongly abelian $(\mathfrak{F}^*, \mathfrak{F})$ -extension. Since $\mathfrak{F}^* \mid T = \mathfrak{T}$ and $\mathfrak{F}^*_T = \mathfrak{F}^*$, A^*/B is an abelian $(\mathfrak{F}^*, \mathfrak{F})$ -extension ([5, Lemma 1. 1]).

3. Cyclic extensions of commutative rings

In this section, \mathfrak{G} will be a cyclic group of order n generated by σ . As has been observed in $\S 1$, if A is a strongly cyclic (\mathfrak{G}, ζ) -extension of B, then A = B[x] for some $x \in A$ (Corollary 1.1). Hence, if an algebra A is a strongly cyclic (\mathfrak{G}, ζ) -extension over B, then A is commutative. However, DeMeyer proved that any cyclic Galois algebra is commutative ([2, Theorem 11]). In the rest we assume that rings are commutative.

The following lemma gives a sufficient condition for a cyclic (\S , ζ)-extension to be strongly cyclic.

Lemma 3.1. Let A be a cyclic (\mathfrak{G}, ζ) -extension of B, and x an element of A with $\sigma(x) = x\zeta^{-1}$. Then the following conditions are equivalent:

- (1) B[x] is separable over B.
- (2) x is a unit.
- (3) $\{1, x, x^2, \dots, x^{n-1}\}\$ is a free B-basis for A.

Proof. (2) \rightarrow (3) is already shown in Corollary 1. 1 and (3) \rightarrow (1) is obvious. If B[x] is separable over B then, by [3, Lemma 2.1 and Lemma 2.7], $x-\sigma(x)=x-x\zeta^{-1}=x(1-\zeta^{-1})$ is a unit in A and hence so is x.

Remark. In [3, Definition 5], a strongly separable B algebra A without proper idempotents is called a splitting ring for the separable polynomial f(X) if f(X) is a product of linear factors from A[X] and if A is generated over B by the roots of f(X). By [3, Proposition 2.6] and Lemma 3.1, we can see that A is a strongly cyclic (\mathfrak{G}, ζ) -extension of B if and only if A is a splitting ring for a directly indecomposable separable polynomial $X^n - b_0$ with $b_0 \in U(B)$.

Lemma 3.2. Let A be a cyclic (\mathfrak{G}, ζ) -extension of B. If B has a \mathfrak{G} -normal basis then it is strongly cyclic.

Proof. Let a be a normal basis element of A. Then $A = aB \oplus \sigma(a)B \oplus \cdots \oplus \sigma^{n-1}(a)B$ shows that an element y of A is contained in $\mathfrak{p}A$, where \mathfrak{p} is a maximal ideal of B, if and only if $y = \sum_{i=0}^{n-1} \sigma^i(a) p_i$, $p_i \in \mathfrak{p}$. Let $x = a + \xi \sigma(a) + \cdots + \xi^{n-1} \sigma^{n-1}(a)$. Then $\sigma(x) = x\xi^{-1}$ and $x \notin \mathfrak{p}A$ for each maximal ideal \mathfrak{p} of B. While $A/\mathfrak{p}A$ is a Galois extension of the field $(B+\mathfrak{p}A)/\mathfrak{p}A \cong B/\mathfrak{p}$, $A/\mathfrak{p}A$ is a direct sum of a finite number of fields. Thus it contains no non-zero nilpotent element. Now, if we assume that $x^n \in \mathfrak{p}$ for some \mathfrak{p} , it yields a contradiction $x \in \mathfrak{p}A$. Thus $x^n \notin \mathfrak{p}$. Consequently, x^n and hence x is a unit.

Since a Galois extension of a semi-local ring is semi-local, the following result is a direct consequence of Lemma 3. 2 and Theorem 1. 1. (Cf. the necessity part of the proof of Theorem 1. 1.)

Corollary 3.1. Let B be semi-local. In order that B have a cyclic (\mathfrak{G}, ζ) -extension, it is necessary and sufficient that there exists an element b_0 in U(B) such that X^n-b_0 is directly indecomposable in B[X].

Theorem 3.1. Let T be a cyclic (\mathfrak{T}, ζ) -extension of a semi-local ring B where \mathfrak{T} is of order m and is generated by τ . Let \mathfrak{P} be a cyclic group of order nm with a generator η . In order that B have a cyclic (\mathfrak{P}, ζ) -extension A with $A \supseteq T$, $\eta \mid T = \tau$ and $\eta^m = \sigma$, it is necessary and sufficient that there exist elements t_0 and u in U(T) satisfying

- (a) X^n-t_0 is directly indecomposable in T[X]
- (b) $N_{\mathfrak{r}}(u)(=u\,\mathfrak{r}(u)\,\mathfrak{r}^{2}(u)\cdots\mathfrak{r}^{m-1}(u))=\zeta^{-1}$
- (c) $\tau(t_0) = t_0 u^n$

Proof. Assume first that there exist elements t_0 , u in U(T) satisfying the conditions (a), (b) and (c). Then $\rho=1$, t_0 and u satisfy the conditions (a)—(e) of Theorem 1.2.

Conversely, we assume that A is a cyclic (\mathfrak{D}, ζ) -extension of B with $A \supseteq T$ and $\gamma \mid T = \tau$. Then A/T is a cyclic $((\gamma^m), \zeta)$ -extension. Hence by Lemma 3. 2, A/T is a strongly cyclic $((\gamma^m), \zeta)$ -extension. Now, the rest is clear from the proof of Theorem 1. 2.

As an immediate consequence of [3, Corollary 2.10], we see that if a separable polynomial is irreducible then it is directly indecomposable. Now, we shall prove the following

Theorem 3.2. Let B be a domain. In order that B have a strongly cyclic (\mathfrak{G}, ζ) -extension A which is a domain, it is necessary and sufficient that there exists an element b_0 in U(B) such that $X''-b_0$ is irreducible in K[X] where K is the quotient field of B.

Proof. Let A be a strongly cyclic (\S, ζ) -extension of B which is a domain. Then by Theorem 1.1, we have $A \cong B[X]/(X^n - b_0)$ for some $b_0 \in U(B)$. Since A is a domain, it follows that $X^n - b_0$ is irreducible in K[X]. The converse is almost evident.

4. Abelian extensions of commutative rings

In this section, we assume that $\mathfrak{G}=(\sigma_1)\times(\sigma_2)\times\cdots\times(\sigma_r)$, where every (σ_i) is a cyclic group of order n_i generated by σ_i and $n=\prod_{i=1}^r n_i$. Corresponding to Theorem 2. 1, we shall prove the following

Theorem 4.1. In order that B have a strongly abelian (\mathfrak{G}, ζ) -extension A, it is necessary and sufficient that there exist elements b_1, b_2, \cdots , b_e in U(B) such that $\{X_1^{n_1}-b_1, X_2^{n_2}-b_2, \cdots, X_e^{n_e}-b_e\}$ is a system of indecomposable polynomials in $B[X_1, X_2, \cdots, X_e]$. Moreover, if this is the case, $A = A^{\mathfrak{G}_1} \otimes_B A^{\mathfrak{G}_2} \otimes \cdots \otimes_B A^{\mathfrak{G}_e}$.

Proof. Let A be a strongly abelian (\mathfrak{G}, ζ) -extension of B. Then, as is shown in Theorem 2.1, there exist elements x_i, x_i, \dots, x_e in U(A) such that $\sigma_i(x_i) = x_i \zeta_i^{-1}$, $\sigma_i(x_j) = x_j$ for $i \neq j$ and $A = B[x_1, x_2, \dots, x_e]$. Set $B_i = B[x_i]$. Then $B_i = B \oplus x_i B \oplus \cdots \oplus x_i^{n_i-1} B$, $b_i = x_i^{n_i} \in U(B)$, $A^{\mathfrak{G}_i} = B_i$, B_i/B is a strongly cyclic $((\sigma_i), \zeta)$ -extension and $A^{\mathfrak{G}_i} = B[x_1, x_2, \dots, x_i] \cong B[x_1, x_2, \dots, x_{i-1}][X_i]/(X_i^{n_i} - b_i)B[x_1, x_2, \dots, x_{i-1}][X_i]$. By the same argument as in the proof of [5, Theorem 4.1], we can easily see that $A = B_i \otimes_B B_2 \otimes \cdots \otimes_B B_e$.

Conversely, assume that there exist elements b_1, b_2, \dots, b_e in U(B) satisfying the condition. If we set $\rho_i=1, b_{ij}=1, i, j=1, 2, \dots, e$, $\{\rho_i, b_i \text{ and } b_{ij} | i, j=1, 2, \dots, e\}$ satisfies the conditions (a)—(e) of Theorem 2. 1. Hence $A^*=B[X_1, X_2, \dots, X_e]/M_e$ is a requested extension.

Now, corresponding to Theorem 2.2, we shall give a necessary and sufficient condition that there holds the embedding theorem for abelian extensions of commutative rings.

First we have the following theorem which is a direct consequence of Theorem 2. 2.

Theorem 4.2. Let T be an abelian (\mathfrak{T}, ζ) -extension of B where

 $\mathfrak{T}=(\tau_1)\times(\tau_2)\times\cdots\times(\tau_e)$ is a direct product of cyclic groups (τ_i) of order m_i . Let $\mathfrak{D}=(\gamma_1)\times(\gamma_2)\times\cdots\times(\gamma_e)$ be a direct product of cyclic groups of (τ_i) of order n_im_i , and $\prod_{i=1}^e n_i = n$. Then, in order that $A \supseteq T$, A/T is a strongly abelian (\mathfrak{G}, ζ) -extension and $\gamma_i \mid T = \tau_i$, $\gamma_i^{m_i} = \sigma_i$ it is necessary and sufficient that there exist elements $\{t_i, u_{ij} \mid i, j = 1, 2, \cdots, e\}$ in U(T) satisfying

- (a) $N_{r_i}(u_{ii}) = \zeta_i^{-1}, N_{r_i}(u_{ij}) = 1,$
- (b) $u_{ij}^{n_i} = t_i^{-1} \tau_i(t_i),$
- (c) $u_{ki}\tau_i(u_{kj}) = u_{ki}\tau_j(u_{kj}),$
- (d) $\{X_i^{n_i}-t_i|i=1,2,\cdots,e\}$ is a system of directly indecomposable polynomials in $T[X_1,X_2,\cdots,X_r]$.

Combining Theorem 3. 2 with Theorem 4. 2, we have the following

Theorem 4.3. Let T be an abelian (\mathfrak{T}, ζ) -extension of B such that T is a domain and $\mathfrak{T}=(\tau_1)\times(\tau_2)\times\cdots\times(\tau_e)$ is a direct product of cyclic groups (τ_i) of order m_i . Let $\mathfrak{H}=(\tau_1)\times(\tau_2)\times\cdots\times(\tau_e)$ be a direct product of cyclic groups (τ_i) of order $n_i m_i$, and $\prod_{i=1}^e n_i = n$. Then, in order that B have an abelian (\mathfrak{H}, ζ) -extension domian A such that $A\supseteq T$, A/T is a strongly abelian (\mathfrak{H}, ζ) -extension, $\tau_i|_{T=\tau_i}$ and $\tau_i^{m_i}=\sigma_i$, it is necessary and sufficient that there exist elements $\{t_i, u_{ij} | i, j=1, 2, \cdots, e\}$ in U(T) satisfying

- (a) $N_{\tau_i}(u_{ii}) = \zeta_i^{-1}, N_{\tau_i}(u_{ij}) = 1,$
- (b) $u_{i,j}^{n_i} = t_i^{-1} z_j(t_i),$
- (c) $u_{ki}\tau_i(u_{ki}) = u_{kj}\tau_j(u_{ki}),$
- (d) $X_i^{n_i}-t_i$ is irreducible in $K_{i-1}[X_i]$, where K_{i-1} is the quotient field of $B[X_1, X_2, \dots, X_{i-1}]/(X_1^{n_i}-t_1, X_2^{n_2}-t_2, \dots, X_{i-1}^{n_i-1}-t_{i-1})$.

REFERENCES

- [1] S. U. Chase, D. K. Harrison and A. Rosenberg: Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc., 52 (1965), 15—33.
- [2] F. R. DEMEYER: Some notes on the general Galois theory of rings. Osaka Math. J., 2 (1965), 117—127.
- [3] G. J. Janusz: Separable algebras over commutative rings, Trans. Amer. Math. Soc., 122 (1966), 461—479.
- [4] K. Kishimoto: On abelian extensions of simple rings, J. Fac. Sci. Hokkaido Univ., 19 (1967), 74—85.
- [5] K.KISHIMOTO: On abelian extensions of rings I, Math. J. of Okayama Univ., 14 (1970), 159—174.

- [6] Y. MIYASHITA: Finite outer Galois theory of non-commutative rings. J. Fac. Sci. Hokkaido univ., 19 (1966), 114—134.
- [7] T. NAGAHARA and H. TOMINAGA: Galois theory of simple rings, Okayama Math. Lecture, Dept. of Math., Okayama Univ., (1970).

DEPARTMENT OF MATHEMATICS SHINSHU UNIVERSITY

(Received January 1, 1971)