GROUP RINGS WITH SOLVABLE UNIT GROUPS

Dedicated to Professor TAKESHI INAGAKI on the occasion of his sixtieth birthday

KAORU MOTOSE and HISAO TOMINAGA

Throughout, R will represent an artinian simple ring with 1, C the center of R, and G a finite group of order g.

Recently, in their paper [1], P. B. Bhattacharya and S. K. Jain proved the following: Let S be a right artinian ring with 1, and J(S) the (Jacobson) radical of S. Then, the unit group U(S) of S is solvable if and only if U(S/J(S)) is solvable¹⁾, namely, S/J(S) is a finite direct sum of fields, $(GF(2))_2$ and $(GF(3))_3$. This result will be used freely in the sequel. The main theme of our discussion will concern the solvability of the unit group of the group ring RG.

For semi-simple group rings, we shall prove the following:

Theorem 1. Assume that g is not divisible by the characteristic of C. Then, U(RG) is solvable if and only if there holds one of the following:

- (i) R=C and G is abelian (or equivalently, U(RG) is nilpotent²⁾).
- (ii) $R = (GF(2))_2$ and G = 1.
- (iii) $R = (GF(3))_2$ and G is an abelian group of exponent 2.
- (iv) R = GF(3) and $G = G_1 \times G_2$, where G_1 is an abelian group of exponent 2 and G_2 is a non-abelian indecomposable 2-group such that $U(RG_2)$ is solvable.

Proof. Assume first U(RG) is solvable. Since U(R) is solvable, R = C or $(GF(2))_3$ or $(GF(3))_3$. Now, we shall distinguish between three cases:

¹⁾ More generally, there holds the following: Let S be a ring with 1, and N a nilpotent ideal of S. If U(S/N) is solvable then U(S) is solvable (and conversely). To see this, we consider the group homomorphism $\alpha: U(S) \rightarrow U(S/N)$ induced by the natural ring homomorphism $S \rightarrow S/N$. Let $(\text{Ker } \alpha)^{[n]}$ be the n-th commutator subgroup of $\text{Ker } \alpha$. Noting that $a^{-1}b^{-1}ab-1=a^{-1}b^{-1}\{(a-1)(b-1)-(b-1)(a-1)\}$ for a, $b \in U(S)$, we can easily see $\{u-1 \mid u \in (\text{Ker } \alpha)^{[n]}\} \subset N^{2^n}$, which implies the solvability of $\text{Ker } \alpha$.

²⁾ Cf. [3].

Case 1. $R = C \neq GF(3)$: It suffices then to consider the case R = GF(2): $RG = F_1 \oplus \cdots \oplus F_k \oplus (GF(2))_2^{(l)}$, where F_i are fields over GF(2) and $(GF(2))_2^{(l)}$ means the direct sum of l copies of $(GF(2))_2$. Since GL(2,2) is isomorphic to the symmetric group S_3 and the alternative group A_3 is abelian, we obtain a normal chain $G = G_3 \triangleright G_1 \triangleright \cdots \triangleright G_{n-1} \triangleright G_n$ such that $(G_{i-1}: G_i) \leq 2$ and G_n is abelian. Noting that g is odd, we readily see that G is equal to the abelian group G_n .

Case 2. $R = (GF(2))_2$ or $(GF(3))_2$: Evidently, $RG = F_1 \oplus \cdots \oplus F_k \oplus R^{(l)}$. Since U(CG) is solvable and $RG = (CG)_2$, one will easily see that $CG = C^{(g)}$. If $R = (GF(2))_2$ then U(CG) = 1, and hence G = 1. On the other hand, if $R = (GF(3))_2$ then U(CG) is an abelian group of exponent 2, and hence so is G.

Case 3. R = GF(3): Assume G is non-abelian. Then, $G = G_1 \times G_2$, where G_2 is non-abelian and indecomposable. Since both $U(RG_1)$ and $U(RG_2)$ are solvable, $RG_1 = F_1' \oplus \cdots \oplus F_{k'}' \oplus (R)_2^{(i')}$ and $RG_2 = F_1'' \oplus \cdots \oplus F_{k''}'' \oplus (R)_2^{(i'')}$ where F_i' and F_j'' are fields over R and I'' > 0. Accordingly, RG is the direct sum of $\bigoplus_{i,j} (F_i' \bigotimes_R F_j'')$, $\bigoplus_i (F_i')_2^{(i'')}$, $\bigoplus_j (F_j'')_2^{(i')}$ and $(R)_4^{(i'i'')}$. It follows then I' = 0 and $F_i' = R$. Hence, G_1 is an abelian group of exponent 2. Now, let G_2^* be the residue class group of G_2 modulo its center. Since G_2^* can be regarded as a subgroup of the direct product of I'' copies of PGL (2, 3) and PGL (2, 3) $(\cong S_4)$ is of order $2^3 \cdot 3$, G_2^* is a nontrivial 2-group, and hence G_2 is nilpotent. Recalling here that G_2 is indecomposable, we readily see that G_2 is a 2-group.

Concerning the converse, it suffices to prove that if (iii) or (iv) holds then U(RG) is solvable. In fact, if there holds (iii) then $CG = C^{(g)}$, whence we readily see that $RG = (C)_2^{(g)}$ and U(RG) is solvable. Next, if there holds (iv) then $RG_1 = R^{(g_1)}$ (g_1 the order of G_2) and $U(RG) = U(RG_1 \bigotimes_R RG_2)$ is solvable.

Remark. Let R = GF(3). If g = 8 then U(RG) is solvable. In fact, if G is non-abelian then the commutator subgroup G' of G coincides with the center of G and G/G' is a 2-elementary abelian group of order 4. Accordingly, G possesses four 1 dimensional representations in R, and it is easy to see that $RG = R^{(4)} \oplus (R)_2$. However, in case g = 16, there exists an indecomposable G such that U(GR) is not solvable: Let G be the group $\langle a, b \rangle$ with defining relations $a^8 = 1$, $b^2 = 1$, $b^{-1}ab = a^7$. To be easily seen, G is indecomposable and possesses the irreducible representation T in R

defined by
$$\mathbf{T}(a) = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 1 & -1 \end{pmatrix}$$
 and $\mathbf{T}(b) = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$. The commutor of

$$\{\mathbf{T}(a), \mathbf{T}(b)\}\$$
in $\{R\}$ is seen to be $R(\zeta)$, where $\zeta = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$ is a primitive

fourth root of 1. Hence, RG contains $(R(\zeta))_2$ as a simple component, and so U(RG) is not solvable.

Theorem 2. Assume that C is of prime characteristic p and G contains a normal Sylow p-subgroup P. Then, U(RG) is solvable if and only if there holds one of the following:

- (i) R=C and G is a semi-direct product of P and an abelian group.
- (ii) $R = (GF(2))_2$ and G = P.
- (iii) $R = (GF(3))_2$ and G is a semi-direct product of P and an abelian group of exponent 2.
- (iv) R = GF(3) and G is a semi-direct product of P and $G_1 \times G_2$, where G_1 is an abelian group of exponent 2 and G_2 is a non-abelian indecomposable 2-group such that $U(RG_2)$ is solvable.
- *Proof.* We consider the ring epimorphism $\beta: RG \rightarrow RG^*$ defined by $\sum_{\sigma \in G} a_{\sigma}\sigma \mapsto \sum_{\sigma \in G} a_{\sigma}\sigma^*$, where $G^* = G/P$ and σ^* is the residue class of σ modulo P. Then, by [2: Theorem 2], Ker β coincides with J(RG). Hence, U(RG) is solvable if and only if so is $U(RG^*)$. Now, our assertion will be immediate by Theorem 1 and Schur-Zassenhaus theorem.

The following corollaries are only selections from Theorems 1 and 2.

Corollary 1. Let $C \neq GF(3)$.

- (a) Assume that $G \neq 1$ and g is not divisible by the characteristic of C. If U(RG) is solvable then it is nilpotent.
- (b) Assume that C is of prime characteristic p and G contains a proper normal Sylow p-subgroup P. If U(RG) is solvable then $U(R \cdot G/P)$ is nilpotent, and conversely.

Corollary 2. Let C = GF(3).

(a) Assume that G is not a 2-group and g is not divisible by 3. If U(RG) is solvable then it is nilpotent.

(b) Assume that G contains a normal Sylow 3-subgroup P such that G/P is not a 2-group. If U(RG) is solvable then $U(R \cdot G/P)$ is nilpotent, and conversely.

Corollary 3. Let R be of prime characteristic p, and G a p-group. Then, U(RG) is solvable if and only if R=C or $(GF(2))_2$ or $(GF(3))_2$.

REFERENCES

- [1] P.B. BHATTACHARYA and S. K. Jain: A note on the adjoint group of a ring, Archiv der Math. 21 (1970), 366—368.
- [2] K. Motose: On grop rings over semi-primary rings, Math. J. Okayama Univ. 14 (1969), 23—26.
- [3] K. Motose and H. Tominaga: Group rings with nilpotent unit groups, Math. J. Okayama Univ. 14 (1969), 43—46.

DEPARTMENTS OF MATHEMATICS, SHIINSHU UNIVERSITY OKAYAMA UNIVERSITY

(Received January 12, 1971)