ON THE SUPPORT FUNCTIONS AND
SPHERICAL SUBMANIFOLDS

BANG-YEN CHEN

Let M be an n-dimensional submanifold of a euclidean space E™ of
dimension # (m>n). If e is a unit normal vector field of M and X is the
position vector field, then the support function with respect to e is defined
to be the scalar product X-e of X and e. In § 2, we study support func-
tions and get some characterizations of spherical submanifolds. In §3, we
derive two integral formulas for submanifolds which generalize the well-
known formula of Minkowski for hypersurfaces. In the last section, we
find two theorems analogous to the well-known characterization of a sphere
in E® by Scherrer.

1. Preliminaries

Let M be an n-dimensional submanifold of a euclidean space E™ of
dimension m. Let F(M) and F(E™) be the bundles of orthonormal frames
of M and E™ respectively. Let B be the set of elements b=(p, e,, --*, e,, ***
e.)E F(E™) such that (p, ey, -+, e,)E F(M).

Throughout this paper, we shall argee the indices of the following
ranges unless otherwise stated :

1<4, 4, Zn; 1A B, ~Zm; n+1<r, s, < m.

b

The structure equations of E™ are given by
dx=7>" “):19.4: de,=2 “’m;eB,
(1) d(":l: > ");3/\");3.4; d(U;B: 2 (');zc/\‘”,c's,
Wy wp, =0,
where ), w}, are differential 1-forms on F(E™). Let w,, w,; be the induced

1-forms on B from wj, @,z by the inclusion mapping B— F(E™). Then we
have @,=0. Hence, by (1), we obtain

2 (’)f/\(uir:()-
By a lemma of Cartan, we may write
) W =3 A, Arijz A
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The mean curvature vector H is defined by
(3) H: (%) E-Ari{er-

For each unit normal vector e=3 cost, e,, the second fundamental
form A,=(A;{e)) at e is the linear transformation given by
Ac(e)=3 cos 0,A. e, i=1, -, n

The principal curvatures; k(e), -+, k.(e) at e are defined as the eigenvalues
of the second fundamental form A, at e. The i-t mean curvature at e,
K.(p, e), is given by the i-th elementary symmetric function divided by

(?)=n!/£!(n——i)!, i.e.,
@ (), )= kie)--ke).

Definition 1. Let e be a unit normal vector field of M in E", If the
n-th mean curvature K, (p, e) =0 for all pEM except on a measure zero
subset of M, then the normal vector field e is called a non-degenerate
normal vector field of M.

Definition 2, If M is contained in a hypersphere of E™ centered at
the origin of E™, then M is called a spherical submanifold in E™.

Definition 3. A unit normal vector field e of M in E" is said to be
parallel in the normal bundle if de is tangent to M everywhere.

2. Submanifolds with constant support function

Proposition 1. Let M be an n-dimensional submanifold of E™, e be
a unit normal vector field of M in E™ and parallel in the normal bundle.
If the support function X-e is equal to a constant, then M is the union of
some spherical submanifolds with a subset W of M such that the n-th
mean curvalure at e vanishes identically on W.

Proof. Lete, ---, e, be the principal directions of e, then, by the
assumption of the parallelism of e in the normal bundle, we have

(5) de=— E k;(e)(u,-e,:.

Thus we obtain
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(6) 0=d(X-e)=X-de=—73 kfe) (X-e)w,
Therefore, on the set U={pEM: K.(p, e)5=0}, we have
X-e=X-e,=--=X-e,=0,

i.e., Xis normal to Mon U. Hence we get d(X-X)=0. This shows that
each component of U is a spherical submanifold of E”. This completes the
proof of the proposition.

From Proposition 1, we have the following theorem :

Theorem 2. Let M be an n-dimensional submanifold of E”. If there
exists a non-degenerate normal vactor field e such that e is parallel in the
normal bundle and the support function X-e with respect to e is a constant,
then M is a spherical submanifold of E™.

Proof. By the assumption that the unit normal vector field e is non-
degenerate, we see that the subset W in Proposition 1 is a subset of meas-
ure zero in M. Hence, by Proposition 1, we get the theorem.

For a submanifold M in E™, the position vector field X can be decom-
posed into two parts; X=X,+ X,, where X, is tangent to M and X, is
normal to M. If we denote the unit normal vector field in the direction of
X,bye, ie,

M X.=fe,

then f is the support function with respect to e. We call this support
function f the canonical support function of M in E™.

Theorem 3. Let M be a submanifold of E". If the canonical support
function fis a nonzero constant and the last mean curvature K.(p, e) (X,
=fe) with respect to e is not identically zero, then M is a spherical
submanifold of E™.

Proof. Since the canonical support function f is a nonzero constant,
we see that the normal component X, of X is nowhere zero. Hence, we
can choose e as a globally defined unit normal vector field on M. Let g, .-,
e, be in the principal directions of e, and %, -:+, &k, be the principal curva-
tures at e. Then, if we choose e as the first unit normal vector field e,
then we obtain

(8) de=—2 kwe ~3 W,y ,e,.



18 B.-Y.CHEN

and

9) e+ X=e X, +e-X,=fe e,,,=0, forr=n+2, -, m.
From (8) and (9) we obtain

10) O=df=d(X-e)=X-de=—2 k(X-e,)w,

Let U be the open subset of M; U={pEM: K, (p, €)5~0}. Then Uis
not empty by the assumption. Moreover, by (10), we obtain X-e,=---
= X-e,=0. This implies d(X+-X)=0, on U. Hence, if let U* denote a
component of U, then U* is a spherical submanifold of £, and the posi-
tion vector field X on U* satisfies X=fe. The last statement implies that
K.(p, e) is a constant ( =ﬁ) Therefore, we see that U* is a closed
subset of M. Consequently, M= U*=U, and M is a spherical submanifold
of E™. This completes the proof of the theorem.

Remark 1. The assumption of the non-vanishing of K.(p,e) is
essential. Because an z-dimensional linear subspace of E™ has constant
canonical support function f, and f==0 if this subspace does not pass
through the origin of E™.

Corollary 1. Let M be a closed hypersurface of E"Y', and e be a unit
normal vector field of M in E™*'. If the support function X-e is a constant,
then M is a hypersphere of E"*.

Proof. Since M is a closed hypersurface of E**, the support func-
tion X-e is just the canonical support functon and the »#-th mean curvature
K, (p, e) is not zero somewhere (see, for instance [1]). Hence, by Theorem
3, we get the corollary.

Remark 2. If M is a spherical submanifold of E", then the unit
normal vector field e =X/|X| is a non-degenerate normal vector field,
parallel in the normal bundle, the support function X-e with respect to e
is constant and the last mean curvature at e is a nonzero constant.

Remark 3. The unit normal vector field e satisfying the assumptions
of Theorem 2 is not unique, in general. For example ; let M* be a standard

flat torus in E* given by
(11) (@ cos #, asinu, bcoswv, bsinwv), «>0,0>0.
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Then for every ¢ such that #5£0 (mod %), the unit normal vector field

e,= % (cos %, sin %, cosv, sin v)—i—%n?l (cos u, sinu, —cos v, —sinv)

is a non-degenerate normal vector field, parallel in the normal bundle and
the support function X-e, with respect to e, is constant.

3. Integral formulas for submanifolds and their applications

Let e be a unit normal vector field and u, v be two vector fields over
M. Put

(12) B(ei’ e_f) =2 A4€j(er)er;
and
(13) Flu, 0)= ()3 (Ble, ¢)-u)Bles e)-v).

Then Bfe, e,) and F(u, v) are well-defined.
Suppose f is a smooth function on M. By grad for Vf, we mean Vf
=Y f, e, where f; are given by df=3" fuw.

Theorem 4. Let M be an n-dimensional oriented closed submanifold
of E™, and e be a unit normal vector field parallel in the normal bundle.
Then we have

(14) SMKx(p, e)-~F(e, X)+ X-VK\(p, €))dV =0.
Proof. Since e is parallel in the normal bundle, we obtain
d(X-e)=—2" A;fe)(X-e)o; and
Ai b, €)=Au. b, €).

(15)

Apply the Hodge star operator * on (15) we obtain
(16) *d(X-e)=2 (—1YA(e)(X-e)in \-- NN\ New,,
Hence, the Laplacian A(X-e) is given by
A(X-e)dV=d+d(X-e)=—nKi(p, e)+ X A (e)A,(e)X-e,)
+3 A0, e)(X-e))dV
=—nK(p, e)+nFle, X)+ 3 Ay (p, e)(X-e))dV.
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From this we obtain
an A(X-e)=—n(K\(p, e)+F(e, X)+ X- VK (p, e)).

Integrating (17) over M and applying Green’s theorem to the left hand
side, we obtain (14). This completes the proof of the theorem.
By (17) and Hopf’s lemma we obtain the following two corollaries.

Corollary 1. Let M be a closed submanifold of E", and e a unit
normal vector field parailel in the normal bundle. If e is non-degenerate
and either K,(p,e)+F(e, X)+X-VK,(p,e)=0 or K,(p,e)+F (e, X)-+
X-VK(p, =0 everywhere, then M is a spherical submanifold.

Corollary 2. Let M be a closed submanifold of E", and e be a unit
normal vector field parallel in the normal bundle. Then the mean curvature
vector H is perpendicular to e if and only if Ki(p, e) is a constant and

S"F (e, X) dV 0.

Remark 4. If e is in the direction given by (7), then the condition
of the parallelism of e in the normal bundle in Theorem 4, and Corollaries
1 and 2 can be omitted.

Theorem 5. Under the same hypothesis of Theorem 4, we have

18 =1 K(peaVn] (X-DE (b, aV=| Fle, 10av.
oM A o

Proof. Let

(19) 9=E(—l);_l(X'ei)")l/\"'/\;;1'/\ '"/\")m

where ~ denotes the omitted term. Then, we get

(20) do=n(1-+(X-H))dV.
Hence, by the fact dK(p, e)\¢=(X-VK\p, €))dV, we obtain
(21) d(K\(p, e)p)=(X-VKi(p, €)dV +uK\(p, e)(1+(X-H))dV.

Integrating (21) over M and applying Green’s theorem, we obtain
@ | X VK, 9-nKip, L1+ (X-H)]}aV=0.

Combining (14) and (22) we obtain (16).
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Corollary 1 (Minkowski's formula). Lef M be an oriented closed
hypersurface of E*, and e be the unit outer normal vector field. Then
we have

(23) gvKl( p, €)dV + SM(X~ e)K.(p, e)dV=0.

Proof. Since M is a hypersurface of E"*', every unit normal vector
field is parallel in the normal bundle and

(24) (X-H)K,=(X-e)Ki, Fle, X)=(X-e)nK’'—(n—1)K,),
where K, =K,(p, e), i=1,2. Hence, by (18) and (24), we get (23).
If M is a minimal submanifold of E*, i.e., the mean curvature vector

H=0 identically, then for every fixed vector ¢ in E™, we have ¢- H=0
identically. On the other hand, when M is closad we have

Proposition 6. Let M be a closed submanifold of E™, and c be a non-
zero vector in E™. If we have either ¢- H=0 or ¢- H=0 everywhere on M,
then M is contained in an (m—1)-dimensional linear subspace of E™ whose
normal in E™ is parallel to c.

Proof. By a direct computation for the Laplacian of ¢+ X, we have
(25) A(X-e)=ne-H.
Hence, if we have either e- H=0 or ¢- HX0 everywhere on M, then we

obtain ¢+ X=:constant. This implies that M is contained in an (m—1)-
dimensional linear subspace of E™ whose normal in E™ is parallel to c.

4. Two theorems of Scherrer’s type

In [3], Scherrer proved that a closed surface M*in E®is a sphere
when and only when for every closed smooth curve on M’ the integral

(26) S(; ds=0,

where © denotes the torsion of the curve C in E® and s the arc length of C.
In the remaining part of this paper, we want to find analogous
results for higher dimensional submanifolds.

Theorem 7. Let M be an oriented closed submanifold of E*. Then
M is a spherical submanifold in E® when and only when for all (n—1)-
dimensional oriented closed submanifolds N of M, the integral
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27 SNH =0,

where H is given by (19) and n is the dimension of M.

Proof. 1If for all (#—1)-dimensional oriented closed submanifolds N

of M, (27) holds. Then, for any n-dimensional bounded submanifold M of
M, we have

i _H=0.

GRT
Thus we get g_dl-)=0. Since this is true for all n-dimensional bounded
oA

submanifolds of M, we obtain d@=0. Therefore, by (20), we get X-H=
—1. Thus, by Theorem 1 of [2], we see that M is a spherical submanifold
of E*. Conversely, if M is spherical, then we have d#=0. Hence, for all
(n—1)-dimensional oriented closed submanifolds N of M, (27) holds.

=1

Similarly, for a hypersurface M in E*', if we put
(28) G = Z ('—1)i“llun+l .1 /\ ce /\;')n+l.|’/.\ see /\{Ul.'-]»l,n(X'ei)y

then ¢ is a well-defined (# —1)-form on M and we have

Theorem 8. Let M be an oriented closed convex hypersurface of E“*'.

Then M is a hypersphere of E'*' centered at the origin when and only
when for all (n—1)-dimensional oriented closed submanifolds N of M, the
integral

(29) 3 =0,
N
Proof. Suppose that for all (rz—1)-dimensional oriented closed
submanifolds N of M, (29) holds. Then for any #n-dimensional bounded
submanifold M of M, we have § _a=0. Thus we obtain g_ de=0. Hence
M

o

we get do=0. On the other hand, by taking exterior derivative of (28),
we obtain do=(—1)"""n(K,..+ (X-e)K,)dV. Thus we obtain

(30) K,.,—(X-e)K,=0.
On the other hand, by (20), we have

(31) Su(”(X' e)K)dV =0.

From (30) and (31) we obtain
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(32) 5( é) (KK 1 —K,)dV =0,

Since M is covex, K, is of same sign, /=1, .-, n. Hence, by Newton’s
inequalities and (32), we obtain K,K,-,=K,. This implies that M is totally
umbilical. Hence K; are constants. By (30) we see that the support func-
tion X-e is a constant. By Corollary 1 to Theorem 3, we see that M is
spherical. The converse of this is trivial.
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