ON THE SCALAR CURVATURE OF
IMMERSED MANIFOLDS

BANG-YEN CHEN

In §1, we introduce the notion of a-th scalar curvatures: 2,, «+-, i,
and find the relationship between the scalar curvature and the a-th scalar
curvatures for an n-dimensional riemannian manifold isometrically
immersed in a euclidean space E**" of dimension #+N. In §2, we use
these new curvatures to find a characterization of hypersphere in higher
dimensional euclidean space and find some inequalities. In the last section,
we find an equality for submanifolds with vanishing scalar curvature
which generalizes a result of Otsuki.

1. i-th total absolute curvatures and a-th scalar curvatures

Let M" be an n-dimensional closed riemmannian manifold® with an
isometric immersion x : M* — E™** Let F(M") and F(E"*") be the bundles
of orthonormal frames of M" and E"*", respectively. Let B be the set of
elements b=(p, e, ***, €., €ny1, ***, €..x) such that (p, e, -+, e,)E F(M") and
(x(p), e, +*+, e..x)E F(E™™) whose orientation is coherent with the one of
E"*", identifying e; with dx(e), i=1, 2, --, n. Then B—M" may be consi-
dered as a principal bundle with fibre O(n) X SO(N), and % : B—F(E"*?") is
naturally defined by x(d)=(x(p), e, -, €ssv). Let B, be the set of unit
normal vectors of M" in E**",

The structure equations of E**" are given by

dx=2w'e, de,=3] @' pep,
A B
(1) dol, = %" w'y /\ wlpy, do' = ;")',nc/\ wlep, @ ptwp =0

ABC, =12 - n+N,

where «',, o', are differential 1-forms on F(E"*Y). Let &, w,; be the
induced 1-forms on B from ', «',; by the mapping x.

Then we have

1) Manifolds, mappings, metrics, ---etc. are assumed to be differentiable and of class C=,
‘We restriet ourselves only to connected manifolds of dimenson n>>2.
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wy=0, w,;=73] Ao, Aui=Ay;
@) _ -f
i, f, =12 -m; 7,8 -=n+l, -, n-N.
From (1) we get
J' dew,= ‘\:j‘ w, N\ o,
. 1
dw,= 2(_: Wy N\ (r),_,J—I——? I.FTI R o \ e,

Rijk!: = S Ay.‘hAyfk - ZAY"A'AYI“"
Y Y

3)

The volume element of M" can be written as
(4) dV=o, - Ao,

The (N—1)-form
(5) dov1=Wupxer N NOnixnina

can be regarded as an (N—1)-form on B, The (n+N—1)-form dV Aday
can be regarded as the volume element of B..

Let Ay;; i=n+1, -, n+N,i j=1,2, -, n be given as in (2). The
symmetric matrix (4,;), ¥=n+1, -»-, n+N, is called the second fundamen-
tal form at (p, e,). we define the A-th mean curvature K,(p, ¢,) at (p, ¢,)E
B, by

©) det (y+tAy) =1+ 3 (1) Ko, e)t"

where ¢, is the Kronecker delta, # a parameter and (Z)zn‘ [ht(n—h)!.

We call the integral

@ K=K o) do,

over the sphere of unit normal vectors at x(p), the i-th total absolute
curvature of the immersion % at p, and we define as the i-th total absolute

curvature of M™ itself the integral S JKE(p)av.
M

In the following, the geodesic codimension of M" in E"*" means the
minimum of codimensions of M" in linear subspaces of E"** containng M".
In [3, 4], the author proved that
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Theorem A. Lef x: M"—E“"" be an immersion of an n-dimensional
closed manifold M" into E**. Then we have

(8) g » ka(p) dvgch+y_|, i=1, 2, ey n,
R

where C,ox-, is the area of wunit (n-+N—1)-sphere. The equality of (8)
holds when and only when M" is imbedded as a hypersphere if i<n and
as a convex hypersurface if i=n in an (n+1)-dimensional linear subspace
of Eﬂ'ln\'.

Remark 1.1. If 7=#, then Theorem A is the well-known Chern-Lashof’s
theorem [5]. In this case; the inequality (8) can be improved as

©) g , K p) dVg}i FAM™) Copnyy
M =

where 3. (M") is the i-th betti number of M".

To describe how K, (p, ¢) depends on ¢, we take a local cross-section
of M" in B, described by the function e,(g) for ¢ in a neighborhood of p.
Then for any frame e.(g) in B at x(¢g), we have e,.~=2. &, ¢y(g) and

(10) An+x\’i‘;: L‘Y‘ ‘_{:'Yzyijy z E‘j: 1,

<[

where Zy,-j is the function A,,; restricted to the local cross-section.

By (6), we find that K.(p, ¢,) is given by
(11) ( g ) Kg(p, e.,)= 2: (A-yg:A-ﬁj—‘A-ifj).
<5

Combining (10) and (11), we find that

12 (3K e =3 (D HA) (D EA) —(SEA)).
The right hand side is a quadratic form of &,.,, -+, £,.~» Hence, choosing

a suitable cross-section, we can write K.(p, e...) as

(13) K:(P, en+‘\’): ; Xy-z‘(P)Ey'fy, ';-12}-22'“2’1,»\'-

We may call this local cross-section of B—F(M") a Frenet cross-section
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and such frame (p, e,, -+, s, €u+1, ***, €nry) @ Frenet frame. We call 2,; a=
1, -+, N, the a-th scalar curvature of M" in E***, By means of the method
of definition, 2, is defined continuously on the whole manifold M" and is
differentiable on the open subset in which 2,>2,>...>>),. Now, let ¢;=e,,
and ey=e,, where (p, e, -**, €., €y41, ***, €,+x) 1S the Frenet frame, then by
(12) and (13), we have

(14) (g ) y-up)= gj (wa Zm‘ _Ziij)-
Hence, we get
18 (5) B Al 0)=3 (2 Ay Ap) =3 Riye.
Thus, if we define the scalar curvature S(p) as
n _
a6 (5)S)=% Ru
Then S(p) is intrinsic and we have

Proposition 1.1. The scalar curvature S(p) and the «-th scalar
curvature satisfy the following relation :

17) S(p)=21(p)+ e+ Ay (D).

2. Some results on a-th scalar curvature

Now, let us define an invariant by

(18) p(p)=max{v|2, () [* -, 4| Az (p)]"}
=max(y| 4 (p) [, 4] 4x(p)]"}.
Then, from (7) and (13), we have

a9 KO =[5 e P dona= {12 4088 do
<e(p) | (SEE dowi=olp)er
Accordingly, from Theorem A and (19), we get

(20) C‘\'-lg et P(p) dvgzc“.}._x-].
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If the equality of (20) holds, then by (19) we get
S K;k dV"—‘ZC,H.N_].
i

Hence, by Theorem A, we know that M* is imbedded as a hypersphere if
#>2 and as a convex hypersurface if #=2. Therefore, we can easily
derive that

W(P)=0, A(p)=-=2x(p)=0, for all peM".

Thus, by the equalities of (19) and (20), we find that the geodesic codimen-
sion is equal to 1. Hence, we have proved the following theorem :

Theorem 2.1. For an n-dimensional closed manifold M" immersed
in E™* we have

(21) g p(p)dV= zcc; '

N-1

The equality of (21) holds when and only when M" is imbedded as a
hypersphere if n>>2, and as a convex hypersurface if n=2 in an (n-+1)-
dimensional linear subspace of E**7,

From Theorem 2. 1, we have the following corollaries :
Corollary 2.1. Let M" be an n-dimensional riemannian closed man-

ifold. Then M" can not be isometrically immersed in a euclidean space

E™Y with p( p)g—zc"*% except p(p)=constant, N=1 and M" is an n-
Cr-1 U(A/I )

sphere, where v(M") denotes the volume of M'.

Corollary 2.2. Let M* be an n-dimensional riemannian closed ma-
nifold. If M"is not an n-sphere and the scalar curvature S(p) of M"
satisfies

@ [ TSO av=e,

then M" can not be isometrically immersed in E™*'.

Remark 2.1. Flat torus in E’ is an example that Corollary 2. 2 is not
true in general if N=2.
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Remark 2.2. If M" is isometrically immersed in E™"' as a closed
hypersurface, then for any p=M" such that p is a nondegenerate critical
point of a height function in the direction ¢. Then the second fundamental
form at (p, ) is definite. Thus the scalar curvature S(p) is positive. This
shows that évery n-dimensional closed riemannian manifold M™ isomet-
rically immersed in E™*' must have positive scalar curvature S(p) at some
points.

Furthermore, we can use the «@-th scalar curvature to characterize
the hypersphere as follows :

Theorem 2.2. Let M" (n=3) be an n-dimensional closed manifold
immersed in E"**. Then

@3) [, ¥ av=c.  and r=-e=2,=0
M
if and only if M" is imbedded as a hypersphere in an (n+1)-dimensional
linear subspace of E"*7.
Proof. Assume that (23) holds, then, by (13), we have
Kz(p; en+!\')= EZ=0.

Thus we get
—— 1
K;l‘(p)': 5\ ‘/ (AIE;J)” dO'_zV—l :(;(1)2" S ]El ] n do',v..|

2C,,+v__; S \n
Pl Skl 3 (i S .
e (1)

By integrating both sides of the above formula, we get

1
[ 1Y =202 [ (2 4V =20
o A

n

Thus, we know that M* is imbedded as a hypersphere in an (7--1)-dimen-
sional linear subspace of E**", The converse of this is trivial.

Remark 2.3. If #=2, then Theorem 2. 2 was treated in [1].

3. Submanifolds with S(p)=0

The main object of this section is to prove the following theorem :
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Theorem 3.1. Let M be a 2m-dimensional closed manijfold immersed

in E™*® with scalar curvature S(p)=0. Then we have

(24) S ) dV=——L§ KFdv.
a2 2 22

m+1
Proof. By the assumption, we have

h(p)+ 1) =S(p)=0.

Hence, we have

0

K¥(p) =52x | KD, omea) | ™ d5=(11)'"§z¢ |cos?0—sin®? |~ dg
(

iz
2 [ eos2 | dg=Zmiiye,
o m

Therefore, by integrating both sides of the above formula, we get (24).

In the special case, mi=1, Theorem 3.1 reduces to a theorem of

6tsuki{7] :

Theorem 3.2. Let M* be a flat torus immersed in E'. Then

@ | apavzes

Equality holds if and only z'fg ,K¥ dV=8xr",
M7

[1]
t2]
£3]
[4]
[51]
6]
[71]

Theorem 3. 2 follows immediately from Theorem 3.1 and (9).
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