ON THE SCALAR CURVATURE OF IMMERSED MANIFOLDS

BANG-YEN CHEN

In §1, we introduce the notion of α -th scalar curvatures: $\lambda_1, \dots, \lambda_N$, and find the relationship between the scalar curvature and the α -th scalar curvatures for an n-dimensional riemannian manifold isometrically immersed in a euclidean space E^{n+N} of dimension n+N. In §2, we use these new curvatures to find a characterization of hypersphere in higher dimensional euclidean space and find some inequalities. In the last section, we find an equality for submanifolds with vanishing scalar curvature which generalizes a result of \overline{O} tsuki.

1. i-th total absolute curvatures and α -th scalar curvatures

Let M^n be an n-dimensional closed riemmannian manifold i with an isometric immersion $x: M^n \to E^{n+N}$. Let $F(M^n)$ and $F(E^{n+N})$ be the bundles of orthonormal frames of M^n and E^{n+N} , respectively. Let B be the set of elements $b=(p,e_1,\cdots,e_n,e_{n+1},\cdots,e_{n+N})$ such that $(p,e_1,\cdots,e_n)\in F(M^n)$ and $(x(p),e_1,\cdots,e_{n+N})\in F(E^{n+N})$ whose orientation is coherent with the one of E^{n+N} , identifying e_i with $dx(e_i)$, $i=1,2,\cdots,n$. Then $B\to M^n$ may be considered as a principal bundle with fibre $O(n)\times SO(N)$, and $\bar{x}:B\to F(E^{n+N})$ is naturally defined by $\bar{x}(b)=(x(p),e_1,\cdots,e_{n+N})$. Let B_v be the set of unit normal vectors of M^n in E^{n+N} .

The structure equations of E^{n+N} are given by

(1)
$$\begin{cases} dx = \sum_{A} \omega^{I}{}_{A}e_{A}, & de_{A} = \sum_{B} \omega^{I}{}_{AB}e_{B}, \\ d\omega^{I}{}_{A} = \sum_{B} \omega^{I}{}_{B} \wedge \omega^{I}{}_{BA}, & d\omega^{I}{}_{AB} = \sum_{C} \omega^{I}{}_{AC} \wedge \omega^{I}{}_{CB}, & \omega^{I}{}_{AB} + \omega^{I}{}_{BA} = 0 \\ A, B, C, \dots = 1, 2, \dots, n + N, \end{cases}$$

where ω'_A , ω'_{AB} are differential 1-forms on $F(E^{n+N})$. Let ω_A , ω_{AB} be the induced 1-forms on B from ω'_A , ω'_{AB} by the mapping \tilde{x} .

Then we have

¹⁾ Manifolds, mappings, metrics, ... etc. are assumed to be differentiable and of class C^{∞} . We restrict ourselves only to connected manifolds of dimenson $n \ge 2$.

(2)
$$\omega_{\gamma} = 0, \quad \omega_{\gamma i} = \sum_{j} A_{\gamma i j} \omega_{j}, \quad A_{\gamma i j} = A_{\gamma j i}$$
$$i, j, \dots = 1, 2, \dots, n; \quad \tilde{r}, t, \dots = n+1, \dots, n \div N.$$

From (1) we get

(3)
$$\begin{cases} d\omega_{i} = \sum_{j} \omega_{j} \wedge \omega_{ji}, \\ d\omega_{ij} = \sum_{k} \omega_{ik} \wedge \omega_{kj} + \frac{1}{2} \sum_{k,h} R_{ijkh} \omega_{k} \wedge \omega_{h}, \\ R_{ijkh} = \sum_{\gamma} A_{\gamma ih} A_{\gamma jk} - \sum_{\gamma} A_{\gamma ik} A_{\gamma jk}. \end{cases}$$

The volume element of M'' can be written as

(4)
$$dV = \omega_1 \wedge \cdots \wedge \omega_n$$

The (N-1)-form

(5)
$$d\sigma_{N-1} = \omega_{n+N,n+1} \wedge \cdots \wedge \omega_{n+N,n+N-1}$$

can be regarded as an (N-1)-form on B_v . The (n+N-1)-form $dV \wedge d\sigma_{N-1}$ can be regarded as the volume element of B_v .

Let $A_{\gamma ij}$; $\gamma = n+1, \dots, n+N, i, j=1, 2, \dots, n$, be given as in (2). The symmetric matrix $(A_{\gamma ij})$, $\gamma = n+1, \dots, n+N$, is called the second fundamental form at (p, e_{γ}) . we define the h-th mean curvature $K_h(p, e_{\gamma})$ at $(p, e_{\gamma}) \in B_v$ by

(6)
$$\det \left(\delta_{ij} + t A_{\gamma ij} \right) = 1 + \sum_{k} \binom{n}{k} K_k(p, e_{\gamma}) t^k,$$

where δ_{ij} is the Kronecker delta, t a parameter and $\binom{n}{h} = n!/h!(n-h)!$.

We call the integral

(7)
$$K_i^*(p) = \int |K_i(p,e)|^{\frac{n}{i}} d\sigma_{N-1}$$

over the sphere of unit normal vectors at x(p), the *i*-th total absolute curvature of the immersion x at p, and we define as the *i*-th total absolute curvature of M^n itself the integral $\int_{\mathbb{R}^n} K_i^*(p) dV$.

In the following, the *geodesic codimension* of M^n in E^{n+N} means the minimum of codimensions of M^n in linear subspaces of E^{n+N} containing M^n .

In [3, 4], the author proved that

Theorem A. Let $x: M^n \to E^{n+N}$ be an immersion of an n-dimensional closed manifold M^n into E^{n+N} . Then we have

(8)
$$\int_{M^n} K_i^*(p) \ dV \ge 2c_{n+N-1}, \quad i=1, 2, \dots, n,$$

where c_{n+N-1} is the area of unit (n+N-1)-sphere. The equality of (8) holds when and only when M^n is imbedded as a hypersphere if i < n and as a convex hypersurface if i = n in an (n+1)-dimensional linear subspace of E^{n+N} .

Remark 1.1. If i=n, then Theorem A is the well-known Chern-Lashof's theorem [5]. In this case; the inequality (8) can be improved as

(9)
$$\int_{M^n} K_i^*(p) dV \ge \sum_{i=0}^n \beta_i(M^n) c_{n+N-1},$$

where β_i (M^n) is the *i*-th betti number of M^n .

To describe how $K_2(p,e)$ depends on e, we take a local cross-section of M^n in B, described by the function $\tilde{e}_A(q)$ for q in a neighborhood of p. Then for any frame $e_A(q)$ in B at x(q), we have $e_{n+N} = \sum \xi_{\gamma} \tilde{e}_{\gamma}(q)$ and

(10)
$$A_{n+Nij} = \sum_{\gamma} \xi_{\gamma} \widetilde{A}_{\gamma i j}, \quad \sum_{\gamma} \xi_{\gamma}^{2} = 1,$$

where $\widetilde{A}_{\gamma ij}$ is the function $A_{\gamma ij}$ restricted to the local cross-section.

By (6), we find that $K_2(p, e_{\gamma})$ is given by

(11)
$$\binom{n}{2} K_z(p, e_{\gamma}) = \sum_{i < j} (A_{\gamma i} A_{\gamma j j} - A_{\gamma i j}^z).$$

Combining (10) and (11), we find that

The right hand side is a quadratic form of $\xi_{n+1}, \dots, \xi_{n+N}$. Hence, choosing a suitable cross-section, we can write $K_2(p, e_{n+N})$ as

(13)
$$K_{2}(p, e_{n+N}) = \sum_{\gamma} \lambda_{\gamma-n}(p) \xi_{\gamma} \xi_{\gamma}, \quad \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{N}.$$

We may call this local cross-section of $B \rightarrow F(M'')$ a Frenet cross-section

and such frame $(p, e_1, \dots, e_n, \overline{e}_{n+1}, \dots, \overline{e}_{n+N})$ a Frenet frame. We call λ_a ; $\alpha = 1, \dots, N$, the α -th scalar curvature of M^n in E^{n+N} . By means of the method of definition, λ_a is defined continuously on the whole manifold M^n and is differentiable on the open subset in which $\lambda_1 > \lambda_2 > \dots > \lambda_N$. Now, let $\overline{e}_i = e_i$, and $\overline{e}_{\gamma} = \overline{e}_{\gamma}$, where $(p, e_1, \dots, e_n, \overline{e}_{n+1}, \dots, \overline{e}_{n+N})$ is the Frenet frame, then by (12) and (13), we have

(14)
$$\binom{n}{2} \lambda_{\gamma-n}(p) = \sum_{i \leq j} (\widetilde{A}_{\gamma i}, \widetilde{A}_{\gamma j}, -\widetilde{A}_{\gamma i}^2).$$

Hence, we get

(15)
$$\binom{n}{2} \sum_{\gamma} \lambda_{\gamma-n}(p) = \sum_{i \leq j} (\sum_{\gamma} \widetilde{A}_{\gamma ii} \widetilde{A}_{\gamma ij} - \widetilde{A}_{\gamma ij}^2) = \sum_{i \leq j} R_{ijji}.$$

Thus, if we define the scalar curvature S(p) as

(16)
$$\binom{n}{2} S(p) = \sum_{i < j} R_{ijji}$$

Then S(p) is intrinsic and we have

Proposition 1.1. The scalar curvature S(p) and the α -th scalar curvature satisfy the following relation:

(17)
$$S(p) = \lambda_1(p) + \dots + \lambda_N(p).$$

2. Some results on α-th scalar curvature

Now, let us define an invariant by

(18)
$$\rho(p) = \max\{\sqrt{|\lambda_1(p)|^n}, \dots, \sqrt{|\lambda_N(p)|^n}\}\$$
$$= \max\{\sqrt{|\lambda_1(p)|^n}, \sqrt{|\lambda_N(p)|^n}\}.$$

Then, from (7) and (13), we have

(19)
$$K_{2}^{*}(p) = \int |K_{2}(p, e_{n+N})|^{\frac{n}{2}} d\sigma_{N-1} = \int |\sum \lambda_{\gamma-n}(p) \xi_{\gamma} \xi_{\gamma}|^{\frac{n}{2}} d\sigma_{N-1}$$
$$\leq \rho(p) \int (\sum \xi_{\gamma} \xi_{\gamma})^{\frac{n}{2}} d\sigma_{N-1} = \rho(p) c_{N-1}.$$

Accordingly, from Theorem A and (19), we get

(20)
$$c_{N-1} \int_{M^n} \rho(p) \ dV \ge 2c_{n+N-1}.$$

If the equality of (20) holds, then by (19) we get

$$\int_{M^n} K_2^* dV = 2c_{n+N-1}.$$

Hence, by Theorem A, we know that M^n is imbedded as a hypersphere if n>2 and as a convex hypersurface if n=2. Therefore, we can easily derive that

$$\lambda_1(p) \ge 0$$
, $\lambda_2(p) = \cdots = \lambda_N(p) = 0$, for all $p \in M^n$.

Thus, by the equalities of (19) and (20), we find that the geodesic codimension is equal to 1. Hence, we have proved the following theorem:

Theorem 2.1. For an n-dimensional closed manifold M^n immersed in E^{n+N} , we have

(21)
$$\int_{\mathcal{N}^n} \rho(p) dV \ge \frac{2c_{n+N-1}}{c_{N-1}}.$$

The equality of (21) holds when and only when M^n is imbedded as a hypersphere if n>2, and as a convex hypersurface if n=2 in an (n+1)-dimensional linear subspace of E^{n+N} .

From Theorem 2. 1, we have the following corollaries:

Corollary 2.1. Let M^n be an n-dimensional riemannian closed manifold. Then M^n can not be isometrically immersed in a euclidean space E^{n+N} with $\rho(p) \leq \frac{2c_{n+N-1}}{c_{N-1}v(M^n)}$ except $\rho(p) = constant$, N=1 and M^n is an n-sphere, where $v(M^n)$ denotes the volume of M^n .

Corollary 2.2. Let M^n be an n-dimensional riemannian closed manifold. If M^n is not an n-sphere and the scalar curvature S(p) of M^n satisfies

(22)
$$\int_{M^n} \sqrt{|S(p)|^n} dV \leq c_n,$$

then M^{*} can not be isometrically immersed in E^{n+1} .

Remark 2.1. Flat torus in E' is an example that Corollary 2.2 is not true in general if $N \ge 2$.

Remark 2.2. If M^n is isometrically immersed in E^{n+1} as a closed hypersurface, then for any $p \in M^n$ such that p is a nondegenerate critical point of a height function in the direction e. Then the second fundamental form at (p, e) is definite. Thus the scalar curvature S(p) is positive. This shows that every n-dimensional closed riemannian manifold M^n isometrically immersed in E^{n+1} must have positive scalar curvature S(p) at some points.

Furthermore, we can use the α -th scalar curvature to characterize the hypersphere as follows:

Theorem 2.2. Let M^n $(n \ge 3)$ be an n-dimensional closed manifold immersed in E^{n+N} . Then

(23)
$$\int_{M^n} (\lambda_1)^{\frac{1}{2}n} dV = c_n \quad and \quad \lambda_2 = \cdots = \lambda_N = 0$$

if and only if M^n is imbedded as a hypersphere in an (n+1)-dimensional linear subspace of E^{n+N} .

Proof. Assume that (23) holds, then, by (13), we have

$$K_2(p, e_{n+N}) = \lambda_1 \xi_1^2 \geq 0.$$

Thus we get

$$K_{2}^{*}(p) = \int \sqrt{(\lambda_{1}\xi_{1}^{2})^{n}} d\sigma_{N-1} = (\lambda_{1})^{\frac{1}{2}n} \int |\xi_{1}|^{n} d\sigma_{N-1}$$
$$= \frac{2c_{N+N-1}}{c_{N}} (\lambda_{1})^{\frac{1}{2}n}.$$

By integrating both sides of the above formula, we get

$$\int_{M^n} K_2^*(p) dV = \frac{2c_{n+N-1}}{c_n} \int_{M^n} (\lambda_1)^{\frac{1}{2}n} dV = 2c_{n+N-1}.$$

Thus, we know that M^n is imbedded as a hypersphere in an (n+1)-dimensional linear subspace of E^{n+N} . The converse of this is trivial.

Remark 2.3. If n=2, then Theorem 2.2 was treated in [1].

3. Submanifolds with S(p) = 0

The main object of this section is to prove the following theorem:

Theorem 3.1. Let M^{2m} be a 2m-dimensional closed manifold immersed in E^{2m+2} with scalar curvature S(p)=0. Then we have

(24)
$$\int_{M^{2m}} (\lambda_1)^m dV = \frac{c_n}{2c_{m+1}} \int_{M^{2m}} K_2^* dV.$$

Proof. By the assumption, we have

$$\lambda_1(p) + \lambda_2(p) = S(p) = 0.$$

Hence, we have

$$K_{2}^{*}(p) = \int_{0}^{2\pi} |K_{2}(p, e_{2m+2})|^{m} dg = (\lambda_{1})^{m} \int_{0}^{2\pi} |\cos^{2}\theta - \sin^{2}\theta|^{m} dg$$
$$= (\lambda_{1})^{m} \int_{0}^{2\pi} |\cos^{2}\theta|^{m} d\theta = \frac{2c_{m+1}}{c_{m}} (\lambda_{1})^{m}.$$

Therefore, by integrating both sides of the above formula, we get (24).

In the special case, m=1, Theorem 3.1 reduces to a theorem of $\overline{\text{Otsuki-[7]}}$:

Theorem 3.2. Let M² be a flat torus immersed in E⁴. Then

(25)
$$\int_{V^2} \lambda_1(p) dV \ge 2\pi^2.$$

Equality holds if and only if $\int_{u^2} K_2^* dV = 8\pi^2$.

Theorem 3. 2 follows immediately from Theorem 3. 1 and (9).

REFERENCES

- [1] B.-Y. Chen: Surfaces of curvature $\lambda_N = 0$ in E^{2+N} , Kōdai Math. Sem. Rep. 21 (1969), 331—334.
- [2] B.-Y. Chen: On an inequality of T. J. Willmore, Proc. Amer. Math. Soc. 26 (1970), 473-479.
- [3] B.-Y. Chen: On an inequality of mean curvatures of higher degree, Bull. Amer. Math. Soc. 77 (1971), 157—159.
- [4] B.-Y. Chen: On a theorem of Fenchel-Borsuk-Willmore-Chern-Lashof, Math. Ann. 194 (1971), 19—26.
- [5] S.S.CHERN and R.K.LASHOF: On the total curvature of immersed manifolds, Amer. J. Math. 79 (1957), 306—318.
- [6] S.S.CHERN and R.K.LASHOF: On the total curvature of immersed manifolds, II, Michigan Math. J. 5 (1958), 5—12.
- [7] T.ŌTSUKI: On the total curvature of surfaces in euclidean spaces, Japan. J. Math. 35 (1966), 61—71.

[8] T.-H. Teng and B.-Y. Chen: On the α -th curvatures of surfaces in euclidean spaces, Tamkang J. 6 (1967), 301—309.

MICHIGAN STATE UNIVERSITY
EAST LANSING, MICHIGAN 48823
U. S. A.
(Received September 2, 1970)