ON A GENERALIZATION OF SEMI-INNER
PRODUCT SPACES

B. NATH

1. In his paper entitled ‘Semi-Inner Product Spaces’ Lumer has con-
sidered vector spaces on which instead of a bilinear form there is defined
a form [, y] which is linear in one component only, strictly positive and
satisfies a Schwarz’s inequality. He calls this space a semi-inner product
space. In the present paper we give a straight forward generalization of
a semi-inner product space by replacing a Schwarz’s inequality by a
Holder’s inequality. We show that a generalized semi-inner product in-
duces a norm by setting ||x]l==({x, #])"", 1<<p<Too; and for every normed
space we can construct a generalized semi-inner product space. For p=2,
this theorem reduces to Theorem 2 of Lumer [1, p. 31].

2. Definition. Let X be a vector space over the scalar field &%,
where % is the fiield of real or complex numbers. Consider a functional
defined on XX X as follows:

XXX — F
{x,v) — [x 3]
If [x, y] satisfies the postulates:
1) [x#+vy,zl=[x,2]+[y 2], 2,y and zEX,
(@) [*x,91=2[x 9], A€F and x,y€X,
(3) [x,2]>0 for x50,
@ |75 3]s 5 210y 9] T, 1<p<<es,

then, we say that [x, y] is a generalized semi-inner product on X.

A vector space X, together with a generalized semi-inner product
defined on it, will be called a generalized semi-inner product space which
may be abbreviated as g.s.i.p.s. For p=2, a generalized semi-inner
product space becomes a semi-inner product space.

3.1. We prove the following theorem :

Theorem. A generalized semi-inner product space is a normed linear
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space with the norm

1
[z, x]7, 1<p<Too.
Every novmed linear space can be made into a generalized semi-inner

product space.

3. 2. For the proof of the theorem we shall be giving the following
three auxiliary results in the form of Lemmas I, II and III.

Lemma 1. A generalized semi-inner product space is a normed linear
1
space with the norm [x, x].

R .
Proof. 1t is to be shown that ‘|x|'=[«, x]7 is a norm. For this here
it is sufficient to prove that

(i) [ax, ax]%’= o] [, x]% and (i) [x+y, x+y]7]' <[z, x]%'—l- Ly, y]%.
Proof of (). From postulate (2) of a g. s. i. p., we have
[z, ax) =alx, ax].
Therefore,
| Lo, ax] | = |a| ] [x, @x]].
From postulate (3) of a g.s. 1. p.,
| [ax, ax]| = [ax, ax]
and accordingly
[, cx] = | ] | [, cx]

Using postulate (4) of a g. s. i. p., we get

p-1

1 .
[x, ax] | <[x, 217 [ax, cx] 7, 1<<p<loc,

Therefore
1

1 ) —
[evx, ax] < || [x, 2] Flax, ax]'T
Hence, we obtain
! 1
(1. 1) [ax, ax]?<|a| “x, x] 7

Since we can write
1
- 1 1 1 P
Lx, x]v= ?O’x, —atafx for a=£0,

it follows from (1. 1) that
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[r, )7L [ax, ax]?.
o]
Therefore
(1.2) || [, 117 [ax, ax] for all ae.57
Combining (1. 1) and (1. 2), we have

1 1
lax, ax]?= || [x, x]7.
Proof of (ii). From postulate (1) of a g.s.i. p., we have

ety a+y]l=[x, x+y]+ [ 2+y].
By virtue of postulate (2) of a g.s.i. p., we get

(1. 3) [x+y 2+y]=][x, x+y]
+ 0y a+y] || [, x+9] |+ | [y, x+]].

Also, by postulate (4) of a g.s.i. p.,, we obtain

p-1

1 -
(1.4) |[x2+3]|1<x, 2] 2 +y, 24917, 1<p<<oo,

Simillarly, we have

1

1 2]
(1.5) [y x+y] <0y y]7[x 43, 2+3] 7, 1<p<<oo.
From (1. 3), (1. 4) and (1. 5), we have

-1

L 1
[x+y, x+y] g{[x, x]7+ [y, y] ”}[:H—y, z+y] 7.
Therefore, we obtain
1 1 1
[x+y x2+y]7<[x, x]7+ [y, y]7.

Lemma 11, Let x, be a nonzero vector in the normed linear space X.
Then there exists a bounded linear functional F, defined on the whole
space, such that ||Fl|=|lz,||""" and F(x))=|lx||?, where 1<p<oo.

Proof. Consider the sub-space

M=[{x}]

consisting of all scalar multiples of x,, Consider the functional f defined
on M as follows:
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f:M —> % (the scalar field)

ax, —— &||x||”
We shall prove that f is a linear functional with the property

S (o) = llxall”.

For all x, yEM, we have

2.1)  fla+y)=flax,+3x)=(@+Dlxl|l"=f(x)+ f(»)
and

2.2)  f(Px)=rf(Pex) =3 x,]|”=Bf ().

Combining (2. 1) and (2. 2), the linearity of f is proved.
By definition of f, we have

Flam)=alx|I”.
Taking a=1, we get
2.3) S (o) = ll2ol|”.
Further, since for any xE M,
2.4) |f@]=|flax)] =]a]llx"= [l2l|"~llctxoll = |20 |*~]] 2],

we see that f is a bounded linear functional.
Since f is a bounded linear functional,

[/} =inf {K: | f(x)| < Kl|l|| for all yEM}.
From (2. 4) it is clear that
lxllP'e{K: | f(2)|<K|ix|| for all x=M]}.
Therefore,
(2.5) A= P

Since f is a bounded linear functional,
| F@) 170 izl for all xEM.

From (2. 4), we have
Lol Pl AN 112
Thus
(2. 6) 1L =[5 31
From (2. 5) and (2. 6), we have

2.7 A1 = llxll?~
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Therefore by the Hahn-Banach theorem [2, Theorem 4. 3-A], we can
extend f to a bounded linear functional F, defined on all of X such that
A'=F|l and f(x)= F(x) for all xEM.

Since |[f||=[F|, it follows from (2. 7) that
LF =117
Since f(x)= F(x) for all x=M, we obtain from (2. 3) that
F) = {l2o]] %
Lemma IX1. Every normed linear space can be made into a gener-
alized semi-inner product space.

Proof. Let X be a normed linear space. By the Lemma II for x& X,
there exists a bounded linear functional W. such that W.(x)=]|x]|" and
(| Wl =lx||""", where 1=<p<Coo. We proceed to verify that [x, y]= W,(x)
defines a generalized semi-inner product. We claim that the following
assertions about W,(x) are valid:

1) WAx+y)=W(n)+ W)
2 W,(ix)=21W/x)
(3% W.(x)>0 for x50
p-1

@) | W) | <{ W)}7 (W 0)7

Since W, is a linear functional, (1’) and (2') follow.
Since W.x)= lx||", we have W.(x)>0 for x50 and (3') holds.
Since W, is a bounded linear functional,

3.1) | W) | = Wl llx .
Since ||W,|'=]|[»|{"' and W, (»)=|l»!{", we have from (3. 1) that
1 -t
| W @) | = { W)W},
This proves (5').

3. 3. Proof of Theorem. The proof of the main theorem follows
from Lemas I and III.
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