ON SEPARABLE POLYNOMIALS OVER A COMMUTATIVE RING

TAKASI NAGAHARA

Throughout this paper B will mean a commutative ring with identity element and all rings will be assumed commutative with identity element, where all ring extensions of B will be assumed with identity element coinciding with the identity element of B. Moreover, X will be an indeterminate, and B[X] will denote the ring of polynomials in X with coefficients in B where bX = Xb ($b \in B$). In [5], G. J. Janusz introduced the notion of separable polynomials over a commutative ring, and established several properties of separable polynomials.

The main purpose of this note is to prove that for a polynomial $f(X) \in B[X]$, if there is a ring extension of B which contains elements a_1, \dots, a_n such that $f(X) = (X - a_1) \cdots (X - a_n)$ and $\prod_{i \neq j} (a_i - a_j)$ is inversible in B then f(X) is a separable polynomial over B, that is, B[X]/(f(X)) is a separable B-algebra (Theorem). As corollaries to this result, we include also some several results about separable polynomials over B.

In this paper, if \mathfrak{G} is a set of ring automorphisms in a ring A, then $J(\mathfrak{G})$ denotes the fixring of \mathfrak{G} in A, and moreover, for a subset T of A, $\mathfrak{G}|T$ denotes the restriction of \mathfrak{G} to T. As to other notations and terminologies used in this paper, we follow [8]. We now begin with a lemma which plays an essential rôle in the proof of our theorem.

Lemma. Let A be a ring extension of B and $J(\mathfrak{G})=B$ for a group \mathfrak{G} of ring automorphisms in A. Let a be an element of A such that $\{\sigma(a) | \sigma \in \mathfrak{G}\}$ is a finite set and for $a \neq \sigma(a)$ ($\sigma \in \mathfrak{G}$), $a-\sigma(a)$ is inversible. Set $\{a_1, \dots, a_n\} = \{\sigma(a) | \sigma \in \mathfrak{G}\}$ where $a_i \neq a_j$ for $i \neq j$, and $f(X) = (X-a_1) \cdot \dots (X-a_n)$. Then

- (1) $\prod_{i\neq j}(a_i-a_j)$ is inversible in B,
- (2) $B[a_1, \dots, a_n]$ is a Galois extension of B with a Galois group $\mathfrak{G}[B[a_1, \dots, a_n]]$,
 - (3) $B[X]/(f(X)) \cong B[a_1]$ (as B-algebras),
 - (4) f(X) is a separable polynomial over B.

Proof. Set $u = \prod_{i \neq j} (a_i - a_j)$. Then $u \in B$ and is inversible in A. Hence we have $u^{-1} \in J(\mathfrak{G}) = B$. We now set $T = B[a_1, \dots, a_n]$ and $\mathfrak{D} = B$.

 $\mathfrak{G}|T$. Since $u^{-1}\prod_{i\neq j}(a_i-\sigma(a_j))=\delta_{1,\sigma}$ ($\sigma\in\mathfrak{H}$), we can find elements u_1,\cdots,u_m ; v_1,\cdots,v_m of T such that $\sum_i u_i \sigma(v_i)=\delta_{1,\sigma}$ ($\sigma\in\mathfrak{H}$). Hence the assertion (2) follows immediately from [4, Th. 1. 3]. To see (3), we consider a B-algebra homomorphism $\varphi:B[X]\longrightarrow B[a_1]$ mapping g(X) onto $g(a_i)$. Let $h(X)\in \mathrm{Ker}\ \varphi$. Then $h(a_i)=0$ ($i=1,\cdots,n$). Hence we can find $q_1(X)\in A[X]$ with $h(X)=(X-a_1)q_1(X)$. Since a_2-a_1 is inversible, $q_1(a_2)=0$ so there is a $q_2(X)\in A[X]$ with $q_1(X)=(X-a_2)q_2(X)$. Continuing thus way we reach $h(X)=f(X)q_n(X)$. Since h(X), $f(X)\in B[X]$ and f(X) is monic, we have $q_n(X)\in B[X]$. Thus we obtain $\mathrm{Ker}\ \varphi=f(X)B[X]=(f(X))$ which implies $B[X]/(f(X))\cong B[a_1]$. As to (4), we first consider a left T, right $B[a_1]$ -module

$$M = Td_1 \oplus \cdots \oplus Td_n$$

where $Td_i\cong T$ (as left T-modules) and $d_ig(a_1)=g(a_i)d_i$ ($i=1,\cdots,n,\ g(a_1)\in B[a_1]$). Set $e=d_1+\cdots+d_n$. Then $ea_1^i=a_1^id_1+\cdots+a_n^id_n$ ($i=0,1,\cdots,n-1$). Since the determinant of the matrix $||a_j^i||$ ($0\le i\le n-1,\ 1\le j\le n$) is $\pm \prod_{i\in I}(a_i-a_j)$ which is inversible in T, the matrix $||a_j^i||$ has an inverse in the matrix ring $(T)_n$. Hence the submodule $TeB[a_1]$ of M contains elements d_1,\cdots,d_n . This implies $M=TeB[a_1]$. Since $bd_i=d_ib$ for all $b\in B$ ($i=1,\cdots,n$), we have a left T, right $B[a_1]$ -homomorphism $\psi:T\otimes_B B[a_1]\longrightarrow M$ mapping $\sum_i t_i \otimes g_i(a_1)$ onto $\sum_i t_i eg_i(a_1)$. By (3), $B[a_1]$ is a free B-module with a free basis 1, a_1,\cdots,a_1^{n-1} . This enables us to prove that ψ is an isomorphism. Hence we obtain $T\otimes_B B[a_1]\cong T\oplus \cdots \oplus T$ (as $(T\otimes_B B[a_1])$ -modules). Thus $T\otimes_B B[a_1]$ is separable over T so by [1, Prop. 1.7] (or by [3, Prop. 7.1, p. 177]), $B[a_1]$ is separable over B. Since $B[X]/(f(X))\cong B[a_1]$, it follows that f(X) is a separable polynomial over B. This completes the proof.

Now, let $R = B[X_1, \dots, X_n]$ be the ring of polynomials in indeterminates X_1, \dots, X_n with coefficients in B, and S the ring of symmetric polynomials in R. Then $U = \prod_{i \neq j} (X_i - X_j)$ is an element of S which is not a zero-divisor in R. By $U^{-1}R$ (resp. $U^{-1}S$) we denote the ring of quotients of R (resp. of S), formed with respect to the multiplicatively closed set generated by U. Then $S \subset R \subset U^{-1}R$, $S \subset U^{-1}S \subset U^{-1}R$, and U is inversible in $U^{-1}S$ ([2]). Let \mathfrak{S}_n be the symmetric group on letters $1, \dots, n$. Then, for every element σ of \mathfrak{S}_n , we have a ring automorphism $\sigma^*: U^{-1}R \longrightarrow U^{-1}R$ mapping $g(X_1, \dots, X_n)$ onto $g(X_{\sigma(1)}, \dots, X_{\sigma(n)})$. By \mathfrak{S}_n^* we denote the group of the automorphisms σ^* ($\sigma \in S_n$). Then we obtain $J(\mathfrak{S}_n^*) = U^{-1}S$. Moreover, it is obvious that $\{\sigma^*(X_1) | \sigma^* \in \mathfrak{S}_n^*\} = U^{-1}S$.

 $\{X_1, \dots, X_n\}$ and for $i \neq j$, $X_i - X_j$ is inversible in $U^{-1}R$. Hence if we set $F(X) = (X - X_1) \cdots (X - X_n)$ where X_i, X_i, \dots, X_n are independent, then, by Lemma, we obtain the following

Corollary 1. $U^{-1}R$ is a Galois extension of $U^{-1}S$ with a Galois group \mathfrak{S}_n^* , $U^{-1}S[X]/(F(X)) \cong U^{-1}S[X_1]$ (as $U^{-1}S$ -algebras), and F(X) is a separable polynomial over $U^{-1}S$.

We now have enough information to prove the following

Theorem. Let $f(X) \in B[X]$. If there is a ring extension of B which contains elements a_1, \dots, a_n such that $f(X) = (X - a_1) \cdots (X - a_n)$ and $\prod_{i \neq j} (a_i - a_j)$ is inversible in B then f(X) is a separable polynomial over B.

Proof. We consider the polynomial ring $U^{-1}R[X]$ where X, X_1, \cdots, X_n are independent. Then we have a ring homomorphism $\varphi: U^{-1}R[X] \longrightarrow B[a_1, \cdots, a_n][X]$ mapping $\sum_i g_i(X_1, \cdots, X_n)X^i$ onto $\sum_i g_i(a_1, \cdots, a_n)X^i$. By the fundamental theorem on symmetric polynomials ([9, p. 90]), it follows that $\varphi(U^{-1}S) = B$. This implies $\varphi(U^{-1}S[X]) = B[X]$, and $\varphi(F(X)U^{-1}S[X]) = f(X)B[X]$ where $F(X) = (X - X_1) \cdots (X - X_n)$. Hence φ induces a ring homomorphism $\overline{\varphi}: U^{-1}S[X]/(F(X)) \longrightarrow B[X]/(f(X))$. By Coro. 1, $U^{-1}S[X]/(F(X))$ is separable over $U^{-1}S$. It is obvious that $\overline{\varphi}(U^{-1}S) = B$. Then, by the following remark, B[X]/(f(X)) is a separable extension of B which implies that f(X) is a separable polynomial over B.

Remark 1. Let a ring A be a separable extension of a ring C and $\varphi:A\longrightarrow A'$ a ring epimorphism. Set $C'=\varphi(C)$. Then A' is a separable extension of C'. The proof is as follows: The C'-algebra A' is turned into a C-algebra by the homomorphism $\varphi\mid C\colon C\longrightarrow C'$. Then φ induces a C-algebra homomorphism $A\longrightarrow A'$. Hence by [1, Prop. 1.4], the C-algebra A' is a separable algebra, that is, A' is a projective $(A'\otimes_{C}A')$ -module, the operation being given by $(x\otimes y)z=xzy$ $(x,y,z\in A')$. Since $A'\otimes_{C}A'\cong A'\otimes_{C'}A'$ (as rings), A' is a projective $(A'\otimes_{C'}A')$ -module. Therefore A' is a separable C'-algebra.

Now, as a direct consequence of Theorem, we obtain the following

Corollary 2. Let $f(X) \in B[X]$. If there is a ring extension A of B which contains elements a_i, \dots, a_n such that $f(X) = (X - a_i) \cdots (X - a_n)$ and $u = \prod_{i \neq j} (a_i - a_j)$ is not a zero-divisor in A then f(X) is a separable polynomial over $u^{-1}B$ (the ring of quotients of B, formed with respect

to the multiplicatively closed set generated by u).

In Theorem, $B[a_1, \dots, a_n]$ is a homomorphic image of a strongly separable B-algebra $B[X_1]/(f(X_1)) \bigotimes_B \dots \bigotimes B[X_n]/(f(X_n))$ where the X_i are indeterminates ([1, Prop. 1.5]). By a similar way, we have the following

Corollary 3. Let A be a ring extension of B. Let $f(X) \in B[X]$, and suppose A contains elements a_1, \dots, a_n such that $f(X) = (X - a_1) \dots (X - a_n)$ and $\prod_{i \neq j} (a_i - a_j)$ is inversible in B. If a_1^*, \dots, a_m^* $(m < \infty)$ are roots of f(X) in A then $B[a_1^*, \dots, a_m^*]$ is a homomorphic image of a strongly separable B-algebra.

As an application of Theorem, we shall prove the following

Corollary 4. Let B be an algebra over a prime field GF(p) $(p
ightharpoonup \mathbb{C})$. Then, for every element b of B, $X^p - X + b$ is a separable polynomial over B.

Proof. Let $f(X) = X^p - X + b \in B[X]$ $(b \in B)$, and Y an indeterminate where X, Y are independent. We now consider the B-algebra $B[Y]/(f(Y)) = B[\overline{Y}]$ where \overline{Y} is the residue class of Y modulo (f(X)). Then $B[\overline{Y}]$ is a ring extension of B, and elements \overline{Y} , $\overline{Y} + 1$, ..., $\overline{Y} + p$ -1 are roots of f(X). Since $(\overline{Y} + i) - (\overline{Y} + j)$ $(i \rightleftharpoons j)$ is inversible in B, it follows that $f(X) = (X - \overline{Y})$ $(X - (\overline{Y} + 1)) \cdots (X - (\overline{Y} + p - 1))$. Hence by Theorem, f(X) is a separable polynomial over B.

As to separable polynomials over a ring B without proper idempotents, we shall present some corollaries to Theorem. If f(X) is a separable polynomial over a ring B without proper idempotents then, by [5, Th. 2.2] there is a strongly separable B-algebra without proper idempotents which contains elements a_1, \dots, a_n such that $f(X) = (X - a_1) \cdots (X - a_n)$ and $\prod_{i \neq j} (a_i - a_j)$ is inversible in B. Combining this fact with Theorem, we obtain the following

Corollary 5. Let B be a ring without proper idempotents, and $f(X) \in B[X]$. Then, f(X) is a separable polynomial over B if and only if there is a ring extension of B which contains elements a_1, \dots, a_n such that $f(X) = (X - a_1) \cdots (X - a_n)$ and $\prod_{i \neq j} (a_i - a_j)$ is inversible in B.

Remark 2. It is a result of G. J. Janusz that if A is a separable B-algebra without proper idempotents and f(X) is a separable polynomial

of degree n over B then f(X) cannot have more than n roots in A; and moreover, for distinct roots a, b of f(X) in A, a-b is inversible in A ([5, Lemma 2.1]). However, in the result, the assumption of separability of A over B may be omitted. For, if a_1, \dots, a_m ($m < \infty$) are distinct roots of f(X) in A then $B[a_1, \dots, a_m]$ is a separable B-algebra without proper idempotents. Applying Janusz' result to $B[a_1, \dots, a_m]$, we have $m \le n$ and for $i \ne j$, $a_i - a_j$ is inversible in A.

Now, we shall prove the following

Corollary 6. Let A be a ring without proper idempotents which is a ring extension of B. Let $f(X) \in B[X]$, and suppose A contains elements a_1, \dots, a_n such that $f(X) = (X - a_1) \cdots (X - a_n)$ and $\prod_{i \neq j} (a_i - a_j)$ is inversible in B. Then, every root of f(X) in A coincides with one of the a_i . Moreover, for $T = B[a_1, \dots, a_n]$, the following conditions are equivalent.

- (a) $J(\mathfrak{H})=B$ for a group \mathfrak{H} of ring automorpisms in T.
- (b) T is Galois over B.
- (c) T is projective over B.

Proof. The first assertion follows immediately from Theorem and Remark 2. Since T is finitely generated, and separable over B, it follows from [7, Th. 1] and [4, Th. 1.3] that (a) implies (b) and (b) implies (c). We now assume (c). Then by [5, Th. 1.1], T is imbedded in a Galois extension of B without proper idempotents. The Galois group will be denoted by \mathfrak{G} . Then for every a_i , we have $f(\sigma(a_i)) = 0$ ($\sigma \in \mathfrak{G}$); hence $\sigma(a_i)$ coincides with one of the a_i . Thus we obtain $\sigma(T) = T$ ($\sigma \in \mathfrak{G}$). This implies (a).

Remark 3. Let B, a_1, \dots, a_n be as in the preceding corollary. If B is a separably closed domain then $B[a_1, \dots, a_n]$ is projective over B; hence Galois over B ([8]). However, in general, $B[a_1, \dots, a_n]$ is not always Galois over B. To see this, we shall present an example. We consider a ring $B = Z^* + Z^*\sqrt{5}$ where Z^* is the ring of rational numbers $m/5^n$ (the m, n are rational integers). We set $f(X) = X^2 - X - 1$. Then $f(X) = (X - a_1)(X - a_2)$ where $a_1 = (1 + \sqrt{5})/2$, $a_2 = (1 - \sqrt{5})/2$. Clearly $(a_1 - a_2)(a_2 - a_1) = -(a_1 - a_2)^2 = -5$ and is inversible in B. Hence f(X) is irreducible in B[X], and so, $B[a_1]$ is a homomorphic image of a strongly separable B-algebra without proper idempotents. However, since $\sqrt{5} \in$

 $B \subset B[a_1] = B[a_1, a_2]$ and the quotient field of $B[a_1]$ is a field generated by $\sqrt{5}$ over the field of rational numbers, it follows that $B[a_1]$ is not Galois over B and hence not projective over B.

The following corollary contains the result of [5, Lemma 2.7].

Corollary 7. Let A be a ring without proper idempotents which is a ring extension of B, and $J(\mathfrak{G})=B$ for a group \mathfrak{G} of ring automorphisms in A. For an element a of A, the following conditions are equivalent.

- (a) $\{\sigma(a) | \sigma \in \emptyset\}$ is a finite set, and for $a \neq \sigma(a)$ ($\sigma \in \emptyset$), $a \sigma(a)$ is inversible.
 - (b) a is a root of a separable polynomial over B.
 - (c) B[a] is finitely generated, and separable over B.

Proof. Assume (a). If we set $\{a_1, \dots, a_n\} = \{\sigma(a) | \sigma \in \mathbb{S}\}$ $\{a_i \neq a_j\}$ for $i \neq j$ and $f(X) = (X - a_1) \cdots (X - a_n)$ then f(a) = 0 and by Lemma f(X) is a separable polynomial over B. Thus we obtain (b). It is obvious that (b) implies (c). Assume (c). Then by [7, Th. 1], $\{\sigma(a) | \sigma \in \mathbb{S}\}$ is a finite set and the B-subalgebra of A generated by $\{\sigma(a) | \sigma \in \mathbb{S}\}$ is Galois over B; hence as in the proof of [5, Lemma 2. 7], it follows that for $a \neq \sigma(a)$ $(\sigma \in \mathbb{S})$, $a - \sigma(a)$ is inversible.

Remark 4. In the proof of the preceding corollary, f(X) is an irreducible polynomial in B[X], $B[a] \cong B[X]/(f(X))$ and is a free *B*-module (Lemma).

Recently, K. Kishimoto presented a theory of cyclic extensions of rings ([6]). Lately, one will have a chance to see that Coro. 4 plays an important rôle in studying cyclic extensions of commutative rings.

REFERENCES

- [1] M. Auslander and O.Goldman: The Brauer group of a commutative rings, Trans. Amer. Math. Scc. 97 (1960), 367—409.
- [2] N. BOURBAKI: Algèbre commutative, Chapitres I-II, Actualités Sci. Ind. No. 1290, Herman, Paris, 1962.
- [3] H. CARTAN and S. EILENBERG: Homological algebra, Princeton, 1956.
- [4] S. U. Chase, D. K. Harrison and A. Rosenberg: Galois theory and cohomology of commutative rings, Mem. Amer. Math. Soc. No. 52 (1965).
- [5] G. J. Janusz: Separable algebras over commutative rings, Trans. Amer. Math. Soc. 122 (1966), 461—479.

- [6] K.KISHIMOTO: On abelian extensions of rings I, Math. J. of Okayama Univ., 14 (1970), 159-174.
- [7] T. NAGAHARA: A note on Galois theory of commutative rings, Prcc. Amer. Math. Soc. 18 (1967), 334-340.
- [8] T. NAGAHARA: On separable extensions of domains, Math. J. of Okayama Univ., 14 (1970), 59-65.
- [9] B.L. VAN DER WAERDEN: Moderne Algebra I, Springer, 1950.

DEPARTMENT OF METHEMATICS OKAYAMA UNIVERSITY

(Received July 1, 1970)