ON ABELIAN EXTENSIONS OF RINGS I
Kazuo KISHIMOTO

Introduction. In [1], M. Auslander and O. Goldman introduced the
notion of a Galois extension of a commutative ring. Further, Galois theory
of general rings, were developed in [2], [3], [4], [5], [8] and others.

While, in [6] and [7] the author generalized the notion of abelian
extensions of fields and gave necessary and sufficient conditions for a
simple ring to have an abelian simple ring extension.

In this paper, combining the method used in [6] and [7] with results
of [4] and [8], we shall give the conditions for an algebra over GF(p) to
have a Galois extension with an abelian Galois group of order 2.

Let B be a ring with the identity 1, A an extension ring of B with
the same identity, and @ a finite group of automorphisms of A. Then,
following [1], A is called a Galois extension of B with a Galois group
® (or a O-Galois extension of B) if the following is satisfied :

1) AS, the fixsubring of A of ®, is B,

2) A is a finitely generated, projective B-module and the map j of
D(A, @)=, cqAu, (the trivial crossed product of A with ®) to Hom(Ap,
Ap) defined by j(aw,)(x)=ap(x)(xEA) is an isomorphism.

Asis well known, 2) is equivalent to the following

2") there exist elements xi, Xa ***, Xni Y1, Yo s Yu Of A such that

(¥ =0, (PEBG).

A subset {x}, %, **, X253 ¥ ¥ o+, ¥} of A satisfying 2') is called a
®-Galois coordinate system for A/B.

Throughout the present paper, we assume that the base ring B is an
algebra over GF(p) without proper central idempotents containing the
identity 1, a Galois extension is one without proper central idempotents
containing the base ring as a direct summand considered as a module over
the base ring.

In § 0, for the convenience of the later discussion, we state some
properties of polynomials over a ring.

In § 1, we shall show that if A is a Galois extension of B with a
cyclic Galois group & of order p, then A is a residue class ring B{X:
D]1/(X?—X—b)B[X; D] where D is a derivation in B, X?—X—b isa
central polynomial of B[X; D], and conversely (Corollary 1. 1). Next, we
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shall give a necessary and sufficient condition that there holds an embe i-
ding theorem for a Galois extension (Theorem 1. 2).

In § 2, we shall give a necessary and sufficient condition for B to
have a &-Galois extension 4, where &=(s)) X(a,) X+ X(0.) (a direct pro-
duct of cyclic groups (=;) of order p with a generator ;) (Corollary 2. 1).
Combining this with Theorem 1. 2, we obtain an extension of Theorem 1. 2
(Theorem 2. 2).

In §§ 3—5, we assume that B is commutative.

In § 3, by the aid of the fact that every cyclic algebra over B is
commutative [ 3, Theorem 11”], we shall show that if 4 is a ®-Galois
algebra over B with a cyclic Galois group of order p, then A is a split-
ting ring of a separable polynomial X”—X—b, in B[X] (Theorem 3. 1).
Next, let 7 and B be local rings and T a Galois algebra over B wilh
a cyclic Galois group 9t of order p with a generator =. Then, for each
positive integer ¢, there exists an $-Galois algebra A over B witha
cyclic Galois group © of order p° with a generator o such that AD 7%,
#|T=< and A is local (Theorem 3. 3).

In § 4, we shall deal with the commutative case. Namely, if 4 isa
commutative Galois extension of B with a Galois group ®&==(0)) X (7)<
-+ X(s,), then we can see that A=B,®;B.Q---Q B, where each B: is
a (o;)-Galois algebra over B (Theorem 4. 1).

In § 5, we assume that B is a domain, and consider a Galois algebra
A over B with a cyclic Galois group & of order p. Then, a necessary
and sufficient condition for B to have A is that there exists an element
b, in B such that b*—bs=b, for all b&B (Theorem 5.1). Moreover, if
A is a domain, we can see that there holds the embedding theorem without
any restriction (Theorem 5. 2).

As to notations and terminologies used in this paper, we follow (2]
and [77.

The author wishes to express his thanks to Professor H. Tominaga,
Professor T.Nagahara and Mr. A.Nakajima for helpful discussion and
advice.

0. Preliminary results on polynomials

Let D be a derivation of B. Then, by B{X; D] we denote the ring
of polynomials {>!;X'b,; b,B}, where the multiplication is defined by

1) Ci [5].
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the distributive law and the rule 8X=Xb-+Db (b=B). If D=0, we
denote it by B[X].

Let B=B[X; D], and f(X) a monic polynomial of B,

1) F(X) is called directly indecomposable if the residue class ring
B/(f(X)) is a ring without proper central idempotents.

2) f(X) is called irreducible if each proper factor of f(X) is con-
tained in B.

3) (Janusz) Let B be commutative and B be B[X]. Then f(X)
is called separable if B/(f(X)) is a separable B-algebra [4, §2].

The next is well known.

Lemma 1. Let B be a domian® with the quotient field K, and f(X)
a monic polynomial of B[ X]. Then (f(X)=f(X)B[X] is prime if and
only if f(X) isirreducible in K[X].

By [4, Corollary 2. 10], we readily obtain

Lemma 2. Let B be a commutative ring. If f(X) is separable and
irreducible in B[ X], then f(X) is directly indecomposable.

Lemma 3. Let b, be an element of B, and P a maximal ideal of B.
If b*—b—d=tb, whenever bEB and d&)p, then X'—X—b, is irredu-
cible in B[X].

Proof. Since b*—b—d=4b, X*—X—0, is irreducible modulo p[X].
Now, suppose that X?—X—b,=g(X)h(X), where g(X), H(X)EB[X] are
monic and deg g(X), deg A(X)<p. Then g(X)—b or (X)—c are con-
tained in P[X] for some b or ¢ in B, and we have a contradiction
(gX)—=b0)(h(X)—c)=X"—X—b,—bh(X)—cg(X)+bc=p[ X ].

Lemma 4. Let B be a domain, and b, an element of B. If X"—
X—b, is not irreducible in B[ X], then X*— X—by=(X—b)(X—(b+1))--
(X—(b+p—1)) for some bEB.

In all that follows, by XP?—b we denote X*—X—b.

1. Cpyclic extension with a Galois group of order p'
Throughout this section, by ® we denote a cyclic group of order p
with a generator ¢. Firstly, we shall prove the following

Theorem 1.1. Let A be a ®-Galois extension of B. Then there
exist an element b, in B, a derivation D in B such that D*—D-=1I,

2) A domain means a commutative integral domian.
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and Db,=0, and then XY—b, is a ceniral polyncmial of B[X;D] ani
A isisomorphicto B[ X, D1/(X?—b,)B[X; D].

Proof. Since Az=B;PB’';, there exists an element ¢ in A with
tg(a)=1. Hence, there exists an element x€A with o(x)=x+1 [9,
Theorem 10. 11. Then it is clear that x*—x&B and bx—xbEB for each
beB. Now, we set by=x"—x, D=1, Then D*—D=1I, and Db,=\.
Let T=B+xB+--+x*"'B (E£A). Then T is a subring of A and (7))
CT. Now for 0<j<p, weset a;=d'(x)(j71), b,=(—7)x. Then TT%}
(@;+b))=1 and TT5z}a;+0%,))=0 for k=1,2, ---, p—1. Comparing the
expansions of those above, we can easily see that the existence of a G-
Galois coordinate system {x;, %, ***, Xa; ¥ ¥s **+, ¥2} for T/B. Hence
T=A [8, Theorem 2.3]. If a=3%2ix'd; (d,€B) is 0, then we have ()
—a=x""%p—1)d,_,+ --- =0. Repeating the same procedure, we can
easily see that d,.,=d, ,=--=d,=0. Thus A=B®xBP---Px"'B. To
be easily verified D*—D=1I, and Db,=0 mean that XP—b, is centrul
in B[X;D]. Let ¢* be the map of B[X;D] to A defined by f(X)
1—>f(x). Since f(X)=(X*—b)g(X)+r(X) with deg »(X)<p, Ker ¢*=
(X*—by)B[X; D].

Corollary 1. 1. In order that B have a &-Galois extension A, itis
necessary and sufficient that there exist an element b, in B and a derivu-
tion D in B such that

(@) D*—D=1I,, Db=0,

(6) XP—b, is dirvectly indecomposable in B[X; D].

Proof. By Theorem 1.1, it remains only to prove the sufficiency.

As was noted above, X¥—b, is central in B[X; D] and X?—b,=
(X+1)*—b, Thus the automorphism ¢ of order p of B[X:D] defined
by f(X)i—> f(X+1) induces an automorphism ¢* of A*=B[X;D]/
(X?—by)B[X; D]=BPyBP---Py"'B with o*(y)=y+1, where y is the
residue class of X modulo (XP—b,)B[X; D]. Let a=2X52iy'd;€A* with
o(@)=a(d;€B). Then X i5i(y+1)di=c(a)=a=2%-ty'd; yields (p—1)
dyp1+dps=d,—,, and hence, d,_,=0. Repeating the same procedure,
we have e=d,EB, that is, A**=B. Now, the existence of a (¢*)-
Galois coordinate system for A*/B will be seen as same argument as
in the proof of Theorem 1.1. Thus A* is a Galois extension of B with
a Galois group (¢*) of order p.

Corollary 1.2. If A is a &-Galois extension of B, then A is B-
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Sree.

Let A be a B-Galois extension of B. Since the order of ® is p, it
is either inner or contains no inner automorphisms except identity. Now,
we consider the case ¢=v, an inner automorphism generated by a unit
vEV=V,(B). Then o(V)SV and V°'=VN\B=Z, the center of B.
Therefore, v&Z and hence V=V’=Z. Under the same notations in the
proof of Theorem 1.1, o(x)=vxv '=x-+1 yields at once vx—axv=v, that
is, Dv=wv». Thus we have proved only if part of the following

Corollary 1.3. There exists a &-Galois extension A of B such that
®=(v), vEV, if and only if there exist an element b, in B, a derivation
D in B and an element z in U(Z) such that

(&) D*—D=1I,, Db=0,

(b) XP—b, is directly indecomposable in B[X; D],

(¢) Dz=z.

Proof. We shall prove the if part. Under the notations in the proof
of Corollary 1.1, we set A*=B@yBP---Dy*'B=B[X; D]/(X*—b,)
B[X:D]. Then Dz=z=zy—yz means zyz~'=y-+1 and hence z’yz "=y
which implies z°€V ,*(A*). Thus in the proof of Corollary 1.1, we may
set (6*)=(2).

Lemma 1.1. Let © be a finite group of automorphisms of a ring
A with A®=B. If an intermediate ring T is an 9|T-Galois extension
of B, and A]T is an N-Galois extension for some normal subgroup N of
D with Qr={(pED;:pt)=t for all tET}=NR, then A is an $-Galois
extension of B.

Proof. Let {x;, %y -, %, ¥4 ¥ -, ¥} be an N-Galois coordinate
system for A/T, and {w, ws, =, Wn} 2}, 25 >, Za} an 9| T-Galois coordi-
nate system for T/B. Then > (3 w;0(z5))p(y)=0,,.

Let T be a Galois extension of B with a cyclic Galois group 9t of
order p° with a generator -. For a derivation D in 7 and an element
t of T, we set D(t)=1 and D(t)=D(Di_,()) +(Di_:(t))¢, then (X-+1)"

=22=D(Z)X""’§)k(t) in T[X;D] [7, §1, I, (ii)]. Now we shall prove

Theorem 1. 2. In order that B have a cyclic 9-Galois extension (D
=(0) of order p**') such that AT, and ¢|T=rx, it is necessary and
sufficient that there exist a derivation D in T and elements w, u, in
T such that



164 Kazuo KISHIMOTO

(a) D*—D= I, Du,=0,

(b) XP—u, is directly indecomposable in T[X; D],
(c) Tw(w)=1,

(@ =D"'—-D=1I,,

(e) @p(ul) -741:7(”0)'—”(1-

Proof. Let A be the extension cited in Theorem 1. 2. Then A"”';
T. If {x, % **, Xn} Y1y ¥z **+, ¥a) is an N-Galois coordinate system for

T/B, then X x:;p(y:)=06(0),, for each p=9. Hence A=A"p£ by [8,
(*)

Theorem 2. 3], thatis, A/7T is a (¢*)-Galois extension. Hence A=TQ@
2T@P - @x"'T=T[X; D]/ (XP—u)T[X; D], where o”(x)=x+1, uy=2x"
—x and D=17,|T (Theorem 1.1). Then it is clear that D, u, satisfy
(a) and (b). We set u,=o(x)—x which is contained in 7 by ¢*(x)=x«
41, Then (c)—(e) can be checked as follows:

() =205 o (o(x)—x) =0 (x) —x=1.

(D '—D) () =<(67'(t) x—x0'())) —tx+xt =to (x) —o (x)t —tx+xt
=t(0(x) —x)— (o(x) — D)t =tu,—uit = L, (¥).

o(ug) —ug=0(x? — x) — (2" —x)=(x+u)* —(x -+ u) — 2° -+ x =D, (u) — u,.

Conversely, assume that there exist a derivation D in T and ele-
ments u,, %, in T satisfying (a)—(e). Let ¢ be the map of T[X; D]
defined by >, X% '— > (X-+u,)=(¢). Then ¢ is an automorphism of
T[(X; D] of order p'*' by (c) and (d). By (a), X®—u, is central and
T[(X; D1/ (XP—wu)=T[y]=TDyTH --- Dy*'T=A*, where y is the
residue class of X modulo (X?—u,). (e) show that H(XP—u,)=X?—u,.
Hence ¢ induces an automorphism ¢* of order p°*! in A* with ¢*(y)=
y+u, and ¢*|T=rz,

If (X%2!y'%) is left invariant by o**°, then o** (%21 yit)=
SRy +iq(u)'t, =223y +1)'t.. Therefore the argument used in Corollary
1.1 will be proved A*/T is a (¢**)-Galois extension. Then it is clear
that (¢%)r={pE(c*); p(t)=¢ for all t&T}=(¢**). Thus A*/B is a
Galois extension with a Galois group (¢*) of order p**!' by Lemma 1. 1.

2. Abelian extension with a Galois group of order p’

Throughout this section, we assume that &=(a) X (s,) X+ X(a), a
direct product of cyclic groups (o) of order p with a generator o,

We shall state several remarks without proof,

Let D, (i=1,2, ---,e¢) be derivationsin B, b, (=1, 2, -+, ¢) elements
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of B and by(i, j=1,2, -, ¢) elements of B with b,=—b, and b.=0.
If they satisfy

(D, DjJ=D,D;,—D,;D,= ij,-

Dbis-+ Dby + Db =0
then the set of polynomials of e-indeterminates B=B[X,, X,, ---, X.; D), D,,
DP]={ZXT'X:ﬁ'»»X:’b,,-lyz...yc;b,,ly:...,,.ceB} forms a ring whose mul-
tiplication is defined by the distributive law and the rule dX,=X,b-+D;b
(beB) and X, X,=X,X,+b, [7, Proposition 2. 1],

Further, if there holds

D!—D,= Ibt, Diblzos

D?7'b -+ b+ Dby=0,
the polynomial X;?—b; is central in 3B [7, Theorem 3. 1].

Let = be an arbitrary permutation of {1, 2, ---, k}, k=<Ce. Then B=
B[X,(]), X.,(g), e, X,(l-); Dt(l)) D,((g), oy D,(,)] [7, Proposition 2. 1]

We set B[X;, Xo -+, Xiw13 Dy Dy, -oe, Dx-—l]/Mk—1=B[xn Koy vty Xpor]
== Dhoserts £a 555" B, where Mioy=(X?—b,, X§—bs, -, X¥.,—b,.,) and
x; is the residue class of X; modulo M,._,. Then,

By, %3, ++*, 21 [ X3 Di)={2X X\ a; a,€B[x,, %, +++, %41} forms a
ring whose multiplication is defined by the distributive law and the rule
bX.=X.b+D.b(beEB) and xX,=X.x:+b. [7, Lemma 2.3], moreover
X.»—b, is a central polynomial of B[x), s, -~ ][ X, ; D] if we reduce
the coefficents modulo M,_,, and, )

B[ X, X;, -+, X5 Dy, Dy, -+, DI‘:]/MK‘.:B[xb X2 0y xk]’=VB[x1> Koy om0y X
X, Dk]/(ka_bk)B[xh Zoy o+, Xe-1] [ Xe 3 Di] [7, Lemma 2. 3].

We denote this residue class ring by A..

Now, a set of polynomials {X"—b, XP—b, ---, X’—b.} of B will
be called a system of directly indecomposable polynomials if XP.y— by
is directly indecomposable in A.u-y [ Xewy ; Deiy] for every permutation =
of {1, -, 17}, iZe.

We shall prove the following which corresponds to Theorem 1. 1.

Theorem 2.1. Let A be a &-Galois extension of B. Then there
exist derivations D, (i=1,2, -, ¢) elements b, ({=1,2, ++-,e) and by (3,
j=1,2, -+, ) with by=—by and by=0 in B such that

(@ [D, DJ]=Ibﬂ;

(b) D],;btj+D(ka+Djbki=O,

(c) Di"——D,-=I,.i, Db, =0,
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(d) Djp—|bji+b4j':_‘Dibj:0,
and then XP—0b, (1=1,2, -, e) are central polynomials of B and A is
isomor phic to B M.

Proof. Since A,=B,PB';, there exists an element e A with
tg(@)=1. Hence there exist elements #, %3, -, %, in A with &,(x)) =21+,
[9, Theorem 10]. Then x"—x,=bEB, xux,—x,xi=byEB and bx—
x:b=B for each b=B. Hence 1f we set Dt—IxilB, D, b; and b,; satisfy
the conditions (a)—(d) [cf. 7, Theorem 3. 17.

Let T=Zugvi<px.11x;’z---x:eB. Then T is a subring of A such that
S(T)ET and TO=B.

Let p=ali.ok-..a,’c be an arbitrary element of &.

For each o, we set

e P =a(x)k7", b, =(—k) 'z

Then T3z e +5%)=1 and TTEHa®+pb:)={0 i 277

Comparing the expansions of those above, we can easily see the exis-
tence of elements {¢,*, ¢.,®, «-+, ¢,?; ., 4., -+, d.,°} in A such that

2ePd P =1

Siepa={] if w77

1 if oh=1

for each {=1,2, ---, ¢

Hence if we set

W1 e, 0d 0, WP =300 p(d ),

= ZJCJ(‘D I’Vl dj(")’ WE(” — ZJCJ(Z) m(P) (dj@))

and

W= 225 P Weead 2, Wi =300 P WP p(d®),
we have

We=22ny0=1, W=3x,0(yn)=0 for each p~1.
This means the existence of a &-Galois coordinate system for T/B. Thus
we obtain T =A.

If a=323"0 ' fi(x, %5, -+, 2)=0. Then o,(a)—a=3220 0 ( )

Fil#s, %3y =, xe))=0. Repeating the same procedure, we can easily see that
JoZo X3y +on, 2) =F1(&ay Xy oo, Ko} =100 = fp1(%s, Xy -, £)=0. Next, we con-
sider fi(#., %3, +o, x.) =2 020x g, (% %4 -, 2) =0 and a,(filxs 3, -, ).

Then we can see that gi,(x; %4 >, 2)=0 for each j=0,1,2, -, p—1.
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Continuing similary, we can see eventually {ajia)--ale; 0<»<p} is a
linearly independent right B-basis for A.

Let ¢* bte the map of B to A=B[x, ., -+, x.] defined by f[X,, X,
v, X)—> f(x, £, -+, x.). Then ¢* is a B-(ring) epimorphism. Since
f(Xb X, B X:)=(Xxp—b1)gl(Xn Xz, °t X,)—l— (sz—bz)gz(Xh X2s R X) e
H(XP-b)g.(X, X, -, X))+ (X, X,, -+, X,), where each degree X, of
r(X, X5, -++, X.) is smaller than p, f(x, 25 -+, %) =r(xy, %5 +*+, %) yields
that Ker ¢* =(X\"--b,, X’ —b,, -, X?—b.).

Corollary 2.1. In order that B have a &-Galois extension A such
that AS(®,=(m,,) X+ X(a,)) has no proper central idempotents, it is
necessary and sufficient that there exist derivations D(i=1,2, -, ¢) in
B, elements b(i=1,2, -, ¢) and b\(i,j=1,2, -, ¢) of B with by=—b,
and by =0 such that

(@ [D,D,]= Iaﬂ,

(b) Dkb” '1‘ Dibﬂ; “I' Djbkt = Or

(C) DipHDt: Ib‘, D{bi=0,

(d) Djp_]bji+bij+D{bj:0,

(e) {XP—b), XP—b,, -+, XP—b.} is a system of directly indecom-
posable polynomials.

Proof. Let A be the extension cited in Corollary 2.1. Then, as
was shown in Theorem 2.1, there exist derivations D, elements b; and
bi(i, 7=1,2, --+, e) satisfying (a)—(d). Since A® is a (g,) X(g;) X+ X
(¢)-Galois extension over B, A®i=B[x, ), +--,x] by Theorem 2.1.
While by the remark state just before Theorem 2. 1, B[x,, &3, -, x,J=B[x,,
% -, %] [Xi3 DO/ (XP—by) Blay, %, -+, 2] [Xi; D). Hence (e) is
clear,

Conversely, assume that there exist derivations D;, elements b; and
by (G, =1, 2, ---, e) satisfying (a)—(e). Then (e) yields that A*=B[y,
¥y -+, ¥.]=B[ X}, X, ---, X,; D), D., --+, D.]/ M., contains no proper central
idempotents, where each y, is the residue class of X; modulo M., Now,
let ¢; be the map of B into itself defined by fF(X, X;, -, X, =, X)+—>
(X, X, -+, Xi+1, .-+, X,). Then ¢, is an automorphism and further, it
induces an automorphism ¢;* of order p in B[y, 3., -, ¥.1 for (X
—b)=X"—b,(j=1,2, --,¢). The group generated by a,* a,*, -, o*
coincides with ®&* =(0,*) X (a,*) X ++» X (4.*), a direct product of each (a.*).
Then it is clear that A%*=B, The existence of a &*-Galois coordinate
system will be seen as for that of Theorem 2, 1.
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Corollary 2.2. If A is a &-Galois extension of B salisfying the
conditions of Corollary 2.1, then A is B-free.

Combining Theorem 2.1 with Corollary 2.1, we can state the follow-
ing fact corresponding to Theorem 1. 2. The proof is quite similar as that
of [7, Theorem 3. 2], and it may be left to readers.

Theorem 2.2. Let T/B be a Galois extension with an abelian group
N=(r) X (=) X+ X(z.), @ direct product of cyclic groups (i) of order
P with a generator <. In order that B have a Galois extension A
with a Galois group H=(0)X(67) X--X(a,), a direct product of cyclic
groups () of order p"*' with a generator o, such that AT, AP(D
=(5/) X+« X (c")) has no proper central idempotents and o,|T==; itis
necessary and sufficient that there exist derivations D(i=1,2, -, ¢e) in
T, elements t, t, (5, j=1,2, -, e) such that ty=—ty and t,=0 in T
satisfying (a)—(e) of Corollary 2.1 (in T) and there exist elements uy(i,
j=1,2, -, ¢) in T such that

(a) DiTJ—TjDi,=IuU“—Jy

(b) t:)(uu):’l’\us

(©) DpP(uy) —wy=7,(b)—b7

(d) =lty) —tiy=7cD 7" () — Dytt g,

(e) T.e(utj)’—uu’:?J(um)_uw-

3. Cyeclic Galois algebras

In this section, we assume that B is a commutative ring, & a cyclic
group of order p with a generator . If A is a &-Galois extension of
B, then A=B®xB®P -+ Px"'B (Theorem 1.1). Hence, if A is an
algebra over B, then A is commutative. This is a special case of [3,
Theorem 11].

Theorem 3.1, (1) Let A be a &-Galois algebra over B. Then
there exists an element by=B such that b*—bs=b, for each bEB. More-
over, if this is the case, X*—b, is a separable polynomial in B[X] and
A is a splitting ring of X*—by.

(2) Let b be a maximal ideal of B. If there exists an element
b&EB such that b*—b—d=£b, for each bEB and dE), then there exists
a Galois algebra A* over B with a cyclic Galois group &* of order p.
Moreover, if this is the case, X*—b, is a separable polynomial in B[X]
and A* is a splitting ring of X¥—0b,.

3) DuO() means D(DD, () +DD, (), where Dud(H)=1,
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Proof. (1) If A is a &-Galois algebra over B, then, as is shown
in Corollary 1.1, there exists an element xE A with o(x)=x+1, b=21a"
—xEB and A=B®xB® - ©x*'B=B[X]/(X*—b,). Hence X?—b, is
a separable polynomial of B[X] and {«, 2-+1, ---, 2+4-(p—1)} is the set
of roots of X*—5, [4, Lemma 2.1]. Consequently, 5"—b=4b, for each
beB. Furthermore, it is clear that X?—b,=(X—x) (X—(x+1))---(X—
(x+(p—1)) in A[X].

(2) Let A*=B®yB® - £y 'B=B[X]/[X"—b,), where y is the
residue class of X modulo (X*—b,). Then the map defined by ¢*(y)=y
-+1 is an automorphism of order p of A* with A**=B. Since j=o*’
(»)—y for each 0<j<p, A* is a separable B-algebra [2, Theorem 1.3].
Hence X"—b, is a separable polynomial. Furthermore, by Lemma 3,
X?—b, isirreducible. Thus it is directly indecomposable by Lemma 2.

Corollary 3. 1. In order that there exist a -Galois algebera A over
B such that A/pA has no proper idempotents for each maximal ideal P
of B, it is necessary and sufficient that there exist an element b=B
satisfying b*—b—d=~b, for each b=B and d=B\U(B).

Proof. Let A be the extension cited in Corollary 3. 1. Then there
exists an element % in A such that o(x)=x+1, b=%x"—2EB and A=
B®xB®D - @Pa"'B=B[X]/(X*—b,) (Theorem 3.1 (1)). Further, for
each maximal ideal p of B, A/pA is a (s)-Galois algebra over the field
(B+bA)/pA=B/p. Hence A/bA is a field (A/pA is semi-simple artinian
without proper idempotents), and since A/pA==(B/b)[X]1/(XP—b)(B/p)
[X]1, where 50 is the residue class of b, modulo p, X*—b, is irreducible
in (B/p)[X] for each b. Thus b”—b—d=~b, for each beB and d=B\
U(B).

Conversely, if there exists an element 0, =B satisfying b*—b—d==b,
for each b=B and d=B\U(B), we have seen that A*=B®yBP --- @
y*'B=B[X]/(X?—b,) is a (¢*)-Galois algebra over B with ¢*(y)=y--1
(Theorem 3.1 (2)). Noting that X*—b, is irreducible in (B/p)[X] for
each maximal ideal p of B, A*/pA*=(B/p)[X]/(X*—b,) vyields that
A*/pA* is a field. Thus A*/pA* has no proper idempotents.

Corollary 3.2. Let B be a local ring. In order that there exist a
&-Galois algebra A over B that A is local, it is neceseary and suf-
ficient that theve exist an element byEB with b*—b—r=tb, for cach
bEB and re J(B), the Jacobson radical of B.
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Proof. Let A be the extension cited in Corollary 3.2. Then there
exists an element x in A such that o(x)=x2+1, by=2"—xEB and A=
B@®xB®---@Px"'B=Bl X]/(X?—b,) by Theorem 3.1 (1). Since J(A)=
J(B)A, A]J(B)A is a field. Thus b"—b&-—rs4b, for each beB, r&B\U(B)
= J(B) by Corollary 3. 1.

Conversely, if there exists b, &B such that b*—b—rs~b, for each
beB, reJ(B), A*=B®yBD --- Py 'B=B_X]/(X*—b,), where y is
the residue class of X modulo (X*—b,), is a Galois algebra over B with
a Galois group (s*) of order p such that o*(y)=y+1, and A*/J(B)A*
is a field by Corollary 3.1. Since J(B)A*=J(A*), J(A*) is a maximal
ideal of A*, thatis, A* is local.

Let B be local, T a Galois algebra over B with a cyclic Galois group
N=(z) of order p* with a generator =, and T be local. Then,

Lemma 3.1. Assume that there exist elements x,y in T such that
t(x)—x=y"—y and t.(y)=1. Then t*—i—rsx for each t€T, r&J(T).
Further, if this is the case, T[X]/(X?—x) is a Galois algebra over B
with a cyclic Galois group O of order p*' with a generator & such that

o|T=x.

Proof. Suppose that ¢ —{—r=x for some t&T and re&J(T).
Then y*—y=r(x)—x=(c(t)—1)" —(=(¢)—t)—(z(r)—7r). Hence (z(¢)—¢
— )P =((t)—t—3)—((r)—r) and t.(z(t)—t—y)=t(—y)=-—1 imply z=
t(t)—t—yEU(T) and 2"=2z(540) modulo J(7T). This means that the
residue class of z modulo J(7) is contained in the prime field of T/ J(T),
and hence, that of B/J(B). Consequently, we have z=b-+s for some
bEB and s J(T). But this is a contradiction since —1=t(z)=t.(s)E
J(T). This means that t"—/—r=~x for each t& T and r& J(T), namely,
X?—x isirreducible in T[X]. Thus A*=T[X]/(X?—x)=T[w]=T®
wT@-@Puw* T, where w is the residue class of X modulo (X*—x), is
a ring without proper idempotents by Theorem 3.1 (2). Let ¢* be the
map of A* defined by o*(XThohw't) =3 53w +y)'c(¢). Then o*(w”—w)
=(wL+yY—(w+y)=w?—w+y"—y=x+7(x)—x=7(x). Hence o* is an
automorphism of A* of order p*"' with A**=B and «*|T=<. Further-
more, ¢** (w)=w+t(y)=w+1 shows that A* is a (¢*?")-Galois algebra
over T, Thus A* isa (s*)-Galois algebra over B by Lemma 1. 1.

Theorem 3.2. Let B be a local ring. If T is a Galois algebra
over B with a cyclic Galois group N=(<) of order p’ with a generator
T and T islocal, then there exists a Galois algebra A* over B contain-
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ing T with a cyclic Galois group ©=(c%) of order p**' with a generator
o* such that o*|T=v and A* is local. More generally, for each posi-
tive integer f, there exists a Galois algebra A* over B containing T
with a cyclic Galois group O=(c*) of order p°*' with a generator o*
such that o*|T=< and A* islocal.

Proof. Since T,=B;PB';, there exists an element yET such that
In(y)=1. Hence tu(y?")=(n(y))’=1, then, fx(y*—y)=0. Thus there
exists an element « in T such that =(x)—x=y?—y. Then by Lemma
3.1 and Corollary 3.2, A*=T[X]1/(X?—x) is a requested extension.

4. Commutative abelian extension

Throughout the present section, we assume that B is a commutative
ring, ®=(s,)) X(5.) X--- X(0,), an akelian group which is a direct product
of cyclic groups (o) of order 5.

Theorem 4.1. (1) Let A be a commutative &-Galois algebra over
B. Then there exist elements b, i=1,2, -, e) in B with b*—bs=b, for
each b=B. Further, there exists an element x. in A such that o{x;)
=%+ 0y, X —x=0,EB, By=B®x:BP .- Px2'B=B[X.]/(X:*—b.)
and A=BRpB,XQ:zB..

(2) If there exist elements b, (i=1,2, -+, e) in B with x*_,—%i_,—
d,_\5~b, for each x_ €A, di_\EP_y, where Ai=B[X,, -, Xi 1]/ (XP
—by, o, X;o " —bi_) and b, is @ maximal ideal of A;_,, then there exists
a commutative ®*-Galois algebra A* over B, where &*=(0,*)X(s,*) X
e X(a.*), an abelian group which is a direct product of cyclic groups
(*) of order p.

Proof. (1) Asis shown in Theorem 2.1, there exist elements x,
Xy +o+, 7, in A with 6, (x)=x,+0, b=x"—2xEB. Let B,=B[x,]=B®
2B - Px,_,"'B(SA). Then B=B[X:]/(X{?—b). Further, B, is a
(s,)-Galois algebra over B by Theorem 1.1. Hence b”—b=£4b, for each
bEB by Theorem 3.1 (1). Since {anxy2e--a’; 0=Zv,<p} is a linearly
independent B-basis for 4, it is clear that A=B,QB,Q - QsB.(=B/M,).

(2) Let B*=BlX]/(X*—b)B[X]=B®yB- Py’ 'B, where y,
is the residue class of X; modulo (X?—5,)B[X,], then B* is a (a,%)-
Galois algebra over B by a.*(»,)=y.+1 (Theorem 3.1 (2)). Now, we
extend &* to an automorphism of A*=B*Q;B¥Q-QB¥ defining
a*(y;)=v,--0;;. Then as is easily seen &*, the group generated by o*,
7%, -, 6, is a direct product of (¢;*), and A*®*=B. We can easily
prove the existence of a ®&*-Galois coordinate system for A*/B. Since
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B*[X,]/(XP—b)B,* [ X;] == (B,*@s B[ X:1)/ (B:* Qs B(X,* —b,) B[ X;]) = B,*
®s(B[X,]/(X?—b,)B[ X,1)=B,*®:B,*, A*=B[y, s **, Vel=B*QB;*
@ -+ RpB*=B[y1, ¥; *** ¥r-1] [Xl7]/[ka_bk)B[yly Yo oo Vel [ X], A*
has no proper idempotents.

5. The case of domain

Throughout the present section, we assume that B is a domian with
the quotient field K, & a cyclic group of order p with a generator o.

Theorem 5.1. [n order that there exist @ & Galois algebra over B,
it is necessary and sufficient that there exists an element b, =B with
b® —b=£b, for each bEB.

Proof. Let 5, be an element of B with b*—bs£b, for each bEB.
Then XY—b&, isirreducible in B[X] by Lemma 4. Thus, as was observ-
ed in Theorem 3.1(2), A*=B@®yBD-- Py’ 'B=B[X]/(X?—b,), where
» is the residue class of X modulo (X*—&,), has an automorphism ¢*
with o*(y)=y-+1. Since o*'(»)—y &Y for each maximal ideal P of A,
A/B is separable ([2, Theorem 1. 3]), thatis, X*—&, is separable. Con-
sequently, it is directly indecomposable by Lemma 2. The necessity has
been shown in Theorem 3. 1 (1).

Corollary 5.1. In order that there exist a domain A that is a ©-
Galois algebra over B, it is necessary and sufficient that there exists an
element byEB satisfying b*—u” 'b~u’b, for each elements b, n (50)
EB.

Proof. Let A be a domain and A/B be a &-Galois algebra. Then
A=B[X]/(XY—b,) for some b,=B by Theorem 3.1 (1). Since A is a
domain, (X*—b,) is a prime ideal. Thus it is irreducible in K[X] by
Lemma 1. Hence (b/u)?—(b/u)5b, for each b and #5~0 in B.

Conversely, if bP—u”"'bs~u”b, for each b and #=~0 in B, by set-
ting u=1, we have b”—b=~b,. Thus there exists a &-Galois algebra A*
=B[X]/(X*—b,) over B by Theorem 5.1. Further X"—b, is irredu-
ciblein K[X]. Hence A* is a domain.

Corollary 5.2. Let B be integrally closed in K. If A isa &-

Galois algebra over B, then A is a domain.

Proof. By Theorem 5.1, A==B[X]1/(X"—b,) for some irreducible
polynomial X*-b, in B[X]. Then, X"—b, is irreducible in K[X],
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Since B is integrally closed in K. Hence (X*—b,) is a prime ideal of
B[X] by Lemma 1.

Lemma 5.1. Let N be a cyclic group of order p° with a generator
=, T a domain that is an N-Galois algebra over B. If i, t, are elements
of T with «(8,)—t,=t,"—1t, and t(t,)=1, then X —t, is irreducible in
L[X], where L is the quotient field of T.

Proof. Let y be an arbitrary element of L. We shall regard = as
an automorphism of L. If (¢/u)®—wv/u=t for some v/u&EL(v,ucT),
then #,"—t,=7(t,) —t,=(c(v/u) — (v/u))® =(z(v/u) —v/u) implies that (z(v/u)
—vju—t,)" =((v/u)—v/u—t,). Consequently, x=(v(v/u)—v/u—t,) Iis
contained in the prime field of K and ¢.(x)=0. On the other hand, ¢.(x)
=¢.(—t,)=—1. This is a contradiction.

Theorem 5.2. Let T be a domain that is an N-Galois algebra over
B, where N is a cyclic group of order p with a genevator v. Then,
for each positive integer e, there exists a Galois algebra AT over B
with a cyelic Galois group O of order P’ with a generator o such that
¢|T=+v and A is a domain.

Proof. Since T,=B;@®B's, there exists an element ¢, in 7 with
¢.(t,)=1. Hence ¢(£")=1. Thus there exists an element ¢, in 7 with
a(t)—t =t,"—t,. The rest follows from Lemma 5.1 and the making use
of the same method as in the proof of Theorem 3. 2.
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