ON ABELIAN EXTENSIONS OF RINGS I

KAZUO KISHIMOTO

Introduction. In [1], M. Auslander and O. Goldman introduced the notion of a Galois extension of a commutative ring. Further, Galois theory of general rings, were developed in [2], [3], [4], [5], [8] and others.

While, in [6] and [7] the author generalized the notion of abelian extensions of fields and gave necessary and sufficient conditions for a simple ring to have an abelian simple ring extension.

In this paper, combining the method used in [6] and [7] with results of [4] and [8], we shall give the conditions for an algebra over GF(p) to have a Galois extension with an abelian Galois group of order p^f .

Let B be a ring with the identity 1, A an extension ring of B with the same identity, and \mathfrak{G} a finite group of automorphisms of A. Then, following [1], A is called a Galois extension of B with a Galois group \mathfrak{G} (or a \mathfrak{G} -Galois extension of B) if the following is satisfied:

- 1) A^{\otimes} , the fixsubring of A of \otimes , is B,
- 2) A is a finitely generated, projective B-module and the map j of $D(A, \mathfrak{G}) = \sum_{\rho \in \mathfrak{G}} Au_{\rho}$ (the trivial crossed product of A with \mathfrak{G}) to $Hom(A_B, A_B)$ defined by $j(au_{\rho})(x) = a\rho(x)(x \in A)$ is an isomorphism.

As is well known, 2) is equivalent to the following

2') there exist elements x_1, x_2, \dots, x_n ; y_1, y_2, \dots, y_n of A such that $\sum_{i=1}^n x_i \rho(y_i) = \delta_{\rho,1} (\rho \in \mathfrak{G}).$

A subset $\{x_1, x_2, \dots, x_n; y_1, y_2, \dots, y_n\}$ of A satisfying 2') is called a S-Galois coordinate system for A/B.

Throughout the present paper, we assume that the base ring B is an algebra over GF(p) without proper central idempotents containing the identity 1, a Galois extension is one without proper central idempotents containing the base ring as a direct summand considered as a module over the base ring.

In § 0, for the convenience of the later discussion, we state some properties of polynomials over a ring.

In § 1, we shall show that if A is a Galois extension of B with a cyclic Galois group \mathfrak{G} of order p, then A is a residue class ring $B[X; D]/(X^p-X-b)B[X; D]$ where D is a derivation in B, X^p-X-b is a central polynomial of B[X; D], and conversely (Corollary 1. 1). Next, we

shall give a necessary and sufficient condition that there holds an embedding theorem for a Galois extension (Theorem 1, 2).

In § 2, we shall give a necessary and sufficient condition for B to have a \mathfrak{G} -Galois extension A, where $\mathfrak{G}=(\sigma_1)\times(\sigma_2)\times\cdots\times(\sigma_r)$ (a direct product of cyclic groups (σ_i) of order p with a generator σ_i) (Corollary 2. 1). Combining this with Theorem 1. 2, we obtain an extension of Theorem 1. 2 (Theorem 2. 2).

In §§ 3—5, we assume that B is commutative.

In § 3, by the aid of the fact that every cyclic algebra over B is commutative [3, Theorem 11^{10}], we shall show that if A is a G-Galois algebra over B with a cyclic Galois group of order p, then A is a splitting ring of a separable polynomial $X^p - X - b_0$ in B[X] (Theorem 3. 1). Next, let T and B be local rings and T a Galois algebra over B with a cyclic Galois group $\mathfrak R$ of order p with a generator τ . Then, for each positive integer e, there exists an $\mathfrak L$ -Galois algebra A over B with a cyclic Galois group $\mathfrak L$ of order p with a generator σ such that $A \supseteq T$, $\sigma \mid T = \tau$ and A is local (Theorem 3. 3).

In § 4, we shall deal with the commutative case. Namely, if A is a commutative Galois extension of B with a Galois group $\mathfrak{G}=(\sigma_1)\times(\sigma_2)\times\cdots\times(\sigma_r)$, then we can see that $A=B_1\otimes_B B_2\otimes\cdots\otimes_B B_r$, where each B_i is a (σ_i) -Galois algebra over B (Theorem 4.1).

In § 5, we assume that B is a domain, and consider a Galois algebra A over B with a cyclic Galois group \mathfrak{G} of order p. Then, a necessary and sufficient condition for B to have A is that there exists an element b_0 in B such that $b^p - b \neq b_0$ for all $b \in B$ (Theorem 5.1). Moreover, if A is a domain, we can see that there holds the embedding theorem without any restriction (Theorem 5.2).

As to notations and terminologies used in this paper, we follow [2] and [7].

The author wishes to express his thanks to Professor H. Tominaga, Professor T. Nagahara and Mr. A. Nakajima for helpful discussion and advice.

0. Preliminary results on polynomials

Let *D* be a derivation of *B*. Then, by B[X; D] we denote the ring of polynomials $\{\sum_i X^i b_i ; b_i \in B\}$, where the multiplication is defined by

¹⁾ Cf. [5].

the distributive law and the rule bX=Xb+Db ($b \in B$). If D=0, we denote it by B[X].

Let $\mathfrak{B}=B[X;D]$, and f(X) a monic polynomial of \mathfrak{B} .

- 1) f(X) is called *directly indecomposable* if the residue class ring $\mathfrak{B}/(f(X))$ is a ring without proper central idempotents.
- 2) f(X) is called *irreducible* if each proper factor of f(X) is contained in B.
- 3) (Janusz) Let B be commutative and \mathfrak{B} be B[X]. Then f(X) is called *separable* if $\mathfrak{B}/(f(X))$ is a separable B-algebra [4, § 2].

The next is well known.

Lemma 1. Let B be a domian²⁾ with the quotient field K, and f(X) a monic polynomial of B[X]. Then (f(X))=f(X)B[X] is prime if and only if f(X) is irreducible in K[X].

By [4, Corollary 2. 10], we readily obtain

Lemma 2. Let B be a commutative ring. If f(X) is separable and irreducible in B[X], then f(X) is directly indecomposable.

Lemma 3. Let b_0 be an element of B, and \mathfrak{p} a maximal ideal of B. If $b^p-b-d\neq b_0$ whenever $b\in B$ and $d\in \mathfrak{p}$, then X^p-X-b_0 is irreducible in B[X].

Proof. Since $b^p-b-d\neq b_1$, X^p-X-b_0 is irreducible modulo $\mathfrak{p}[X]$. Now, suppose that $X^p-X-b_0=g(X)h(X)$, where $g(X), h(X)\in B[X]$ are monic and deg g(X), deg h(X) < p. Then g(X)-b or h(X)-c are contained in $\mathfrak{p}[X]$ for some b or c in B, and we have a contradiction $(g(X)-b)(h(X)-c)=X^p-X-b_0-bh(X)-cg(X)+bc\in\mathfrak{p}[X]$.

Lemma 4. Let B be a domain, and b_0 an element of B. If $X^p - X - b_0$ is not irreducible in B[X], then $X^p - X - b_0 = (X - b)(X - (b + 1)) \cdots (X - (b + p - 1))$ for some $b \in B$.

In all that follows, by $X^{\mathfrak{p}}-b$ we denote $X^{\mathfrak{p}}-X-b$.

1. Cyclic extension with a Galois group of order p

Throughout this section, by @ we denote a cyclic group of order p with a generator σ . Firstly, we shall prove the following

Theorem 1.1. Let A be a S-Galois extension of B. Then there exist an element b_0 in B, a derivation D in B such that $D^p - D = I_{b_0}$

²⁾ A domain means a commutative integral domian.

and $Db_0=0$, and then $X^{\mathfrak{p}}-b_0$ is a central polynomial of B[X;D] and A is isomorphic to $B[X;D]/(X^{\mathfrak{p}}-b_0)B[X;D]$.

Since $A_B = B_B \oplus B'_B$, there exists an element a in A with $t_{00}(a)=1$. Hence, there exists an element $x \in A$ with $\sigma(x)=x+1$ [9, Theorem 10.1]. Then it is clear that $x^p - x \in B$ and $bx - xb \in B$ for each $b \in B$. Now, we set $b_0 = x^p - x$, $D = I_x$. Then $D^p - D = I_{b_0}$ and $Db_0 = 0$. Let $T = B + xB + \cdots + x^{p-1}B$ ($\subseteq A$). Then T is a subring of A and $\sigma(T)$ $\subseteq T$. Now for 0 < j < p, we set $a_j = \sigma^j(x)(j^{-1})$, $b_j = (-j^{-1})x$. Then $\prod_{j=1}^{p-1}$ $(a_j + b_j) = 1$ and $\prod_{j=1}^{p-1} (a_j + \sigma^k(b_j)) = 0$ for $k = 1, 2, \dots, p-1$. Comparing the expansions of those above, we can easily see that the existence of a @-Galois coordinate system $\{x_1, x_2, \dots, x_n; y_1, y_2, \dots, y_n\}$ for T/B. Hence T=A [8, Theorem 2.3]. If $a=\sum_{i=0}^{p-1}x^id_i$ $(d_i \in B)$ is 0, then we have $\sigma(a)$ $-a=x^{p-2}(p-1)d_{p-1}+\cdots=0$. Repeating the same procedure, we can easily see that $d_{p-1}=d_{p-2}=\cdots=d_0=0$. Thus $A=B\oplus xB\oplus \cdots \oplus x^{p-1}B$. To be easily verified $D^p - D = I_{b_0}$ and $Db_0 = 0$ mean that $X^p - b_0$ is central in B[X;D]. Let φ^* be the map of B[X;D] to A defined by f(X)f(x). Since $f(X) = (X^{\mathfrak{p}} - b_0)g(X) + r(X)$ with deg f(X) < p, Ker $\varphi^* = f(X)$ $(X^{\mathfrak{p}}-b_0)B[X;D].$

Corollary 1.1. In order that B have a \mathfrak{G} -Galois extension A, it is necessary and sufficient that there exist an element b_0 in B and a derivation D in B such that

- (a) $D^p D = I_{b_0}$, $Db_0 = 0$,
- (b) $X^{\mathfrak{p}}-b_0$ is directly indecomposable in B[X;D].

Proof. By Theorem 1.1, it remains only to prove the sufficiency.

As was noted above, $X^{\mathfrak{p}}-b_0$ is central in B[X;D] and $X^{\mathfrak{p}}-b_0=(X+1)^{\mathfrak{p}}-b_0$. Thus the automorphism ϕ of order p of B[X:D] defined by $f(X) \mapsto f(X+1)$ induces an automorphism σ^* of $A^*=B[X;D]/(X^{\mathfrak{p}}-b_0)B[X;D]=B \oplus yB \oplus \cdots \oplus y^{p-1}B$ with $\sigma^*(y)=y+1$, where y is the residue class of X modulo $(X^{\mathfrak{p}}-b_0)B[X;D]$. Let $a=\sum_{i=0}^{p-1}y^id_i\in A^*$ with $\sigma(a)=a(d_i\in B)$. Then $\sum_{i=0}^{p-1}(y+1)^id_i=\sigma(a)=a=\sum_{i=0}^{p-1}y^id_i$ yields $(p-1)d_{p-1}+d_{p-2}=d_{p-2}$, and hence, $d_{p-1}=0$. Repeating the same procedure, we have $a=d_0\in B$, that is, $A^{*\sigma^*}=B$. Now, the existence of a (σ^*) -Galois coordinate system for A^*/B will be seen as same argument as in the proof of Theorem 1.1. Thus A^* is a Galois extension of B with a Galois group (σ^*) of order p.

Corollary 1.2. If A is a G-Galois extension of B, then A is B-

free.

Let A be a \mathfrak{G} -Galois extension of B. Since the order of \mathfrak{G} is p, it is either inner or contains no inner automorphisms except identity. Now, we consider the case $\sigma = \tilde{v}$, an inner automorphism generated by a unit $v \in V = V_A(B)$. Then $\sigma(V) \subseteq V$ and $V' = V \cap B = Z$, the center of B. Therefore, $v \in Z$ and hence V = V' = Z. Under the same notations in the proof of Theorem 1. 1, $\sigma(x) = vxv^{-1} = x + 1$ yields at once vx - xv = v, that is, Dv = v. Thus we have proved only if part of the following

Corollary 1.3. There exists a \mathfrak{G} -Galois extension A of B such that $\mathfrak{G} = (\tilde{v})$, $v \in V$, if and only if there exist an element b_0 in B, a derivation D in B and an element z in U(Z) such that

- (a) $D^{\nu}-D=I_{b_0}$, $Db_0=0$,
- (b) $X^{\mathfrak{p}}-b_0$ is directly indecomposable in B[X;D],
- (c) Dz=z.

Proof. We shall prove the if part. Under the notations in the proof of Corollary 1.1, we set $A^* = B \oplus yB \oplus \cdots \oplus y^{p-1}B = B[X;D]/(X^p - b_0)$ B[X;D]. Then Dz = z = zy - yz means $zyz^{-1} = y + 1$ and hence $z^pyz^{-p} = y$ which implies $z^p \in V_A^*(A^*)$. Thus in the proof of Corollary 1.1, we may set $(\sigma^*) = (\tilde{z})$.

Lemma 1.1. Let \mathfrak{D} be a finite group of automorphisms of a ring A with $A\mathfrak{D}=B$. If an intermediate ring T is an $\mathfrak{D}|T$ -Galois extension of B, and A/T is an \mathfrak{N} -Galois extension for some normal subgroup \mathfrak{N} of \mathfrak{D} with $\mathfrak{D}_T = \{\rho \in \mathfrak{D} : \rho(t) = t \text{ for all } t \in T\} = \mathfrak{N}$, then A is an \mathfrak{D} -Galois extension of B.

Proof. Let $\{x_1, x_2, \dots, x_n : y_1, y_2, \dots, y_n\}$ be an \Re -Galois coordinate system for A/T, and $\{w_1, w_2, \dots, w_m : z_1, z_2, \dots, z_m\}$ an $\Im T$ -Galois coordinate system for T/B. Then $\sum_i x_i (\sum_j w_j \rho(z_j)) \rho(y_i) = \partial_{\rho,1}$.

Let T be a Galois extension of B with a cyclic Galois group \mathfrak{R} of order p^e with a generator τ . For a derivation D in T and an element t of T, we set $\mathfrak{D}_0(t)=1$ and $\mathfrak{D}_k(t)=D(\mathfrak{D}_{k-1}(t))+(\mathfrak{D}_{k-1}(t))t$, then $(X+t)^n=\sum_{k=0}^n\binom{n}{k}X^{n-k}\mathfrak{D}_k(t)$ in T[X;D] [7, § 1, I, (ii)]. Now we shall prove

Theorem 1.2. In order that B have a cyclic \mathfrak{D} -Galois extension (\mathfrak{D} = (σ) of order p^{e+1}) such that $A \supseteq T$, and $\sigma \mid T = \tau$, it is necessary and sufficient that there exist a derivation D in T and elements u_0 , u_1 in T such that

- (a) $D^{p}-D=I_{u_{0}}$, $Du_{0}=0$,
- (b) $X^{\mathfrak{p}}-u_0$ is directly indecomposable in T[X;D],
- (c) $T_{\mathfrak{M}}(u_1) = 1$,
- (d) $\tau D = I_{u_1}$
- (e) $\mathfrak{D}_{p}(u_{1})-u_{1}=\tau(u_{0})-u_{0}$

Proof. Let A be the extension cited in Theorem 1. 2. Then $A^{\sigma^p} \supseteq T$. If $\{x_1, x_2, \dots, x_n; y_1, y_2, \dots, y_n\}$ is an \mathfrak{R} -Galois coordinate system for T/B, then $\sum_i x_i \rho(y_i) = \hat{\sigma}_{(\sigma^{p^e}), \rho}$ for each $\rho \in \mathfrak{D}$. Hence $A = A^{\sigma^{p^e}}$ by [8, Theorem 2. 3], that is, A/T is a (σ^{p^e}) -Galois extension. Hence $A = T \oplus xT \oplus \cdots \oplus x^{p^{e-1}}T \cong T[X;D]/(X^p-u_0)T[X;D]$, where $\sigma^{p^e}(x)=x+1$, $u_0=x^p-x$ and $D=I_x|T$ (Theorem 1. 1). Then it is clear that D, u_0 satisfy (a) and (b). We set $u_1=\sigma(x)-x$ which is contained in T by $\sigma^{p^e}(x)=x+1$. Then (c)—(e) can be checked as follows:

$$\begin{split} t_{\mathfrak{R}}(u_1) &= \sum_{i=0}^{p^r-1} \sigma^i(\sigma(x)-x) = \sigma^{p^r}(x)-x=1, \\ (\tau D \tau^{-1}-D)(t) &= \tau(\sigma^{-1}(t)x-x\sigma^{-1}(t))-tx+xt=t\sigma(x)-\sigma(x)t-tx+xt \\ &= t(\sigma(x)-x)-(\sigma(x)-x)t=tu_1-u_1t=I_{u_1}(t), \\ \sigma(u_0)-u_0 &= \sigma(x^p-x)-(x^p-x)=(x+u_1)^p-(x+u_1)-x^p+x=\mathfrak{D}_p(u_1)-u_1. \end{split}$$

Conversely, assume that there exist a derivation D in T and elements u_0 , u_1 in T satisfying (a)—(e). Let ϕ be the map of T[X;D] defined by $\sum_i X^i t_i \mapsto \sum_i (X+u_1)^i \tau(t_i)$. Then ϕ is an automorphism of T[X;D] of order p^{e+1} by (c) and (d). By (a), $X^{\mathfrak{p}}-u_0$ is central and $T[X;D]/(X^{\mathfrak{p}}-u_0)=T[y]=T\oplus yT\oplus \cdots \oplus y^{p-1}T=A^*$, where y is the residue class of X modulo $(X^{\mathfrak{p}}-u_0)$. (e) show that $\phi(X^{\mathfrak{p}}-u_0)=X^{\mathfrak{p}}-u_0$. Hence ϕ induces an automorphism σ^* of order p^{e+1} in A^* with $\sigma^*(y)=y+u_1$ and $\sigma^*|T=\tau$.

If $(\sum_{i=0}^{p-1} y^i t_i)$ is left invariant by σ^{*p^e} , then $\sigma^{*p^e}(\sum_{i=0}^{p-1} y^i t_i) = \sum_{i=0}^{p-1} (y+t_{\mathfrak{N}}(u_i))^i t_i = \sum_{i=0}^{p-1} (y+1)^i t_i$. Therefore the argument used in Corollary 1. 1 will be proved A^*/T is a (σ^{*p^e}) -Galois extension. Then it is clear that $(\sigma^*)_T = \{\rho \in (\sigma^*) : \rho(t) = t \text{ for all } t \in T\} = (\sigma^{*p^e})$. Thus A^*/B is a Galois extension with a Galois group (σ^*) of order p^{e+1} by Lemma 1. 1.

2. Abelian extension with a Galois group of order p^f

Throughout this section, we assume that $\mathfrak{G} = (\sigma_1) \times (\sigma_2) \times \cdots \times (\sigma_e)$, a direct product of cyclic groups (σ_i) of order p with a generator σ_i .

We shall state several remarks without proof.

Let D_i $(i=1, 2, \dots, e)$ be derivations in B_i b_i $(i=1, 2, \dots, e)$ elements

of B and $b_{ij}(i, j=1, 2, \dots, e)$ elements of B with $b_{ij} = -b_{ji}$ and $b_{ii} = 0$. If they satisfy

$$[D_{i}, D_{j}] = D_{i}D_{j} - D_{j}D_{i} = I_{b_{ji}}$$

$$D_{k}b_{ij} + D_{i}b_{jk} + D_{j}b_{ki} = 0$$

then the set of polynomials of *e*-indeterminates $\mathfrak{B} = B[X_1, X_2, \dots, X_r; D_1, D_2, \dots, D_e] = \{\sum X_1^{\nu_1} X_2^{\nu_2} \dots X_e^{\nu_r} b_{\nu_1 \nu_2} \dots \nu_e \in B\}$ forms a ring whose multiplication is defined by the distributive law and the rule $bX_i = X_i b + D_i b$ $(b \in B)$ and $X_i X_j = X_j X_i + b_{ji}$ [7, Proposition 2.1].

Further, if there holds

$$D_i^p - D_i = I_{b_i}, \quad D_i b_i = 0,$$

$$D_j^{p-1}b_{ji}+b_{ij}+D_ib_j=0,$$

the polynomial $X_i^{\mathfrak{p}}-b_i$ is central in \mathfrak{B} [7, Theorem 3.1].

Let π be an arbitrary permutation of $\{1, 2, \dots, k\}$, $k \leq e$. Then $\mathfrak{B} = E[X_{\pi(1)}, X_{\pi(2)}, \dots, X_{\pi(e)}; D_{\pi(1)}, D_{\pi(2)}, \dots, D_{\pi(e)}]$ [7, Proposition 2. 1].

We set $B[X_1, X_2, \dots, X_{k-1}; D_1, D_2, \dots, D_{k-1}]/M_{k-1} = B[x_1, x_2, \dots, x_{k-1}]$ == $\sum_{0 \le \nu_i < p} x_1^{\nu_1} x_2^{\nu_2} \cdots x_{k-1}^{\nu_{k-1}} B$, where $M_{k-1} = (X_1^{\mathfrak{p}} - b_1, X_2^{\mathfrak{p}} - b_2, \dots, X_{k-1}^{\mathfrak{p}} - b_{k-1})$ and x_i is the residue class of X_i modulo M_{k-1} . Then,

 $B[x_1, x_2, \dots, x_{k-1}][X_k; D_k] = \{\sum X_k^i a_i; a_i \in B[x_1, x_2, \dots, x_{k-1}]\}$ forms a ring whose multiplication is defined by the distributive law and the rule $bX_k = X_k b + D_k b(b \in B)$ and $x_i X_k = X_k x_i + b_{ki}$ [7, Lemma 2.3], moreover $X_k^p - b_k$ is a central polynomial of $B[x_1, x_2, \dots x_{k-1}][X_k; D_k]$ if we reduce the coefficients modulo M_{k-1} , and,

 $B[X_1, X_2, \dots, X_k; D_1, D_2, \dots, D_k]/M_k = B[x_1, x_2, \dots, x_k] \cong B[x_1, x_2, \dots, x_{k-1}]$ $[X_k; D_k]/(X_k p - b_k)B[x_1, x_2, \dots, x_{k-1}][X_k; D_k]$ [7, Lemma 2. 3].

We denote this residue class ring by A_k .

Now, a set of polynomials $\{X_1^{\mathfrak{p}}-b_1, X_2^{\mathfrak{p}}-b_2, \cdots, X_c^{\mathfrak{p}}-b_e\}$ of \mathfrak{B} will be called a system of directly indecomposable polynomials if $X_{\pi(i)}^{\mathfrak{p}}-b_{\pi(i)}$ is directly indecomposable in $A_{\pi(i-1)}[X_{\pi(i)};D_{\pi(i)}]$ for every permutation π of $\{1,\dots,i\},\ i\leq e$.

We shall prove the following which corresponds to Theorem 1.1.

Theorem 2.1. Let A be a G-Galois extension of B. Then there exist derivations D_i ($i=1, 2, \dots, e$) elements b_i ($i=1, 2, \dots, e$) and b_{ij} ($i, j=1, 2, \dots, e$) with $b_{ij}=-b_{ji}$ and $b_{ii}=0$ in B such that

- (a) $[D_i, D_j] = I_{b_i}$
- (b) $D_k b_{ij} + D_i b_{jk} + D_j b_{ki} = 0$,
- (c) $D_i^p D_i = I_{b_i}$, $D_i b_i = 0$,

(d) $D_j^{p-1}b_{ji}+b_{ij}+D_ib_j=0$, and then $X_i^p-b_i$ ($i=1, 2, \dots, e$) are central polynomials of \mathfrak{B} and A is isomorphic to \mathfrak{B}/M_e .

Proof. Since $A_B = B_B \oplus B'_B$, there exists an element $a \in A$ with $t_{\mathfrak{G}}(a) = 1$. Hence there exist elements x_1, x_2, \dots, x_e in A with $\sigma_i(x_j) = x_j + \delta_{ij}$ [9, Theorem 10]. Then $x_i^p - x_i = b_i \in B$, $x_i x_j - x_j x_i = b_{ji} \in B$ and $b x_i - x_i b \in B$ for each $b \in B$. Hence if we set $D_i = I_{x_i} \mid B$, D_i , b_i and b_{ij} satisfy the conditions (a) -(d) [cf. 7, Theorem 3. 1].

Let $T = \sum_{0 \le \nu_i < p} x_1^{\nu_1} x_2^{\nu_2} \cdots x_e^{\nu_e} B$. Then T is a subring of A such that $\mathfrak{G}(T) \subseteq T$ and $T\mathfrak{G} = B$.

Let $\rho = \sigma_1^{l_1} \cdots \sigma_i^{l_i} \cdots \sigma_e^{l_e}$ be an arbitrary element of \mathfrak{G} .

For each σ_i^k , we set

$$a_k^{(i)} = \sigma_i^k(x_i)k^{-1}, b_k^{(i)} = (-k)^{-1}x_i.$$

Then
$$\prod_{k=1}^{n-1} (a_k^{(i)} + b_k^{(i)}) = 1$$
 and $\prod_{k=1}^{n-1} (a_k^{(i)} + \rho(b_k^{(i)})) = \begin{cases} 0 & \text{if } \sigma_i^{l_i} \neq 1 \\ 1 & \text{if } \sigma_i^{l_i} = 1 \end{cases}$.

Comparing the expansions of those above, we can easily see the existence of elements $\{c_1^{(i)}, c_2^{(i)}, \dots, c_n^{(i)}; d_1^{(i)}, d_2^{(i)}, \dots, d_n^{(i)}\}$ in A such that

$$\sum_{j} c_{j}^{(i)} d_{j}^{(i)} = 1$$

$$\sum_{j} c_{j}^{(i)} \rho(d_{j}^{(i)}) = \begin{cases} 0 & \text{if } \sigma_{i}^{l_{i}} \neq 1 \\ 1 & \text{if } \sigma_{i}^{l_{i}} = 1 \end{cases}$$

for each $i=1, 2, \dots, e$.

Hence if we set

$$W_{1} = \sum_{j} c_{j}^{(1)} d_{j}^{(1)}, \ W_{1}^{(\rho)} = \sum_{j} c_{j}^{(1)} \rho(d_{j}^{(1)}),$$

$$W_{2} = \sum_{j} c_{j}^{(2)} W_{1} d_{j}^{(2)}, \ W_{2}^{(\rho)} = \sum_{j} c_{j}^{(2)} W_{1}^{(\rho)} \rho(d_{j}^{(2)})$$

and

$$W_k = \sum_j c_j^{(k)} W_{k-1} d_j^{(k)}, \ W_k^{(\rho)} = \sum_j c_j^{(k)} W_{k-1}^{(\rho)} \rho(d_j^{(k)}),$$

we have

$$W_e = \sum x_m y_m = 1$$
, $W_e^{(\rho)} = \sum x_m \rho(y_m) = 0$ for each $\rho \neq 1$.

This means the existence of a $\$ Galois coordinate system for T/B. Thus we obtain T=A.

If
$$a = \sum_{i=0}^{p-1} x_i^i f_i(x_2, x_3, \dots, x_e) = 0$$
. Then $\sigma_i(a) - a = \sum_{i=0}^{p-1} (\sum_{j=0}^{i} {i \choose j} x_1^j f_i(x_2, x_3, \dots, x_e) = 0$. Repeating the same procedure, we can easily see that $f_0(x_2, x_3, \dots, x_e) = f_1(x_2, x_3, \dots, x_e) = \dots = f_{p-1}(x_i, x_3, \dots, x_e) = 0$. Next, we consider $f_i(x_2, x_3, \dots, x_e) = \sum_{j=0}^{p-1} x_2^j g_{ij}(x_3, x_4, \dots, x_e) = 0$ and $\sigma_2(f_i(x_2, x_3, \dots, x_e))$. Then we can see that $g_{ij}(x_3, x_4, \dots, x_e) = 0$ for each $j = 0, 1, 2, \dots, p-1$.

Continuing similary, we can see eventually $\{x_1^{\nu_1}x_2^{\nu_2}\cdots x_{e^e}^{\nu_e}; 0 \leq \nu_i < p\}$ is a linearly independent right *B*-basis for *A*.

Let φ^* be the map of \mathfrak{B} to $A = B[x_1, x_2, \cdots, x_e]$ defined by $f[X_1, X_2, \cdots, X_e) \mapsto f(x_1, x_2, \cdots, x_e)$. Then φ^* is a B-(ring) epimorphism. Since $f(X_1, X_2, \cdots, X_e) = (X_1^{\mathfrak{p}} - b_1) g_1(X_1, X_2, \cdots, X_e) + (X_2^{\mathfrak{p}} - b_2) g_2(X_1, X_2, \cdots, X_e) + \cdots + (X_e^{\mathfrak{p}} - b_e) g_e(X_1, X_2, \cdots, X_e) + r(X_1, X_2, \cdots, X_e)$, where each degree X_i of $r(X_1, X_2, \cdots, X_e)$ is smaller than p, $f(x_1, x_2, \cdots, x_e) = r(x_1, x_2, \cdots, x_e)$ yields that $\operatorname{Ker} \varphi^* = (X_1^{\mathfrak{p}} - b_1, X_2^{\mathfrak{p}} - b_2, \cdots, X_e^{\mathfrak{p}} - b_e)$.

Corollary 2.1. In order that B have a G-Galois extension A such that $A^{G_1}(G_i = (\sigma_{i+1}) \times \cdots \times (\sigma_e))$ has no proper central idempotents, it is necessary and sufficient that there exist derivations $D_i(i=1, 2, \dots, e)$ in B, elements $b_i(i=1, 2, \dots, e)$ and $b_{i,j}(i, j=1, 2, \dots, e)$ of B with $b_{i,j} = -b_{j,i}$ and $b_{i,j} = 0$ such that

- (a) $[D_i, D_j] = I_{b_{ij}}$
- (b) $D_k b_{ij} + D_i b_{jk} + D_j b_{ki} = 0$,
- (c) $D_i^p D_i = I_{b_i}, D_i b_i = 0,$
- (d) $D_j^{p-1}b_{ji}+b_{ij}+D_ib_j=0$,
- (e) $\{X_1^{\mathfrak{p}}-b_1, X_2^{\mathfrak{p}}-b_2, \dots, X_e^{\mathfrak{p}}-b_e\}$ is a system of directly indecomposable polynomials.

Proof. Let A be the extension cited in Corollary 2.1. Then, as was shown in Theorem 2.1, there exist derivations D_i , elements b_i and $b_{ij}(i, j=1, 2, \dots, e)$ satisfying (a)—(d). Since A^{\bigotimes_i} is a $(\sigma_i) \times (\sigma_2) \times \dots \times (\sigma_i)$ -Galois extension over B, $A^{\bigotimes_i} = B[x_1, x_2, \dots, x_i]$ by Theorem 2.1. While by the remark state just before Theorem 2.1, $B[x_1, x_2, \dots, x_i] \cong B[x_1, x_2, \dots, x_{i-1}][X_i; D_i]/(X_i^p - b_i) B[x_1, x_2, \dots, x_{i-1}][X_i; D_i]$. Hence (e) is clear.

Conversely, assume that there exist derivations D_i , elements b_i and b_{ij} $(i, j=1, 2, \cdots, e)$ satisfying (a)—(e). Then (e) yields that $A^* = B[y_i, y_2, \cdots, y_e] = B[X_i, X_2, \cdots, X_e; D_i, D_2, \cdots, D_e]/M_e$ contains no proper central idempotents, where each y_i is the residue class of X_i modulo M_e . Now, let ϕ_i be the map of \mathfrak{B} into itself defined by $f(X_1, X_2, \cdots, X_i, \cdots, X_e) \mapsto f(X_1, X_2, \cdots, X_i+1, \cdots, X_e)$. Then ϕ_i is an automorphism and further, it induces an automorphism σ_i^* of order p in $B[y_1, y_2, \cdots, y_e]$ for $\phi_i(X_j^y - b_j) = X_j^y - b_j (j=1, 2, \cdots, e)$. The group generated by σ_1^* , σ_2^* , \cdots , σ_e^* coincides with $\mathfrak{G}^* = (\sigma_1^*) \times (\sigma_2^*) \times \cdots \times (\sigma_e^*)$, a direct product of each (σ_i^*) . Then it is clear that $A^{\mathfrak{G}} = B$. The existence of a \mathfrak{G}^* -Galois coordinate system will be seen as for that of Theorem 2. 1.

Corollary 2.2. If A is a &-Galois extension of B satisfying the conditions of Corollary 2.1, then A is B-free.

Combining Theorem 2.1 with Corollary 2.1, we can state the following fact corresponding to Theorem 1.2. The proof is quite similar as that of [7, Theorem 3.2], and it may be left to readers.

Theorem 2.2. Let T/B be a Galois extension with an abelian group $\mathfrak{N}=(\tau_1)\times(\tau_2)\times\cdots\times(\tau_c)$, a direct product of cyclic groups (τ_i) of order p^{f_i} with a generator τ_i . In order that B have a Galois extension A with a Galois group $\mathfrak{D}=(\sigma_i)\times(\sigma_2)\times\cdots\times(\sigma_c)$, a direct product of cyclic groups (σ_i) of order p^{f_i+1} with a generator σ_i such that $A\supseteq T$, $A\mathfrak{D}_i(\mathfrak{D}_i)=(\sigma_i^{f_i})\times\cdots\times(\sigma_i^{f_i})$ has no proper central idempotents and $\sigma_i\mid T=\tau_i$, it is necessary and sufficient that there exist derivations $D_i(i=1,2,\cdots,e)$ in T, elements t_i , $t_{i,j}$ $(i,j=1,2,\cdots,e)$ such that $t_{i,j}=-t_{j,i}$ and $t_{i,i}=0$ in T satisfying (a)-(e) of Corollary 2.1 (in T) and there exist elements $u_{i,j}(i,j=1,2,\cdots,e)$ in T such that

- (a) $D_i \tau_j \tau_j D_i = I_{u_{i,i}} \tau_j$,
- (b) $t_{i,j}(u_{i,j}) = \delta_{i,j}$
- (c) $\mathfrak{D}_{p}^{(i)}(u_{ij}) u_{ij} = \tau_{j}(b_{i}) b_{i}^{3}$,
- (d) $\tau_k(t_{ij}) t_{ij} = \tau_k D_j \tau_k^{-1}(u_{ik}) D_i u_{jk}$
- (e) $\tau_k(u_{ij})-u_{ij}=\tau_j(u_{ik})-u_{ik}$.

3. Cyclic Galois algebras

In this section, we assume that B is a commutative ring, \mathfrak{G} a cyclic group of order p with a generator σ . If A is a \mathfrak{G} -Galois extension of B, then $A = B \oplus x B \oplus \cdots \oplus x^{p-1}B$ (Theorem 1.1). Hence, if A is an algebra over B, then A is commutative. This is a special case of $[\mathfrak{I}, \mathfrak{I}]$.

- **Theorem 3.1.** (1) Let A be a G-Galois algebra over B. Then there exists an element $b_0 \in B$ such that $b^p b \neq b_0$ for each $b \in B$. Moreover, if this is the case, $X^p b_0$ is a separable polynomial in B[X] and A is a splitting ring of $X^p b_0$.
- (2) Let \mathfrak{p} be a maximal ideal of B. If there exists an element $b_0 \in B$ such that $b^{\mathfrak{p}} b d \neq b_0$ for each $b \in B$ and $d \in \mathfrak{p}$, then there exists a Galois algebra A^* over B with a cyclic Galois group \mathfrak{G}^* of order p. Moreover, if this is the case, $X^{\mathfrak{p}} b_0$ is a separable polynomial in B[X] and A^* is a splitting ring of $X^{\mathfrak{p}} b_0$.

³⁾ $\mathfrak{D}_{k}^{(4)}(t)$ means $D_{\ell}(\mathfrak{D}_{k-1}^{(i)}(t)) + \mathfrak{D}_{k-1}^{(4)}(t)t$, where $\mathfrak{D}_{0}^{(i)}(t) = 1$.

- **Proof.** (1) If A is a G-Galois algebra over B, then, as is shown in Corollary 1. 1, there exists an element $x \in A$ with $\sigma(x) = x + 1$, $b_0 = x^p x \in B$ and $A = B \oplus x B \oplus \cdots \oplus x^{p-1} B \cong B[X]/(X^p b_0)$. Hence $X^p b_0$ is a separable polynomial of B[X] and $\{x, x+1, \dots, x+(p-1)\}$ is the set of roots of $X^p b_0$ [4, Lemma 2. 1]. Consequently, $b^p b \neq b_0$ for each $b \in B$. Furthermore, it is clear that $X^p b_0 = (X x)(X (x + 1)) \cdots (X (x + (p-1)))$ in A[X].
- (2) Let $A^* = B \oplus yB \oplus \cdots \oplus y^{p-1}B = B[X]/[X^p b_0]$, where y is the residue class of X modulo $(X^p b_0)$. Then the map defined by $\sigma^*(y) = y + 1$ is an automorphism of order p of A^* with $A^{*\sigma^*} = B$. Since $j = \sigma^{*J}(y) y$ for each 0 < j < p, A^* is a separable B-algebra [2, Theorem 1.3]. Hence $X^p b_0$ is a separable polynomial. Furthermore, by Lemma 3, $X^p b_0$ is irreducible. Thus it is directly indecomposable by Lemma 2.
- Corollary 3.1. In order that there exist a \mathfrak{G} -Galois algebra A over B such that $A/\mathfrak{P}A$ has no proper idempotents for each maximal ideal \mathfrak{P} of B, it is necessary and sufficient that there exist an element $b_0 \in B$ satisfying $b^*-b-d\neq b_0$ for each $b\in B$ and $d\in B\setminus U(B)$.
- **Proof.** Let A be the extension cited in Corollary 3. 1. Then there exists an element x in A such that $\sigma(x)=x+1$, $b_0=x^p-x\in B$ and $A=B\oplus xB\oplus \cdots \oplus x^{p-1}B\cong B[X]/(X^{\mathfrak{p}}-b_0)$ (Theorem 3. 1 (1)). Further, for each maximal ideal \mathfrak{p} of B, $A/\mathfrak{p}A$ is a (σ) -Galois algebra over the field $(B+\mathfrak{p}A)/\mathfrak{p}A\cong B/\mathfrak{p}$. Hence $A/\mathfrak{p}A$ is a field $(A/\mathfrak{p}A$ is semi-simple artinian without proper idempotents), and since $A/\mathfrak{p}A\cong (B/\mathfrak{p})[X]/(X^{\mathfrak{p}}-\bar{b_0})(B/\mathfrak{p})[X]$, where $\bar{b_0}$ is the residue class of b_0 modulo \mathfrak{p} , $X^{\mathfrak{p}}-\bar{b_0}$ is irreducible in $(B/\mathfrak{p})[X]$ for each \mathfrak{p} . Thus $b^p-b-d\neq b_0$ for each $b\in B$ and $d\in B\setminus U(B)$.

Conversely, if there exists an element $b_0 \in B$ satisfying $b^p - b - d \neq b_0$ for each $b \in B$ and $d \in B \setminus U(B)$, we have seen that $A^* = B \oplus yB \oplus \cdots \oplus y^{p-1}B = B[X]/(X^p - b_0)$ is a (σ^*) -Galois algebra over B with $\sigma^*(y) = y + 1$ (Theorem 3. 1 (2)). Noting that $X^p - \overline{b}_0$ is irreducible in $(B/\mathfrak{p})[X]$ for each maximal ideal \mathfrak{p} of B, $A^*/\mathfrak{p}A^* \cong (B/\mathfrak{p})[X]/(X^\mathfrak{p} - \overline{b}_0)$ yields that $A^*/\mathfrak{p}A^*$ is a field. Thus $A^*/\mathfrak{p}A^*$ has no proper idempotents.

Corollary 3.2. Let B be a local ring. In order that there exist a G-Galois algebra A over B that A is local, it is necessary and sufficient that there exist an element $b_0 \in B$ with $b^p - b - r \neq b_0$ for each $b \in B$ and $r \in J(B)$, the Jacobson radical of B.

Proof. Let A be the extension cited in Corollary 3. 2. Then there exists an element x in A such that $\sigma(x)=x+1$, $b_0=x^p-x\in B$ and $A=B\oplus xB\oplus \cdots\oplus x^{p-1}B\cong B[X]/(X^p-b_0)$ by Theorem 3. 1 (1). Since J(A)=J(B)A, A/J(B)A is a field. Thus $b^p-b-r\neq b_0$ for each $b\in B$, $r\in B\setminus U(B)=J(B)$ by Corollary 3. 1.

Conversely, if there exists $b_0 \in B$ such that $b^p - b - r \neq b_0$ for each $b \in B$, $r \in J(B)$, $A^* = B \oplus yB \oplus \cdots \oplus y^{p-1}B = B_-^*X]/(X^p - b_0)$, where y is the residue class of X modulo $(X^p - b_0)$, is a Galois algebra over B with a Galois group (σ^*) of order p such that $\sigma^*(y) = y + 1$, and $A^*/J(B)A^*$ is a field by Corollary 3. 1. Since $J(B)A^* = J(A^*)$, $J(A^*)$ is a maximal ideal of A^* , that is, A^* is local.

Let B be local, T a Galois algebra over B with a cyclic Galois group $\mathfrak{N}=(\tau)$ of order p^c with a generator τ , and T be local. Then,

Lemma 3.1. Assume that there exist elements x, y in T such that $\tau(x)-x=y^p-y$ and $t_{\cdot}(y)=1$. Then $t^p-t-r\neq x$ for each $t\in T$, $r\in J(T)$. Further, if this is the case, $T[X]/(X^p-x)$ is a Galois algebra over B with a cyclic Galois group $\mathfrak P$ of order p^{r+1} with a generator σ such that $\sigma \mid T=\tau$.

Proof. Suppose that $t^p - t - r = x$ for some $t \in T$ and $r \in J(T)$. Then $y^{\nu} - y = \tau(x) - x = (\tau(t) - t)^{\nu} - (\tau(t) - t) - (\tau(r) - r)$. Hence $(\tau(t) - t)$ $(-y)^p = (\tau(t) - t - y) - (\tau(r) - r)$ and $t_1(\tau(t) - t - y) = t_1(-y) = -1$ imply z = -1 $\tau(t)-t-y\in U(T)$ and $z^{\nu}\equiv z(\neq 0)$ modulo J(T). This means that the residue class of z modulo I(T) is contained in the prime field of T/I(T), and hence, that of B/J(B). Consequently, we have z=b+s for some $b \in B$ and $s \in I(T)$. But this is a contradiction since $-1 = t_r(z) = t_r(s) \in$ J(T). This means that $t^p - t - r \neq x$ for each $t \in T$ and $r \in J(T)$, namely, $X^{\mathfrak{p}}-x$ is irreducible in T[X]. Thus $A^*=T[X]/(X^{\mathfrak{p}}-x)=T[w]=T\oplus$ $wT \oplus \cdots \oplus w^{p-1}T$, where w is the residue class of X modulo $(X^{\mathfrak{p}}-x)$, is a ring without proper idempotents by Theorem 3.1 (2). Let σ^* be the map of A^* defined by $\sigma^*(\sum_{i=0}^{p-1} w^i t_i) = \sum_{i=0}^{p-1} (w+y)^i \tau(t_i)$. Then $\sigma^*(w^p-w)$ $=(w+y)^p-(w+y)=w^p-w+y^p-y=x+\tau(x)-x=\tau(x).$ Hence σ^* is an automorphism of A^* of order p^{e+1} with $A^{**}=B$ and $\sigma^* \mid T=\tau$. Furthermore, $\sigma^{*p^c}(w) = w + t_s(y) = w + 1$ shows that A^* is a (σ^{*p^c}) -Galois algebra over T. Thus A^* is a (σ^*) -Galois algebra over B by Lemma 1. 1.

Theorem 3.2. Let B be a local ring. If T is a Galois algebra over B with a cyclic Galois group $\mathfrak{N}=(\tau)$ of order p^r with a generator τ and T is local, then there exists a Galois algebra A^* over B contain-

ing T with a cyclic Galois group $\mathfrak{D}=(\sigma^*)$ of order p^{e+1} with a generator σ^* such that $\sigma^*|T=\tau$ and A^* is local. More generally, for each positive integer f, there exists a Galois algebra A^* over B containing T with a cyclic Galois group $\mathfrak{D}=(\sigma^*)$ of order p^{e+f} with a generator σ^* such that $\sigma^*|T=\tau$ and A^* is local.

Proof. Since $T_B = B_B \oplus B'_B$, there exists an element $y \in T$ such that $t_{\mathfrak{N}}(y) = 1$. Hence $t_{\mathfrak{N}}(y^p) = (t_{\mathfrak{N}}(y))^p = 1$, then, $t_{\mathfrak{N}}(y^p - y) = 0$. Thus there exists an element x in T such that $\tau(x) - x = y^p - y$. Then by Lemma 3. 1 and Corollary 3. 2, $A^* = T[X]/(X^p - x)$ is a requested extension.

4. Commutative abelian extension

Throughout the present section, we assume that B is a commutative ring, $\mathfrak{G} = (\sigma_1) \times (\sigma_2) \times \cdots \times (\sigma_c)$, an abelian group which is a direct product of cyclic groups (σ_i) of order p.

- Theorem 4.1. (1) Let A be a commutative 5-Galois algebra over B. Then there exist elements b_i ($i=1,2,\cdots,e$) in B with $b^p-b\neq b_i$ for each $b\in B$. Further, there exists an element x_k in A such that $\sigma_i(x_k)=x_k+\mathring{\sigma}_{ii}$, $x_k^p-x_k=b_k\in B$, $B_k=B\oplus x_kB\oplus \cdots \oplus x_k^{p-1}B\cong B[X_k]/(X_k^p-b_k)$ and $A=B_1 \bigotimes_B B_2 \bigotimes \cdots \bigotimes_B B_e$.
- (2) If there exist elements b_i ($i=1, 2, \dots, e$) in B with $x^p_{i-1}-x_{i-1}-d_{i-1}\neq b_i$ for each $x_{i-1}\in A_{i-1}$, $d_{i-1}\in \mathfrak{p}_{i-1}$, where $A_{i-1}=B[X_i, \dots, X_{i-1}]/(X_i^p-b_i, \dots, X_{i-1}^p-b_{i-1})$ and \mathfrak{p}_{i-1} is a maximal ideal of A_{i-1} , then there exists a commutative \mathfrak{G}^* -Galois algebra A^* over B, where $\mathfrak{G}^*=(\sigma_1^*)\times(\sigma_2^*)\times \dots \times (\sigma_e^*)$, an abelian group which is a direct product of cyclic groups (σ_i^*) of order p.
- **Proof.** (1) As is shown in Theorem 2.1, there exist elements x_i , x_2, \dots, x_r in A with $\sigma_i(x_j) = x_j + \delta_{ij}$, $b_i = x_i^p x_i \in B$. Let $B_i = B[x_i] = B \oplus x_i B \oplus \dots \oplus x_{i-1}^{p-1} B(\subseteq A)$. Then $B_i \cong B[X_i]/(X_i^p b_i)$. Further, B_i is a (σ_i) -Galois algebra over B by Theorem 1.1. Hence $b^p b \neq b_i$ for each $b \in B$ by Theorem 3.1 (1). Since $\{x_1^{\nu_1} x_2^{\nu_2} \dots x_r^{\nu_r}; 0 \leq \nu_i < p\}$ is a linearly independent B-basis for A, it is clear that $A = B_1 \otimes_B B_2 \otimes \dots \otimes_B B_c (\cong B/M_e)$.
- (2) Let $B_i^* = B[X_i]/(X_i^y b_i)B[X_i] = B \oplus y_i B \cdots \oplus y_i^{p-1}B$, where y_i is the residue class of X_i modulo $(X_i^y b_i)B[X_i]$, then B_i^* is a (σ_i^*) -Galois algebra over B by $\sigma_i^*(y_i) = y_i + 1$ (Theorem 3.1 (2)). Now, we extend σ_i^* to an automorphism of $A^* = B_1^* \otimes_B B_2^* \otimes \cdots \otimes_B B_e^*$ defining $\sigma_i^*(y_j) = y_j + \delta_{ij}$. Then as is easily seen \mathfrak{G}^* , the group generated by σ_i^* , σ_2^* , \cdots , σ_e^* , is a direct product of (σ_i^*) , and $A^{*\mathfrak{G}^*} = B$. We can easily prove the existence of a \mathfrak{G}^* -Galois coordinate system for A^*/B . Since

 $B_1^*[X_2]/(X_2^{\mathfrak{p}}-b_2)B_1^*[X_2] \cong (B_1^* \otimes_B B[X_2])/(B_1^* \otimes_B B(X_2^{\mathfrak{p}}-b_2)B[X_2]) \cong B_1^* \otimes_B (B[X_2]/(X_2^{\mathfrak{p}}-b_2)B[X_2]) \cong B_1^* \otimes_B B_2^*, \ A_k^* = B[y_1, y_2, \cdots, y_k] \cong B_1^* \otimes_B B_2^* \otimes_B B_2^* \cong B[y_1, y_2, \cdots, y_{k-1}][X_k]/[X_k^{\mathfrak{p}}-b_k)B[y_1, y_2, \cdots, y_{k-1}][X_k], \ A_k^*$ has no proper idempotents.

5. The case of domain

Throughout the present section, we assume that B is a domian with the quotient field K, \mathfrak{G} a cyclic group of order p with a generator σ .

Theorem 5.1. In order that there exist a b-Galois algebra over B, it is necessary and sufficient that there exists an element $b_0 \in B$ with $b^p - b \neq b_0$ for each $b \in B$.

Proof. Let b_0 be an element of B with $b^p-b\neq b_0$ for each $b\in B$. Then X^p-b_0 is irreducible in B[X] by Lemma 4. Thus, as was observed in Theorem 3.1(2), $A^*=B\oplus yB\oplus \cdots \oplus y^{p-1}B=B[X]/(X^p-b_0)$, where y is the residue class of X modulo (X^p-b_0) , has an automorphism σ^* with $\sigma^*(y)=y+1$. Since $\sigma^{*i}(y)-y\notin \mathfrak{P}$ for each maximal ideal \mathfrak{P} of A, A/B is separable ([2, Theorem 1.3]), that is, X^p-b_0 is separable. Consequently, it is directly indecomposable by Lemma 2. The necessity has been shown in Theorem 3.1 (1).

Corollary 5.1. In order that there exist a domain A that is a &-Galois algebra over B, it is necessary and sufficient that there exists an element $b_0 \in B$ satisfying $b^p - u^{p-1}b \neq u^p b_0$ for each elements $b, u (\neq 0) \in B$.

Proof. Let A be a domain and A/B be a \mathfrak{G} -Galois algebra. Then $A\cong B[X]/(X^{\mathfrak{p}}-b_0)$ for some $b_0\subseteq B$ by Theorem 3.1 (1). Since A is a domain, $(X^{\mathfrak{p}}-b_0)$ is a prime ideal. Thus it is irreducible in K[X] by Lemma 1. Hence $(b/u)^{\mathfrak{p}}-(b/u)\neq b_0$ for each b and $u\neq 0$ in b.

Conversely, if $b^{\mathfrak{p}}-u^{\mathfrak{p}-1}b\neq u^{\mathfrak{p}}b_0$ for each b and $u\neq 0$ in B, by setting u=1, we have $b^{\mathfrak{p}}-b\neq b_0$. Thus there exists a \mathfrak{G} -Galois algebra $A^*=B[X]/(X^{\mathfrak{p}}-b_0)$ over B by Theorem 5.1. Further $X^{\mathfrak{p}}-b_0$ is irreducible in K[X]. Hence A^* is a domain.

Corollary 5.2. Let B be integrally closed in K. If A is a G-Galois algebra over B, then A is a domain.

Proof. By Theorem 5.1, $A \cong B[X]/(X^{\mathfrak{p}}-b_0)$ for some irreducible polynomial $X^{\mathfrak{p}}-b_0$ in B[X]. Then, $X^{\mathfrak{p}}-b_0$ is irreducible in K[X],

Since B is integrally closed in K. Hence $(X^{p}-b_{0})$ is a prime ideal of B[X] by Lemma 1.

Lemma 5.1. Let \mathfrak{N} be a cyclic group of order p^e with a generator τ , T a domain that is an \mathfrak{R} -Galois algebra over B. If t_1, t_2 are elements of T with $\tau(t_1)-t_1=t_2^p-t_2$ and $t_r(t_2)=1$, then $X^{\mathfrak{p}}-t_1$ is irreducible in L[X], where L is the quotient field of T.

Proof. Let y be an arbitrary element of L. We shall regard τ as an automorphism of L. If $(v/u)^p - v/u = t_1$ for some $v/u \in L(v, u \in T)$, then $t_2^p - t_2 = \tau(t_1) - t_1 = (\tau(v/u) - (v/u))^p = (\tau(v/u) - v/u)$ implies that $(\tau(v/u) - v/u - t_2)^p = (\tau(v/u) - v/u - t_2)$. Consequently, $x = (\tau(v/u) - v/u - t_2)$ is contained in the prime field of K and $t_1(x) = 0$. On the other hand, $t_1(x) = t_1(-t_2) = -1$. This is a contradiction.

Theorem 5.2. Let T be a domain that is an \Re -Galois algebra over B, where \Re is a cyclic group of order p with a generator τ . Then, for each positive integer e, there exists a Galois algebra $A \supseteq T$ over B with a cyclic Galois group \Re of order p' with a generator σ such that $\sigma \mid T = \tau$ and A is a domain.

Proof. Since $T_B = B_B \oplus B'_B$, there exists an element t_2 in T with $t_1(t_2) = 1$. Hence $t_1(t_2) = 1$. Thus there exists an element t_1 in T with $\sigma(t_1) - t_1 = t_2^p - t_2$. The rest follows from Lemma 5.1 and the making use of the same method as in the proof of Theorem 3.2.

REFERENCES

- [1] M. Auslander and O. Goldman: The Brauer group of a commutative ring, Trans. Amer. Math. Scc.. 97 (1960), 367—409.
- [2] S. U. Chase, D. K. Harrison and A. Rosenberg: Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc.. 52 (1965), 15—33.
- [3] F.R. DeMeyer: Some note on the general Galois theory of rings, Osaka Math. J., 2 (1965), 117—127.
- [4] G. J. Janusz: Separable algebras over commutative rings. Trans. Amer. Math. Scc.. 122 (1966), 461—479.
- [5] T. Kanzaki: On Galois algebra over a commutative ring, Osaka Math. J., 2 (1965), 309-317.
- [6] K. KISHIMOTO: On cyclic extensions of simple rings, J. Fac. Sci. Hokkaido Univ., 19 (1966), 74-85.
- [7] ______: On abelian extensions of simple rings, J. Fac. Sci. Hokkaido Univ., 20 (1967), 53—78.

- [8] Y. MIYASHITA: Finite outer Galois theory of noncommutative rings, J. Fac. Sci. Hokkaido Univ., 19 (1966), 114—134.
- [9] H. TOMINAGA and T. NAGAHARA: Galois theory of simple rings, Okayama Math. Lectures, Dept. of Math., Okayama Univ., 1970.

DEPARTMENT OF MATHEMATICS
SHINSHU UNIVERSITY

(Received January 7, 1970) (Revised July 1, 1970)