ON THE DIFFERENCE CURVATURE OF SURFACES IN EUCLIDEAN SPACE

BANG-YEN CHEN

We consider a closed oriented surface M^2 and an immersion $x: M^2 \to E^{2+N}$ into the euclidean space E^{z+N} of dimension 2+N. Let B_v be the bundle of unit normal vectors of $x(M^2)$, so that a point of B_v is a pair (p, e), e is a unit normal vector to $x(M^2)$ at x(p). Then to $(p, e) \in B_v$, we put

$$(1) I = dx \cdot dx, II_e = dx \cdot de,$$

where dx, de are vector-valued linear differential forms in B_v and "." is the scalar product. I and II_e are called the first and the second quadratic forms in B_v . The eigenvalues $k_1(p, e)$ and $k_2(p, e)$ of II_e relative to I are called the principal curvatures at (p, e). We call

(2)
$$S(p, e) = \frac{1}{4} (k_1(p, e) - k_2(p, e))^2$$

the difference curvature of the immersion x at (p, e).

The main purpose of this paper is to get some global theorems for the difference curvature S(p, e).

1. Preliminaries

Let M^2 be an oriented closed surface with an immersion $x: M^2 \rightarrow E^{2+N}$. Let $F(M^2)$ and $F(E^{2+N})$ be the bundles of orthonormal frames of M^2 and E^{2+N} respectively. Let B be the set of elements $b=(p, e_1, e_2, e_2, \cdots, e_{2+N})$ so that $(p, e_1, e_2) \in F(M^2)$ and $(x(p), e_1, \cdots, e_{2+N}) \in F(E^{2+N})$ whose orientation is coherent with the one of E^{2+N} , identifying e_i with $dx(e_i)$, i=1, 2. Then $B \rightarrow M^2$ may be considered as a principal bundle with fibre $SO(2) \times SO(N)$, and $\tilde{x}: B \rightarrow F(E^{2+N})$ is naturally defined by $\tilde{x}(b) = (x(p), e_1, \cdots, e_{2+N})$.

The structure equations of E^{2+N} are given by

$$dx = \sum_{B} \theta_{A} e_{A}, \qquad de_{A} = \sum_{B} \theta_{AB} e_{B}$$

$$(3) \qquad d\theta_{A} = \sum_{B} \theta_{B} / \langle \theta_{BA}, \qquad d\theta_{AB} = \sum_{C} \theta_{AC} / \langle \theta_{CB}, \qquad \theta_{AB} + \theta_{BA} = 0,$$

$$A, B, C, \dots, = 1, 2, \dots, 2 + N,$$

where θ_A , θ_{AB} are differential 1-forms on $F(E^{2+N})$. Let ω_A , ω_{AB} be the

induced 1-forms on B from θ_A , θ_{AB} by the mapping \tilde{x} . Then we have

(4)
$$\omega_r = 0$$
, $\omega_{ir} = \sum_j A_{rij} \omega_j$, $A_{rlj} = A_{rjt}$, $i, j, k, \dots = 1, 2$; $r, s, t, \dots = 3, \dots, 2+N$.

The principal curvatures $k_1(p, e)$ and $k_2(p, e)$ are the eigenvalues of the matrix (A_{r1j}) where $e=e_r$. The mean curvature $K_1(p, e)$ and the total curvature $K_2(p, e)$ are given by

(5)
$$K_1(p, e) = \frac{1}{2}(k_1(p, e) + k_2(p, e)), \qquad K_2(p, e) = k_2(p, e)k_2(p, e).$$

Hence we have

(6)
$$K_1(p, e) = \frac{1}{2} \operatorname{trace}(A_{rij}), \quad K_2(p, e) = \det(A_{rij}).$$

Let dV be the volume element of M^2 . There is a differential form $d\sigma$ of degree N-1 on B_v such that its restriction to a fibre is the volume element of the sphere of unit normal vectors at a point $p \in M^2$; then $d\sigma/dV$ is the volume element of B_v . In fact, we have

(7)
$$dV = \omega_1 \wedge \omega_2$$
, $d\sigma = \omega_{2+N,3} \wedge \cdots \wedge \omega_{2+N,1+N}$.

We call the integral

(8)
$$S^*(p) = \int S(p, e) d\sigma$$

over the sphere of unit normal vectors at x(p) the difference curvature of M^2 at p, and define as the difference curvature of the immersion x itself $\int_{u^2} S^*(p) dV$, if it converges.

2. Some Global Theorems of the Difference Curvature

In [1] and [2], we have proved the following:

Lemma 1. Let M^2 be an oriented closed surface immersed in E^{2+N} . If

(9)
$$\int_{B_{v}} K_{1}(p, e)^{2} dV \wedge d\sigma = 2c_{N+1},$$

then M^2 is imbedded as a sphere in a 3-dimensional linear subspace of E^{2+N} , where c_{N+1} denotes the area of the unit (N+1)-sphere.

The main aim of this section is to prove the following:

Theorem 1. Let M^2 be an oriented closed surface immersed in E^{2+N} . Its difference curvature satisfies the inequality:

$$\int_{M^2} S^*(p) dV \ge 2gc_{N+1},$$

where g is the genus of M^2 . The equality sign holds when and only when M^2 is imbedded as a sphere in a 3-dimensional linear subspace of E^{2+N} .

Proof. Let M^2 be an oriented closed surface immersed in E^{2+N} . Let $(p, e_1, e_2, \overline{e_3}, \dots, \overline{e_{2+N}})$ be a local cross-section of $B \to F(M^2)$ defined on U and for any e in S_p^{N-1} , $p \in U$, put $e = e_{2+N} = \sum_i \xi_i \overline{e_i}(p)$. Denoting the restriction of A_{rij} onto the image of this local cross-section by \overline{A}_{rij} . We may put

$$A_{2+Nij} = \sum_{r} \xi_r \bar{A}_{rij}$$
.

From (6) we get

(11)
$$K_2(p, e) = \det(\sum_r \xi_r \bar{A}_{rij}) = (\sum_r \xi_r \bar{A}_{ril})(\sum_s \xi_s \bar{A}_{s22}) - (\sum_t \xi_t \bar{A}_{t12})^2$$

The right hand side is a quadratic form of ξ_3, \dots, ξ_{2+N} . Hence, by choosing a suitable cross-section, we can write $K_2(p, e)$ as

(12)
$$K_2(p, e) = \sum \lambda_{r-2} \xi_r \xi_r, \qquad \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_N.$$

Thus, by (12), we have

(13)
$$\int_{B_{\mathfrak{o}}} K_{2}(p, e) dV \wedge d\sigma = \int_{B_{\mathfrak{o}}} (\lambda_{1}(p) \cos^{2}\theta_{1} + \dots + \lambda_{N}(p) \cos^{2}\theta_{N}) dV \wedge d\sigma$$
$$= \frac{C_{N+1}}{2\pi} \int_{\mathcal{M}^{2}} (\lambda_{1}(p) + \dots + \lambda_{N}(p)) dV.$$

On the other hand, we have [4]

(14)
$$G(p) = \lambda_1(p) + \cdots + \lambda_N(p),$$

where G(p) denotes the Gaussian curvature of M^2 at p. Hence, by the Gauss-Bonnet theorem, we have

(15)
$$\int_{B_{p}} |K_{2}(p, e)| dV \wedge d\sigma = (2-2g)c_{N+1}.$$

On the other hand, by an inequality of Chern-Lashof [3], we have

(16)
$$\int_{B_0} |K_2(p,e)| dV \wedge d\sigma \geq (2+2g)c_{N+1}.$$

Therefore, if we put

(17)
$$V + = \{(p, e) \in B_v : K_2(p, e) \ge 0\}, V - = \{(p, e) \in B_v : K_2(p, e) < 0\}.$$

Then, by (15) and (16), we have

$$(18) \qquad -\int_{V^{-}} K_{2}(p,e)dV \wedge d\sigma \geq 2gc_{N+1}.$$

Therefore, by (2), (5) and (18), we get

(19)
$$\int_{M} S^{*}(p)dV = \int_{B_{v}} S(p, e)dV \wedge d\sigma \geq \int_{V} S(p, e)dV \wedge d\sigma$$
$$= \int_{V} (K_{1}(p, e)^{2} - K_{2}(p, e))dV \wedge d\sigma$$
$$\geq \int_{V} -K_{2}(p, e)dV \wedge d\sigma \geq 2gc_{N+1}.$$

This proves (10). Now suppose the equality of (10) holds, then, by (19), we get

$$(20) \qquad -\int_{r-} K_2(p,e) dV / d\sigma = 2gc_{N+1},$$

and

(21)
$$S(p, e) = 0$$
 on $V +$, and $K_1(p, e) = 0$ on $V -$.

By (15) and (20), we have

(22)
$$\int_{V+} K_2(p, e) dV / d\sigma = 2c_{N+1}.$$

Therefore, by (2), (5), (21) and (22), we have

(23)
$$\int_{B_v} K_1(p, e)^2 dV \wedge d\sigma = \int_{V+} K_1(p, e)^2 dV \wedge d\sigma = \int_{V+} K_2(p, e) dV \wedge d\sigma$$
$$= 2c_{N+1}.$$

Thus, by Lemma 1 and (23), we know that M^2 is imbedded as a sphere in a 3-dimensional linear subspace of E^{2+N} . Conversely, if M^2 is imbedded as a sphere in a 3-dimensional linear subspace of E^{2+N} , then it is easy to verify that the equality of (10) holds. This completes the proof of the theorem.

From theorem 1 we can easily get the following:

Theorem 2. Let M^2 be an oriented closed surface immersed in E^{2+N} . If the difference curvature satisfies the inequality:

$$(24) \qquad \int_{M^2} S^*(p) dV \leq 2c_{N+1},$$

then M2 is diffeomorphic to a sphere.

Theorem 3. Let M^2 be an oriented closed surface immersed in E^{2+N} . If the difference curvature satisfies the inequality:

(25)
$$\int_{M^2} S^*(p) dV \leq 4c_{N+1},$$

then M2 is either diffeomorphic to a sphere or a torus.

REFERENCES

- [1] B.-Y. Chen: On the total curvature of immersed manifolds, I: An inequality of Fenchel-Borsuk-Willmore, to appear.
- [2] B.-Y. Chen: On an inequality of T.J. Willmore, to appear in Proc. Amer. Math. Soc.
- [3] S.S. Chern, and R.K. Lashof: On the total curvature of immersed manifolds, II, Michigan Math. J. 5 (1958), 5-12.
- [4] T. ŌTSUKI: On the total curvature of surfaces in euclidean spaces, Japan. J. Math. 35 (1966), 61-71.
- [5] T. J. WJLLMORE: Mean curvature of immersed surfaces, An. Sti. Univ. "Al. I. Cuza" Iasi. Sect. I. a Mat. (N.S.) 14 (1968), 99-103.

MICHIGAN STATE UNIVERSITY

(Received June 14, 1970)