UNITS IN COMMUTATIVE INTEGRAL GROUP RINGS*

SUDARSHAN K. SEHGAL

1. Introduction. Let us denote by R(G) the group ring of a group G with coefficients from the ring R. Let U(Z(G)) be the group of units of the integral group ring Z(G). It is well known (see [1], [3] and [4]) that if G is finite abelian

$$U(Z(G)) = \pm G \times F$$
 where

F is a free group of rank $\frac{1}{2}((G:1)+1+n_2-2C)$ and n_2 is the number of elements of G of order 2 and c is the number of cyclic subgroups of G. In this note we compute U(Z(G)) for G arbitrary abelian and prove that

 $U(Z(G)) = \{ \alpha g \mid g \in G, \alpha \in U(Z(H)) \text{ where } H \text{ is a finite subgroup of } G \}.$ It is clear that when G is finite abelian any automorphism θ of Z(G) is induced from a group automorphism i. e. $\theta(g) = \pm g_1, g_1 \in G$ for $g \in G$. We compute the group of automorphisms of Z(G) when G is finitely generated abelian.

2. Units of Z(G).

Lemma 1. If I is an integral domain and G a torsion free abelian group then the unit group of I(G) is $U(I) \cdot G$.

Proof. See [5].

Lemma 2. Suppose R is a commutative ring with 0 and 1 as its only idempotents. Suppose $X=\langle x\rangle$ is an infinite cyclic group. Then the unit group of R(X) is $U(R)\cdot X$ if R contains no nonzero nilpotent elements.

Proof. Suppose $\gamma, \mu \in R(X)$ such that $\gamma \mu = 1$. We can take $\gamma = \sum_{i=0}^{s} a_i x^i$ and $\mu = \sum_{i=1}^{r} b_j x^j$, $a_s \neq 0$. We first claim that $\mu = \sum_{i=1}^{n} b_j x^j$, $b_{-s} \neq 0$. Let P be a prime ideal of R which does not contain a_s . Then looking at $\gamma \mu = 1$ in R/P(X) we conclude by Lemma 1 that $b_{-s} \neq 0$ and similarly if $b_{-t} \neq 0$ then $a_t \neq 0$. Thus t = s. By the same argument if $b_j \neq 0$ for some j > 0

^{*} This work was supported by N. R. C. Grant Number A-5300.

then $a_{-j} \neq 0$. We conclude that $\gamma = \sum_{i=0}^{s} a_i x^i$ and $\mu = \sum_{i=0}^{s} b_{-j} x^{-j}$.

Next we assert that $a_ia_j=0$ and $a_ib_{-j}=0$ for $i\neq j$. Suppose $a_ia_j\neq 0$ then choose a prime ideal P such that $a_ia_j\notin P$. Then $\overline{a}_i\neq 0$ and $\overline{a}_j\neq 0$ in R/P and $\overline{\gamma}\mu=1$ in the group ring R/P(X). This is a contradiction to Lemma 1. Thus $a_ia_j=0$ and similarly $a_ib_{-j}=0$ and $b_{-i}b_{-j}=0$ for $i\neq j$.

Now we have the situation

$$(\sum_{0}^{s} a_{i}x^{i})(\sum_{0}^{s} b_{-j}x^{-j}) = 1$$
(*)
$$a_{i}b_{-j} = 0 = a_{i}a_{j} = b_{-i}b_{-j} \text{ for } i \neq j.$$

We can suppose $a_s b_{-s} \neq 0$. Then

$$a_0b_0+a_1b_{-1}+\cdots+a_sb_{-s}=1$$

Multiplying by a_s we have

$$a_s^2b_{-s} = a_s$$
 and $(a_sb_{-s})^2 = a_sb_{-s}$.

Thus $a_i b_{-i} = 1$ and from (*) $a_i = 0$ for $i \neq s$. Hence

$$r = a_s x^s$$
 and $\mu = b_{-s} x^{-s}$. Q. E. D.

We remind the reader that a group G is said to be residually finite if $\bigcap_{N} N=1$ where N runs over the normal subgroups of G with (G:N) finite.

Lemma 3. Suppose G is a residually finite group and Z(G) its integral group ring. Then

$$e \in Z(G)$$
, $e^2 = e \Rightarrow e = 0$ or 1.

Proof. The corresponding result for G finite is well known (see [2]). Let $e = \sum_{i=1}^{n} \alpha_i g_i$, $\alpha_i \in \mathbb{Z}$. Since G is residually finite one can choose a normal subgroup N of G such that $(G:N) < \infty$ and the cosets $g_i N$ $1 \le i \le n$ are all distinct. Consider the equation $e^2 = e$ in Z(G/N). It follows then, say $g_i \in N$, $\alpha_i = 1$ or 0 and $\alpha_i = 0$ for i > 1. Hence e = 0 or 1.

Lemma 4. Suppose G is an arbitrary abelian group. Then

$$e \in Z(G)$$
, $e^2 = e \Rightarrow e = 0$ or 1.

Proof. This lemma follows from the last as G can be taken to be

finitely generated and hence residually finite.

Theorem 1. Suppose G is an arbitrary abelian group. Then the unit group of Z(G) is given by

 $U(Z(G)) = \{ug | g \in G \text{ and } u \text{ is a unit of } Z(H) \text{ for some finite subgroup } H \text{ of } G\}.$

Proof. Let $r \in U(Z(G))$. we can suppose G is finitely generated and $G = T \times \langle x_1 \rangle \times \cdots \times \langle x_s \rangle$, $|T| < \infty$.

We use induction on s. Since $Z(T \times \langle x_1 \rangle \times \cdots \times \langle x_{s-1} \rangle)$ has no nontrivial idempotent or nilpotent elements, we can apply Lemma 2 to conclude that $T = T_1 x_s^t$ where T_1 is a unit of $Z(G_1)$, $G_1 = T \times \langle x_1 \rangle \times \cdots \times \langle x_{s-1} \rangle$. Now by induction $T_1 = ug_1$ where $g_1 \in G$ and u is a unit of Z(H), $|H| < \infty$. Thus $T = ug_1 x_s^t = ug$.

Corollary. If G is a finitely generated abelian group, say, $G=T \times F$ where T is finite and F is free. Then the unit group of Z(G) is given by $U_1 \times F$ where U_1 is the unit group of Z(T).

3. Automorphisms of Z(G). Since for G finite abelian, the only units of finite order in Z(G) are $\pm g$ for $g \in G$ (see [4]) it follows that all automorphisms of Z(G) are induced from (group) automorphisms of G. We have also proved (see [5]) that all automorphisms of Z(G) when G is torsion or torsion free abelian, are induced from automorphisms of G. But this need not be the case when G is mixed. For example, let $G = \langle g \rangle \times \langle x \rangle$, $g^5 = 1$ and $o(x) = \infty$. Then G the unit group of G is given by G is G is G is because the free part in the unit group of G is G has rank one (see [1] and [3]). Define G: G is G by

$$\ell(\sum a_{ij}g^ix^j) = \sum a_{ij}g^iu^jx^j.$$

It is easy to see that θ is a homorphism. This is a one to one map as $0 = \sum a_{ij} g^i u^j x^j \Rightarrow \sum_i a_{ij} g^i u^j = 0 \Rightarrow \sum a_{ij} g^i = 0 \Rightarrow a_{ij} = 0$.

Let G be a finitely generated abelian group. Then $G = T \times F$, where T is finite and F is free. The unit group of Z(G) is given by

$$U(Z(G)) = T \times U_1 \times F$$
, where $U(Z(T)) = T \times U_1$.

Suppose

A =Automorphism group of Z(G)

 A_1 =Group of those automorphisms of Z(G) which are induced by automorphisms of $G(i. e. \theta(g) = \pm g_1; g, g_1 \in G)$

 A_2 =Group of those automorphisms of $T \times U_1 \times F$ which keep $T \times U_1$ element wise fixed.

Theorem 2. $A = A_1 \times A_2$.

Proof. Given any element θ of A, define

$$\lambda(g) = \begin{cases} \beta(g) & \text{for } g \in T \\ g & \text{for } g \in F. \end{cases}$$

Extend λ to an automorphism of Z(G). Then $\lambda \in A_1$ and $\lambda^{-1}\theta$ keeps $T \times U_1$ element wise fixed and can be considered as an element of A_2 .

Conversely, given $\lambda \in A_1$, $\mu \in A_2$, define

$$\theta(\sum_i u_i f_i) = \lambda(\sum_i u_i u_i f_i),$$

where $f_i \in F$ are distinct and $u_i \in Z(T)$. θ is clearly a homorphism. Suppose $\theta(\sum_i u_i f_i) = 0$. Then

$$0 = \ell(\sum u_i f_i) = \lambda(\sum u_i \mu(f_i)).$$

Therefore, $0 = \sum u_i \mu(f_i) = \sum u_i v_i f_i'$, $v_i \in T \times U_i$, $f_i' \in F$. Therefore $u_i = 0$ due to distinctness of f_i' . Hence, $\sum u_i f_i = 0$.

REFERENCES

- [1] R.G. AYOUB and C. AYOUB: On the group ring of a finite abelian group. Bull. Austr. Math. Scc. 1 (1969), 245—261.
- [2] S. D. Berman: On properties of integral group rings. Dokl. Akad. Nauk SSR 91 (1953), 7-9.
- [3] J.A. Cohn and D. LIVINGSTONE: On the structure of group algebras, I. Can. J. Math. 17 (1965), 583—593.
- [4] G. HIGMAN: The units of group rings. Prcc. London Math. Scc. (2), 46 (1940), 231— 248.
- [5] S. K. Sehgal: On the isomorphism of integral group rings, I, Can. J. Math. 21 (1969), 410-413.

UNIVERSITY OF ALBERTA
EDMONTON 7, ALBERTA, CANADA

(Received May 26, 1970)