3-PRIMARY COMPONENTS OF STABLE HOMOTOPIES OF K(Z₃, 1) AND HP^{\infty}

TETSUYA AIKAWA

1. Introduction

Let p be an odd prime, A be the mod p Steenrod algebra, CP^{∞} and HP^{∞} be the infinitely dimensional complex and quaternion projective spaces, $H^*(X)$, M, N and Q be the reduced cohomology groups of the space X, CP^{∞} , $K(Z_r, 1)$ and HP^{∞} with coefficient group Z_p . Let $M=Z_p[y]/Z_p$, $M_k=Z_p[y^{p-1}]\cdot y^k$, $0 < k \le p-2$, $M_0=Z_p[y^{p-1}]/Z_p$, deg (y)=2; $N=(Z_p[\beta x]\otimes E(x))/Z_p$, where E(x) is the exterior algebra with one generator x of degree 1 and β is the Bochstein operator, N_k be the left A-submodule of N and the Z_p -module generated by $x(\beta x)^{k+l(p-1)}$, $(\beta x)^{k+1+l(p-1)}$, $i \ge 0$, $(p-2 \ge k \ge 0)$. $Q=Z_p[z]/Z_p$, $\deg(z)=4$.

The main purpose in this paper is to determine 3-primary components of stable homotopies of $K(Z_3, 1)$ and HP^{∞} by the Adams spectral sequence. Liulevicius [5] determined $\pi_1^S(HP^{\infty}; p)$, $i \leq 6p-2$.

The author is grateful to Professor H. Toda and Professor N. Shimada for their kind advices.

We propose:

Conjecture. Let p be a prime (which may be 2, when α_0 denotes h_0 , only in this conjecture). Then the $\operatorname{Ext}_A(Z_p, Z_p)$ -submodule of $\operatorname{Ext}_A(Z_p, Z_p)$ isomorphic to $\operatorname{Ext}_A(Z_p, Z_p)/Z_p[\alpha_0]$ as a Z_p -module is isomorphic to an appropriate submodule of $\operatorname{Ext}_A(H^*(K(Z_p, 1)), Z_p)$. Let d_r be the differential in the Adams spectral sequence for S^0 and $K(Z_p, 1)$ and α' denotes the generator in $\operatorname{Ext}_A(H^*(K(Z_p, 1)), Z_p)$ corresponding to α in $\operatorname{Ext}_A(Z_p, Z_p)$. Then $d_r\alpha = \tilde{r}$ if and only if $d_r\alpha' = \tilde{r}'$, for all r. At last $\pi_i^s(S^0; p)/Z_i$ is isomorphic to an appropriate submodule of $\pi_i^s(K(Z_p, 1); p)$.

This conjecture is true in case of p=2, $t-s \le 29$ (except 14 and 15) by Mahowald [7] and Aikawa [3] and in case of p=3, $t-s \le 49$ (except 34, 35, 38, 42 and 46, in whose dimensions the groups are still undetermined) by this paper. We imagine that this conjecture is true for all primes and dimensions.

2. The relationship between CP^{∞} and HP^{∞}

Since there is the map $q: CP^{\infty} \longrightarrow HP^{\infty}$ such that $q^{*}(z) = y^{2}$, we have $P^{i}z^{j} = {2j \choose i}z^{j+i(p-1)/2}$. Therefore we have an isomorphism $Q \cong \sum_{i=0}^{\lfloor (p-1)/2 \rfloor} M_{2i}$ of left A-modules. In particular, if p=3, then $Q=M_{0}$. Let C_{q} be the mapping cone of the map q, then we have the exact sequence:

$$\cdots \longrightarrow \operatorname{H}^{n}(C_{\eta}) \xrightarrow{i^{*}} \operatorname{H}^{n}(HP^{\infty}) \xrightarrow{q^{*}} \operatorname{H}^{n}(CP^{\infty}) \longrightarrow \operatorname{H}^{r+1}(C_{\eta}) \longrightarrow \cdots.$$

Since q^* is a monomorphism, i^* is trivial and in fact this sequence is a short exact sequence: $0 \longrightarrow Q \longrightarrow M \longrightarrow M/Q \longrightarrow 0$. This is split but there is no map $HP^{\infty} \longrightarrow CP^{\infty}$ except maps homotopic to the trivial map, since $H^2(HP^{\infty}; Z) = 0$. This split sequence induces the following split short exact sequence:

$$0 \longrightarrow \operatorname{Ext}_{A}^{s,\iota}(M/Q, Z_{\mathfrak{p}}) \longrightarrow \operatorname{Ext}_{A}^{s,\iota}(M, Z_{\mathfrak{p}}) \longrightarrow \operatorname{Ext}_{A}^{s,\iota}(Q, Z_{\mathfrak{p}}) \longrightarrow 0.$$

3. The relationship between $\mathbb{C}P^{\infty}$ and $\mathbb{K}(\mathbb{Z}_p, 1)$

Proposition 3.1. For each $\alpha \in \text{Ext}_{A}(N, \mathbb{Z}_{p})$, there is an integer :n such that $\alpha \alpha_{0}^{m} = 0$.

Proof. Let J be the left A-module freely generated 1 and β as a Z_p -module and M^n and N^n be left A-submodules of M and N generated by y^i , $i \le n$, and $x(\beta x)^i$, $(\beta x)^{i+1}$, $i \le n$, respectively. Since the connecting homomorphism in the Ext-exact sequence induced by the short exact sequence $0 \longrightarrow Z_p \longrightarrow J \longrightarrow Z_p \longrightarrow 0$ is right multiplication by α_0 , for each $\alpha \in \operatorname{Ext}_A(J, Z_p)$, there is an integer m_1 such that $\alpha \alpha_0^{m_1} = 0$. It follows from the Ext-exact sequence induced by $0 \longrightarrow J \longrightarrow N^n \longrightarrow N^{n-1} \longrightarrow 0$ that for each $\alpha \in \operatorname{Ext}_A(N^n, Z_p)$ there is an integer m_2 such that $\alpha \alpha_0^{m_2} = 0$, if the same proposition for $\operatorname{Ext}_A(N^{n-1}, Z_p)$ holds.

This proposition is the most powerful tool to determine the connecting homomorphisms in Ext-exact sequences induced by $0 \longrightarrow M_{i-1} \longrightarrow N_i \longrightarrow M_i \longrightarrow 0$ ($0 \le i \le p-2$), where replace M_{p-1} and M_0 with M_0 and $M_0 \vdash Z_p$, respectively.

Let N_0' be the A-submodule of N_0 isomorphic to $N_0/\mathbb{Z}_p\{x\}$ as a \mathbb{Z}_p -module and $N_k' = N_k$ ($0 < k \le p-2$), $N' = \sum_{k=0}^{p-2} N_k'$. Then we have the following commutative diagram with two exact rows and two exact columns:

Corrolary 3.2. Unless k=0 and t-s=1, there is no generator $\alpha \in \operatorname{Ext}_{A}^{s,t}(N_k', \mathbb{Z}_p)$ such that $\alpha \alpha_0^m \neq 0$ for all $m \geq 0$.

Proof. By Proposition 3.1., and the sequence $0 \longrightarrow N_0' \longrightarrow N_0 \longrightarrow Z_p$

We can determine the connecting homomorphism $\operatorname{Ext}_{A}^{s,\iota}(M_1, Z_3) \longrightarrow \operatorname{Ext}_{A}^{s+1,\iota}(M_0, Z_3)$, $t-s \leq 50$, for the upper sequence for all generators but $\underline{\nu}_0$ by this corollary. We can know the homomorphism maps $\underline{\nu}_0$ to $\underline{e}_1 \rho$ since $\operatorname{Ext}_{A}^{1,26}(N_0, Z_3) = 0$ by constructing the enough small partial minimal resolution of N_0 over A. We denote by the same letters generators in $\operatorname{Ext}_A(N_0, Z_3)$ corresponding to generators in $\operatorname{Ext}_A(M_0, Z_3)$ and $\operatorname{Ext}_A(M_1, Z_3)$ through the homomorphisms induced by $N_0' \longrightarrow M_0$ and $M_1 \longrightarrow N_0'$, respectively.

Next we want to determine $\operatorname{Ext}_{A}(N_{\operatorname{c}}, Z_{\operatorname{3}})$. The connecting homomorphism for $0 \longrightarrow N'_{0} \longrightarrow Z_{p} \longrightarrow 0$ maps \underline{h}_{0} to α_{0} because of Proposition 3.1.. Therefore we easily see that this homomorphism maps $\underline{\lambda}_{0}$, $\underline{x}_{t,2}$ (i=5,8,11), $\underline{x}_{8,4}$ to ρ , $x_{t,1}$, $x_{8,2}$, respectively. We denote by \underline{e} the generator in $\operatorname{Ext}_{A}^{0,1}(N_{0}, Z_{p})$ corresponding to $1 \in \operatorname{Ext}_{A}^{0,1}(Z_{p}, Z_{p})$ through the homomorphism induced by $N_{0} \longrightarrow Z_{p}$. In the other words \underline{e} corresponds to $x \in N_{0}$.

At last we determine $\operatorname{Ext}_A(N_1, Z_3)$ using the Ext-exact sequence induced by the short exact sequence $0 \longrightarrow L_2 \longrightarrow \bar{A} \longrightarrow N_1 \longrightarrow 0$. The homomorphism induced by $L_2 \longrightarrow \bar{A}$ maps α_0 to α_0 and other generators in $\operatorname{Ext}_A^{s,t}(Z_3, Z_3)$, $t-s \leq 50$, to zero, because of Proposition 3.1. We denote by α' the generator in $\operatorname{Ext}_A^{s,t}(N_1, Z_3)$ corresponding to $\alpha \in \operatorname{Ext}_A^{s+1,t+1}(Z_3, Z_3)$ through the homomorphism induced by $\bar{A} \longrightarrow N_1$. Then the connecting

homomorphism for the above short exact sequence maps $g_{i+1,i}$, $g_{2,0}$, $b_{1,2}$, $b_{1,3}$, $b_{1,4}$ to $h_1'h_{i+1}$, $h_2'h_0 + h_0'h_2$, $h_1'\lambda_1$, $h_2'\rho + \rho'h_2$, $h_2'\lambda_0 + \lambda_0'h_2$, respectively. We denote by $b_{1,1}$ the generator in $\operatorname{Ext}_A(N_1, Z_3)$ corresponding to $b_{1,1}$ in $\operatorname{Ext}_A(Z_2, Z_3)$ through the connecting homomorphism.

There is no generator named $\underline{\rho}$ in $\operatorname{Ext}_4(N, Z_3)$ and $\underline{\rho}\alpha$ may be decomposable for α in $\operatorname{Ext}_4(Z_3, Z_3)$. $\underline{\rho}h_3$ and $\underline{\rho}\rho$, for example, are indecomposable. But we denote them in our table as if they were decomposable.

4. The differential for $K(Z_p, 1)$

Let d_r be the differentials in the Adams spectral sequences for S^0 and $K(Z_p, 1)$. We denote by the same letter both the generator in the E_2 -term and its non-trivial class in the E_r -term.

Proposition 4.1. Let α_i be generators in $\operatorname{Ext}_A(Z_p, Z_p)$. $d_1(\alpha_1) = \alpha_2$ if and only if $d_2(\alpha_1') = \alpha_2'$. Furthermore in case $\alpha_1 \alpha_2 \neq 0$, $d_2(\alpha_1 \alpha_2) = \alpha_3$ if and only if $d_2(\alpha_1' \alpha_2) = \alpha_3'$ or $d_2(\alpha_2' \alpha_1) = \alpha_3'$.

This proposition informs us of $d_r(\alpha)$ for all r and all α in $\operatorname{Ext}_A^{\omega_1}(N_1, Z_3)$, $t-s \leq 50$, but ν_1' , $b_{1,1}$, $b_2' \alpha_0^4 (0 \leq i \leq 5)$, $\nu_0' \lambda_0^2$ and $b_1' b_2 \alpha_0$. We notice that $d_2(h_1' h_2) = \lambda_0' h_2 + h_2' \lambda_0$.

Let $q': S^1 \longrightarrow K(Z_p, 1)$ be the map corresponding to the generator in $H^1(S^1: Z_p)$ and $C_{q'}$ its mapping cone. Then by the same method in § 2 we have an exact sequence:

$$\cdots \longrightarrow \operatorname{Ext}_{A}^{s-1,l}(N', \mathbb{Z}_p) \longrightarrow \operatorname{Ext}_{A}^{s,l-1}(\mathbb{Z}_p, \mathbb{Z}_p)$$
$$\longrightarrow \operatorname{Ext}_{A}^{s,l}(N, \mathbb{Z}_p) \longrightarrow \operatorname{Ext}_{A}^{s,l}(N', \mathbb{Z}_p) \longrightarrow \cdots$$

(This sequence is not so split as in § 2. because N' is not a quotient A-module of N.) We denote by q'_r the homomorphism $E_r(S^0) \longrightarrow E_r(K(Z_p, 1))$ induced by $q'_* : \operatorname{Ext}_A^{*,t-1}(Z_p, Z_p) \longrightarrow \operatorname{Ext}_A^{*,t}(N, Z_p)$.

Proposition 4.2. If α is in $\operatorname{Ext}_{A}(Z_{r}, Z_{p})$, then $d_{r}(\underline{e}\alpha)$ is in im (q'_{r}) .

Proof. By the naturality of the differential.

For example we use this proposition to prove that $d_r(\underline{e}h_2)=0$ for all $r\geq 2$. We remark that it informs us of only $d_2(\underline{e}h_2)=0$ that d_r is an E_r (K(Z_p , 1))-homomorphism; because $\underline{e}h_2$ is an indecomposable element in E_3 (K(Z_p , 1)). This proposition informs us of $d_r(\underline{e}\alpha)$ For all r and all α in $\operatorname{Ext}_2^{s_1}(Z_2, Z_3)$, $t-s\leq 49$.

In Tables 1 and 3, (Z_3) and so on denote the groups expected. In Table 4, horizontal and slanting segments mean "multiplied by α_0 and

 h_{j} , respectively. In Table 3, j, k and m mean the same numbers only in two neighbored groups of dimension 2n-1 and 2n.

Table 1.																				
	i			4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
π_i^S	(HP^{ϵ})	∞;3)	1	Z	0	0	0	Z	0	0	0	Z	0	0	Z ₃	Z	0	0	Z ₃	Z
21	22	23	24	25	27		28	29	30	32	33	34	35		36	37	38	39	40	
0	0	Z_3	Z	0	(Z	9)	Z	0	0	Z	0	0	Z_3+Z_4	Z ₃	Z	0	Z ₃	Z_{3^t}	Z-	⊦Z₃
41	42	44	45	5 46 49 50 52											(3≦	≦i <u>≤</u> 5	5)			
0	Z ₃	Z	0	0	0	- () 2	7.												

Table 2.

REFERENCES

- [1] J.F. Adams: On the structure and applications of the Steenred algebra, Comment. Math. Helv. 32 (1958), 180—214
- [2] ----: Stable homotopy theory, (Lecture note), Berkley, 1961; Lecture Notes in Math. No 3, Springer Verlag, 1964.
- [3] T. Aikawa: Exta($Z_2[x]/Z_2$, Z_2), A being the mcd 2 Steenred algebra, Math. Jour. cf Okayama Univ., 13 (1968), 151—171
- [4] ———: 3-primary components of stable homotopies of CP∞, Math. Jour. of Okayama Univ, 14 (1970), 87—96.
- [5] A. LIULEVICIUS: A theorem in homological algebra and stable homotopy of projective spaces, Trans. Amer. Math. Scc. 109 (1963), 540—552
- [6] ———: The factorization of cyclic reduced powers by secondary cohomology operations, Mem. Amer. Math. Scc., No. 42, 1962
- [7] M. Mahowald: The metastable homotopy of Sⁿ, Mem. Amer. Math. Scc., No. 72 1967
- [8] N. E. STEENROD and D. B. A. EPSTEIN: Cchomology operations, Ann. of Math. Studies, No. 50, 1962

DEPARTMENT OF MATHEMATICS,
OKAYAMA UNIVERSITY

(Received April 23, 1970)

