SOME REMARKS ON INVARIANT SUBRINGS

KAORU MOTOSE and HISAO TOMINAGA

In this paper, we shall treat with subrings of a ring which are setwise invariant relative to all inner automorphisms.

Throughout our study, we use the following conventions: U will represent a ring with 1, and B a subdirectly irreducible subring of U whose unique minimal ideal T is not nilpotent. If S is a ring with 1 then $\Re(S)$ and $(S)_A$ will mean the Jacobson radical of S and the ring of all row-finite matrices (x_{ij}) $(x_{ij} \in S, i, j \in A)$, respectively. A unit S of S is called a biregular element if 1-S is also a unit. Following [4], the set of all biregular elements of S will be denoted by S^* , and S is defined to be biregulary generated (resp. regulary generated) if every element of S is a sum of biregular elements (resp. of units) in S. Finally, A will represent a unital subring of $U^{(1)}$ satisfying the following conditions:

- (1) $A/\Re(A) \neq GF(2)$, $(GF(2))_2$.
- (2) A is (isomorphic to) $(D)_A$ with a local ring (or a completely primary ring in the sense of [5]) D. Here, $e_{\lambda\mu}$ will represent the matrix of A with 1 in the (λ, μ) -position and 0's elsewhere. We set $E = \{\sum_{\lambda,\mu} d_{\lambda\mu} e_{\lambda\mu} | d_{\lambda\mu} \in D\}$ (almost all $d_{\lambda\mu}$'s are 0), and $F = \sum_{\lambda} A e_{\lambda\lambda}$.

As to other notations and terminologies used in this paper, we follow the previous one [3].

1. In this section, we shall give a generalization of [3; Theorem 2].

Proposition 1. If $B\widetilde{A} \subset B^{2}$ and the right annihilator $r_A(T)$ of T in A is 0 then either $TE \subset T$ or $E \subset V_v(B)$.

Proof. If a is a unit of A and $\{a, 1\}$ is not left B-free then $b_1a - b_2 = 0$ with some $b_1 \neq 0$, $b_2 \in B$, and then, noting that T is the least non-zero ideal of B and $B\widetilde{A} = B$, one will easily see $Ta \subset T$. Next, if a is biregular and $\{a, 1\}$ is left B-free, then for every $b \in B$, ab = b'a and

¹⁾ A unital subring of U means a subring containing the identity element of U.

²⁾ \vec{A} represents the multiplicative group of all inner automorphisms of U induced by units of A.

(1-a)b=b''(1-a) $(b', b'' \in B)$ yield b=b''=b', whence it follows that a is contained in $V_v(B)$. Accordingly, we have $A^* \subset A_0 \cup V_v(B)$ where $A_0 = \{a \in A \mid Ta \subset T\}$. Now, we shall distinguish between two cases:

- (1) $\sharp A=1$: Suppose that $A \not\subset V_v(B)$ and $A \not\subset A_0$. Then there exist some $a_1 \in A^* \setminus V_v(B)$ and $a_2 \in A^* \setminus A_0$. By the above remark, $a_1 \in A_0$, $a_2 \in V_v(B)$ and then we can easily see that $\{a_2, a_1\}$ is left B-free. If a_1+a_2 is a unit of A then for every $b \in B$ $(a_1+a_2)b=b'(a_1+a_2)$ $(b' \in B)$ and $a_2b=ba_2$ yield $(b'-b)a_2+(b'-a_1ba_1^{-1})a_1=0$, which means b'=b. On the other hand, if $a_1 \div a_2$ is not a unit then $1-(a_1 \div a_2)=(-a_1)\div(1-a_2)$ is a unit of A and the above argument proves again $a_1+a_2 \in V_v(B)$. But this contradicts $a_1 \notin V_v(B)$ and $a_2 \in V_v(B)$.
- (2) $\sharp A > 1$: If R is an arbitrary subring of U with $R\widetilde{A} \subset R$ and $Re_{\mathcal{U}} \subset R$ for some $l \in A$ then $RE \subset R$. In fact, for every $\lambda \neq l$ and every $d \in D$ we obtain $(1-de_{l\lambda})Re_{\mathcal{U}}(1-de_{l\lambda})^{-1}=R(e_{\mathcal{U}}+de_{l\lambda})$ and $(1+de_{\lambda l})Re_{\mathcal{U}}(1+de_{\lambda l})^{-1}=R(e_{\mathcal{U}}+de_{\lambda l})$. Combining these with $Re_{\mathcal{U}} \subset R$, we readily obtain $Rde_{l\lambda}$, $Rde_{\lambda l} \subset R$, whence it follows $RE \subset R$. If a_1 and a_2 are biregular elements of A such that $a_1a_2 \neq a_2a_1$ and $a_1-a_2=e_{\mathcal{U}}$ for some $l \in A$, then by $r_A(T)=0$ and $A^* \subset A_0 \cup V_{\mathcal{U}}(B)$ we see that either (both a_1 and a_2 and hence) $a_1-a_2=e_{\mathcal{U}}$ is in A_0 or in $V_{\mathcal{U}}(B)$, and hence, recalling that $T\widetilde{A}=T$ and $V_{\mathcal{U}}(B)\widetilde{A}=V_{\mathcal{U}}(B)$, the remark stated just above proves that $E \subset A_0$ or $E \subset V_{\mathcal{U}}(B)$. In what follows, we shall show that we can find such biregular elements a_1 and a_2 . To this end, we shall distinguish between four cases:
- (i) D^* is non-empty and $\sharp A < \aleph_0$: Let d be an arbitrary element of D^* . Then, the following elements are requested ones:

(ii) D^* is non-empty and $\sharp A \geqslant \aleph_0$: One may regard $(D)_A$ as $((D)_2)_A$. Now, let d be an arbitrary element of D^* , and choose an arbitrary index $l \in A$. We set $a_1 = (x_{\lambda\mu})$ where $x_u = \begin{pmatrix} 1 & 1 \\ d & 0 \end{pmatrix}$, $x_{\lambda\lambda} = \begin{pmatrix} d & 0 \\ 0 & d \end{pmatrix}$ for $\lambda \neq l$ and $x_{\lambda\mu} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ for $\lambda \neq \mu$, and $a_2 = (y_{\lambda\mu})$ where $y_u = \begin{pmatrix} 0 & 1 \\ d & 0 \end{pmatrix}$, $y_{\lambda\lambda} = \begin{pmatrix} d & 0 \\ 0 & d \end{pmatrix}$ for $\lambda \neq l$ and $y_{\lambda\mu} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ for $\lambda \neq \mu$. Then, a_1 and a_2 are elements requested.

(iii) D^* is empty (i. e. $D/\Re(D) = GF(2)$) and $2 < \sharp \Lambda < \aleph_0$: In this case, we can take

(iv) D^* is empty and $\sharp A \geqslant \aleph_0$: Let l be an arbitrary index in A. Regarding $(D)_A$ as $((D)_3)_A$ we consider $a_1 = (x_{\lambda\mu})$ where $x_n = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ $x_{\lambda\lambda} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ for $\lambda \neq l$ and $x_{\lambda\mu} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ for $\lambda \neq \mu$, and $a_2 = (y_{\lambda\mu})$ where $y_{\lambda\lambda} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$, $y_{\lambda\mu} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ for $\lambda \neq \mu$. Then, a_1 and a_2 are elements requested.

Corollary 1. Let a unital subring R of U be strongly primary (or primary, semi-perfect in the sense of [1]). If $B\widetilde{R} \subset B$ and $r_A(T)=0$ then either $TA \subset T$ or $A \subset V_{\overline{v}}(B)$.

The next contains evidently [3; Theorem 2].

Theorem 1. Assume that $\mathfrak{R}(D)$ is left T-nilpotent (or right vanishing in the sense of [6]). If $B\widetilde{A} \subset B$ and $r_A(T) = 0$ then either $TA \subset T$ or $A \subset V_U(B)$.

Proof. By Proposition 1, $TE \subset T$ or $E \subset V_v(B)$. As $\Re(A) = (\Re(D))_A$ by [6: Theorem 1], [7: Theorem] enables us to see that A is regularly generated. Especially, every element of F is a sum of units in A and $T\widetilde{A} \subset T$ implies TA = AT. If u is an arbitrary unit of A then for every $\lambda \in A$ we can find an element $e_{\lambda} \in E$ such that $ue_{\lambda\lambda} = e_{\lambda\lambda}\widetilde{u} \cdot u = e_{\lambda\lambda}\widetilde{u} \cdot e_{\lambda}$, where $e_{\lambda\lambda}\widetilde{u} = ue_{\lambda\lambda}u^{-1} \in F$. If $TE \subset T$ then $T\widetilde{A} \subset T$ implies $Tue_{\lambda\lambda} = T \cdot e_{\lambda\lambda}\widetilde{u} \cdot e_{\lambda} = (Te_{\lambda\lambda})\widetilde{u} \cdot e_{\lambda} \subset Te_{\lambda} \subset T$. Hence, $0 \neq TF = T \cdot \sum_{\lambda} Fe_{\lambda\lambda} \subset T$. Accordingly, we have TFT = T and TA = TFTA = TFAT = TFT = T. On the other hand, if $E \subset V_v(B)$ then by $V_v(B)\widetilde{A} \subset V_v(B)$ we have $ue_{\lambda\lambda} = e_{\lambda\lambda}\widetilde{u} \cdot e_{\lambda} \in V_v(B)$, which implies $F = \sum_{\lambda} Fe_{\lambda\lambda} \subset V_v(B)$. Now, for every unit a of A, $b \in B$ and $f \in F$ there holds $f(b - aba^{-1}) = fb - (fa)ba^{-1} = fb - b(fa)a^{-1} = 0$. Noting that $TF \neq 0$ implies $r_B(F) = 0$, we obtain ba = ab. Since A is regularly generated, the last means $A \subset V_v(B)$.

2. In this section, we shall give a slight improvement of [5; § 42] (cf. [2]).

Theorem 2. Let S be a biregularly generated ring with 1, and R a two-sided simple unital subring of S. If $\widetilde{RS} \subset R$ then R = S or $R \subset V_S(S)$.

Proof. As was noted in the proof of Proposition 1, $S^* \subset R \cup V_s(R)$. Hence, $S = R + V_s(R) = R \cdot V_s(R) = R \otimes_z V_s(R)$, where Z is the center of R. Noting that Z is a field, one will readily see that R = Z or $V_s(R) = Z$, namely, $S = V_s(R)$ or S = R.

The argument used in the proof of Theorem 1 suggests the following:

Theorem 3. Let R be a two-sided simple unital subring of A. If $\widetilde{RA} \subset R$ then either R = A or $R \subset V_A(A)$.

Proof. As evidently $r_A(R)=0$, Proposition 1 implies $E\subset R$ or $E\subset V_A(R)$. In case $\sharp A=1$, there is nothing to prove. Thus, in what follows, we may restrict our attention to the case $\sharp A>1$. Now, let $f=(a_{\lambda\mu})$ be an arbitrary element of F. Then there exists a finite subset I of A such that $\sharp I>1$ and $a_{\lambda\mu}=0$ for all $\mu\in A\setminus I$. By [7]; Theorem, $f'=(a_{\lambda\mu})$ ($\lambda,\mu\in I$) is a sum of two units in $(D)_I:f'=(a'_{\lambda\mu})+(a''_{\lambda\mu})$ ($\lambda,\mu\in I$). We consider here the elements $u=(u_{\lambda\mu})$ and $v=(v_{\lambda\mu})$ in A which are defined as follows:

$$u_{\lambda\mu} = \begin{cases} a'_{\lambda\mu} & \text{if } \lambda, \mu \in I \\ 1 & \text{if } \lambda = \mu \in \Lambda \setminus I \\ a_{\lambda\mu} & \text{if } \lambda \in \Lambda \setminus I \text{ and } \mu \in I \\ 0 & \text{elsewhere} \end{cases}$$

and

$$v_{\lambda\mu} = \begin{cases} a_{\lambda\mu}^{''} & \text{if } \lambda, \mu \in I \\ -1 & \text{if } \lambda = \mu \in A \setminus I \\ 0 & \text{elsewhere} \end{cases}$$

To be easily seen, u and v are units of A and f=u+v. If $E \subset R$ then, as was noted in the proof of Theorem 1, there holds $RF \subset R$. Accordingly, A=RA=RFRA=RFA=R. On the other hand, if $E \subset V_A(R)$ then in the proof of Theorem 1 we have seen that $F \subset V_A(R)$. Moreover, if $f \in F$, $a \in A$ and $b \in R$ then f(ba-ab)=fba-(fa)b=b(fa-fa)=0. Noting that $r_A(F)=0$, it follows ab=ba. We have proved therefore $R \subset V_A(A)$.

Lemma 1. Let S be a biregularly generated ring with 1, and R an artinian semi-simple subring of S. If $R\widetilde{S} \subset R$ then $V_R(R) = R \cap V_S(S)$.

Proof. Let $V_R(R) = Z_1 \oplus \cdots \oplus Z_t$, where Z_i is a field with the identity element e_i . Taking an arbitrary element $s \in S^*$, $se_1 = e_i s$ and $(1-s)e_1 = e_i (1-s)$ for some i, j, whence it follows $(e_i - e_i)s = e_1 - e_j$. If $e_1 \neq e_i$ then $e_i \neq e_j$ and hence $e_i s = e_i (e_i - e_j)s = e_i (e_1 - e_j) = 0$. This contradiction means $e_1 \tilde{s} = e_1$. It follows therefore $Z_1 \tilde{s} = Z_1 \tilde{s} \cdot e_1 \tilde{s} = Z_1 \tilde{s} \cdot e_1$, namely, $Z_1 \tilde{s} = Z_1$. Accordingly, for an arbitrary element $z \in Z_1$ there hold sz = z's and (1-s)z = z''(1-s) with some $z', z'' \in Z_1$, and so (z'-z'')s = z-z''. If $z \neq z'$ then $z' \neq z''$, and hence $se_1 = e_1 s = (z'-z'')^{-1}(z-z'') \in Z_1$. But this implies a contradiction $z\tilde{s} = (e_1z)\tilde{s} = se_1 \cdot z \cdot s^{-1} = z \cdot e_1\tilde{s} = ze_1 = z$. We have seen therefore sz = zs, i. e. $Z_1 \subset V_s(s)$. Similarly, we have $Z_i \subset V_s(s)$ $(i=1, \dots, t)$. Hence, $V_R(R) \subset \bigcap_{s \in s^*} V_S(s) = V_S(S)$.

Theorem 4. Let S be an artinian simple ring with 1 different from $(GF(2))_2$, and $R \neq 0$ a left perfect subring of S. 3) If $R\widetilde{S} \subset R$ then either R=S or $R \subset V_S(S)$.

Proof. Noting that all the primitive idempotents of S are mutually conjugate with respect to inner automorphisms, we can easily see that R is a unital subring of S. In case S=GF(2), there is nothing to prove. Thus, in below we may assume that S is biregularly generated ([4; Theorem]). As $R\widetilde{S} \subset R$, we have $\Re(R)S=S\Re(R)$. Now, let S be an arbitrary element of $\Re(R)S$. Then $I=\{x-xs \mid x\in S\}$ is a left ideal of S and evidently $S=I+\Re(R)S$. By making use of the same argument as in [1; pp. 473—474], we can prove that I=S, namely, $\Re(R) \subset \Re(R)S \subset \Re(S)=0$. Hence, R being simple by $V_R(R)=R\cap V_S(S)$ (Lemma 1), Theorem 2 proves that either R=S or $R\subset V_S(S)$.

Evidently, Theorem 4 contains [5; Theorem 42.4] and yields Corollaries 42.5 and 42.6 of [5], which are stated as follows:

Corollary 2. Let S be an artinian semi-simple ring: $S = S_1 \oplus \cdots \oplus S_t$, where each S_t is a simple ring different from $(GF(2))_2$. If R is a right artinian subring of S and $R\widetilde{S} \subset R$ then $R = S_{i_1} \oplus \cdots \oplus S_{i_k} \oplus C'$ with suitable S_t 's and a subring C' of the center of S.

Corollary 3. Let S be a right artinian primary ring with 1 such

³⁾ A ring R with 1 is called a left perfect ring if $R/\Re(R)$ is artinian and $\Re(R)$ is left T-nilpotent (cf. [1]).

that $S/\Re(S) \neq (GF(2))_2$. If R is an artinian semi-simple subring of S and $R\widetilde{S} \subset R$ then $\Re(S)$ is contained in $V_s(R)$ and either $S = R \oplus \Re(S)$ (us module) or $R \subset V_s(S)$.

REFERENCES

- [1] H. Bass: Finistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc., 95 (1960), 466—488.
- [2] A. HATTORI: On invariant subrings, Japanese J. Math., 21 (1951), 121-129.
- [3] K. Motose: On Cartan-Brauer-Hua theorem, J. Fac. Sci. Hokkaido Univ., Ser. I, 20 (1967), 27-30.
- [4] T. NAKAMOTO and H. TOMINAGA: On biregularly generated rings, Math. J. Okayama Univ., 14 (1970), 119—122.
- [5] T. NAKAYAMA and G. AZUMAYA: Algebra II (Theory of rings), Tokyo, 1954 (in Japanese).
- [6] E. M. PATTERSON: On the radical of rings of row-finite matrices, Proc. Roy. Soc. Edinburgh, Sec. A, 66 (1961—62), 42—46.
- [7] D. Zelinsky: Every linear transformation is a sum of nonsingular ones, Proc. Amer. Math. Soc., 5 (1954), 627—630.

DEPARTMENTS OF MATHEMATICS, SHINSHU UNIVERSITY OKAYAMA UNIVERSITY

(Received March 31, 1970)