SOME REMARKS ON INVARIANT SUBRINGS
KAORU MOTOSE and Hisa0 TOMINAGA

In this paper, we shall treat with subrings of a ring which are setwise
invariant relative to all inner automorphisms.

Throughout our study, we use the following conventions: U will
represent a ring with 1, and B a subdirectly irreducible subring of U
whose unique minimal ideal T is not nilpotent. If S is a ring with 1
then R(S) and (S), will mean the Jacobson radical of S and the ring of
all row-finite matrices (x;) (x;,ES, i, jE 4), respectively. A unit s of S
is called a biregular element if 1—s is also a unit. Following [4], the
set of all biregular elements of S will be denoted by S*, and S is defined
to be biregulary generated (resp. regulary generated) if every element of
S is a sum of biregular elements (resp. of units) in S. Finally, A will
represent a unital subring of U satisfying the following conditions :

(1) A/R(A)#GF(2), GF@).

(2) A is (isomorphic to) (D), with a local ring (or a completely pri-
mary ring in the sense of [5]) D. Here, e,, will represent the matrix of A
with 11in the (4, )-position and O's elsewhere. We set E={3", .d.r.]
d,.€D} (almost all d,,’s are 0), and F=2", Aex.

As to other notations and terminologies used in this paper, we follow
the previous one [3].

1. In this section, we shall give a generalization of [3; Theorem 2].

Proposition 1. If BACB® and the right annihilator v T) of T
in A is O then either TECT or ECV (B).

Proof. If a isaunitof A and {a, 1} is not left B-free then ba—
b,:=0 with some b0, b,EB, and then, noting that T is the least non-
zero ideal of B and BE=B, one will easily see TaC7T. Next, if ¢ is
biregular and {«, 1} is left B-free, then for every bEB, ab=b'a and

1) A unital subring of U means a subring containing the identity clement of U.
2) A represents the multiplicative group of all inner automorphisms of U induced by units
of A

123



124 Kaoru MOTOSE and Hisao TOMINAGA

(1—a)b=0"(1—a) (@', b"B) yield b=5b"=0¥, whence it follows that a is
contained in V4(B). Accordingly, we have A*C A\JVy(B) where A,=
{a=A|TacCT}. Now, we shall distinguish between two cases:

(1) #4=1: Suppose that AZV,(B) and AZ A,. Then there exist
some @, €EA*\Vy(B) and a,=A*\A, By the above remark, ¢ €4, a
€Vy(B) and then we can easily see that {a, a;} is left B-free. If a,+a,
is a unit of A then for every bEB (a,+a)b=0b'(a,+a,) ('EB) and a;b
=ba, yield (b'—b)a,+(b'—aba;V)a,=0, which means b'=b>. On the other
hand, if @,~a, is not a unit then 1—(g,--a,)=(—a;)+(1—a,) is a unit
of A and the above argument proves again @,+a,&Vy(B). But this con-
tradicts a,& Vy(B) and @,V y(B).

(2) $4>1: If R is an arbitrary subring of U with RACR and
Rey,CR for some /A4 then RECR. In fact, for every 15~/ and every
dED we obtain (1—den)Ren(1—den)'=R(es+de,) and (1-+den)Reu
(1-+dex)™'=R(e,+dey). Combining these with Re,C R, we readily obtain
Rde,, RdeyCR, whence it follows RECR. If @, and «, are biregular
elements of A such that @, a.a, and a,—a,=e, for some !4, then
by r(T)=0 and A*C A\JVy(B) we see that either (both @, and @, and
hence) @,—a,=ey is in A, or in V4(B), and hence, recalling that TA
=T and VU(B)Z=VU(B), the remark stated just above proves that EC
A, or ECVy(B). In what follows, we shall show that we can find such
biregular elements @, and @, To this end, we shall distinguish between
four cases:

(i) D* is non-empty and #4<¥X,: Let d be an arbitrary element of
D*. Then, the following elements are requested ones :

11 | 01
do do
a = d. a,= d.

4 d

(ii) D* is non-empty and #4_>¥X,: One may regard (D), as ((D),),.
Now, let d be an arbitrary element of D*, and choose an arbitrary index

led. We set a,=(x,,) where xu=(‘11 1), :m=(g 2) for 25~! and z,,

=<8 8) for A% p, and @,=(y\.) where yu=(2 (1)), y,\)\=(g 2) for A%}

and y,\,*z(g 8) for A=s%~p. Then, @, and a, are elements requested.
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(iii) D* is empty (i.e. D/R(D)=GF(2)) and 2<}A<R,: In this
case, we can take
1 1 0 1
111 11

a = -.0 . and a= -_0 .

‘10 | 10

(iv) D* isempty and $4>¥X,: Let [ be an arbitrary index in ..

001
Regarding (D), as ((D);). we consider a,=(x,.) where xu=(l 1 O)
010

101 000
2w={110) for A5=! and x,,=|0 0 0) for 254y, and a,=(y\.) where
010 000

101 000
y)u\:(]. 10|, y9=|00 0} for 4iscn. Then, @, and «. are elements
01 0. 000

requested.

Corollary 1. Let a unital subring R of U be strongly primary (or
primary, semi-perfect in the sense of [1]). If BRCB and r.(T)=0
then either TACT or ACVy(B).

The next contains evidently [3; Theorem 2].

Theorem 1. Assume that ﬂi(D) is left T-nilpotent (or right vanish-
ing in the sense of [6]). If BACB and riT)=0 then either TACT
or ACVI,'(B).

Proof. By Proposition 1, TECT or EC Vy(B). As R(A)=M(D)),
by [6; Theorem 17, [7; Theorem] enables us to see that A .is regularly
generated. Especially, every element of F is a sum of units in A and
TACT implies TA=AT. If u is an arbitrary unit of A then for every
ied we can find an element ex&EE such that wue,, =eni-u=-enit-e,
where entt =uenu'€F. If TECT then - TACT implies Tuen=
T-enii-en=(Tex)#-exCTe,CT. Hence, 05£TF=T- -3 \FexnxCT. Accor-
dingly, we have TFT=T and TA=TFTA=TFAT=TFT=T. On the
other hand, if EC V,;(B) then by VU(B)ZC Vy(B) we have wuea=exu-ex
€ Vi(B), which implies F=>FexCVy(B). Now, for every unit « of
A, beB and fEF there holds f(b—aba)=fb—(fa)ba'=fb—b(fa)a™’
=(0. Noting that TF=40 implies r,(F)=0, we obtain be=ab. Since A
is regularly generated, the last means ACV ,(B).
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2. In this section, we shall give a slight improvement of [5; § 42]

(cf. [2]).

Theorem 2. Let S be a biregularly generated ring with 1, and R
a two-sided simple unital subring of S. If RSCR then R=S or RC
Vs(S).

Proof. As was noted in the proof of Proposition 1, S*CR\UV(R).
Hence, S=R+Vy{(R)=R-Vs(R)=RKR Vs(R), where Z is the center of R.
Noting that Z is a field, one will readily see that R=2 or V«(R)=2Z,
namely, S=V«(R) or S=R.

The argument used in the proof of Theorem 1 suggests the following :

_ Theorem 3. Let R be a two-sided simple unital subrving of A. If
RACR then either R=A or RCV,(A).

Proof. As evidently r,(R)=0, Proposition 1 implies ECR or EC
V.i(R). Incase §A4=1, there is nothing to prove, Thus, in what follows,
we may restrict our attention to the case $4>1. Now, let f=(a,.) be
an arbitrary element of F. Then there exists a finite subset I of 4 such
that I>1 and a,,=0 for all #=A\I. By [7; Theorem], f'=(a.)
(4, n€1I) is a sum of two units in (D),:f'=(a\)+(an) (X, nEI). We
consider here the elements #=(u,.) and v»=(v,,) in A which are defined
as follows :

[aj\# if 4, pel

i1 if A=pe\I
T g if A€M\ and pel
L0 elsewhere
and
@ if 4, pel
vaw=( —1 if 2=peA\I

0 elsewhere

To be easily seen, # and v are unitsof A and f=u#-v». If ECR then,
as was noted in the proof of Theorem 1, there holds RFCR. Accordingly,
A=RA=RFRA=RFA=R. On the other hand, if ECV (R) then in the
proof of Theorem 1 we have seen that FC V,(R). Moreover, if fEF, a
A and bR then f(ba—ab)=fba—(fa)p=>b(fa—fa)=0. Noting that
r.(F)=0, it follows ab=ba. We have proved therefore RC V,(A).
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Lemma 1. Let S be a biregularly generated ring with 1, and R
an artinian semi-simple subring of S. If RSCR then Vi(R)=RNV(S).

Proof. Let Vi(R)=Z,®---@®Z,, where Z, is a field with the identity
element ¢;. Taking an arbitrary element s&S*, se¢,=e¢;s and (1—s)e,
=e{l—s) for some {,7, whence it follows (e;—e)s=e,—e; If e 5=¢;
then e;5%¢;, and hence e¢;s=e{e;—e;)s=efe,—e;)=0. This contradiction
means e;s=e¢,. It follows therefore Z,s=2Z,5-¢,5=2Z,5+¢,, namely, Z5
=Z,. Accordingly, for an arbitrary element z&Z, there hold sz=2z's
and (1—s)z=2""(1—s) with some 2/,2"&Z, and so (z'—z2')s=z—2"". If
z==z' then 2’542z, and hence se,=¢;s=(2'—2'")"(z—2"")&Z,. But this
implies a contradiction z5=(e,2)s=se+2-s"'=2z2-¢,5=2¢,=2. We have
seen therefore sz=zs, il.e. Z,CV(s). Similarly, we have Z.C Vy(s)
(i=1, ---, £). Hence, Ve(R)CTNiest Vs(s)= Vs(S).

Theorem 4. Let S be an artinian simple ring with 1 _different
from (GF(2)),, and R=:0 a left perfect subring of S.® If RSCR then
either R=S or RCVS).

Proof. Noting that all the primitive idempotents of S are mutually
conjugate with respect to inner automorphisms, we can easily see that R
is a unital subring of S. In case S=GF(2), there is nothing to prove.
Thus, in below we may assume that S is hiregularly generated ([4;
Theorem]). As RSCR, we have W(R)S=SR(R). Now, let s be an
arbitrary element of SW(RK)S. Then [={xr—zxs|x&S} is a left ideal of S
and evidently S=I[+N(R)S. By making use of the same argument as in
[1; pp. 473—474], we can prove that [=S, namely, R(RYCR(R)SC
R(S)=0. Hence, R being simple by Vz(R)=RNVS) (Lemma 1),
Theorem 2 proves that either R=S or RC Vi(S).

Evidently, Theorem 4 contains [5; Theorem 42.4] and yields Corol-
laries 42.5 and 42.6 of [5], which are stated as follows:

Corollary 2. Let S be an artinian semi-simple ring: S=S,D-D
S., where each S: is a simple ring different from (GF(2)).. If R isa
right artinian subring of S and RSCR then R=S;l@--'@5;‘_®C' with
suitable S,-j’s and a subring C' of the center of S.

Corollary 8. Let S be a right artinian primary ring with 1 such

3) A ring R with 1 is called a left perfect ring if R/R(R) is artinian and R(R) is left T-
nilpatent (cf. [10).
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that S/iR(S)sé(GF(Z))z. If R is an artinian semi-simple subring of S
and RSCR then R(S) is contained in Vi(R) and either S=R@®N(S)(us
module) or RC V(S).
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