ON BIREGULARLY GENERATED RINGS

TAICHI NAKAMOTO and HISAO TOMINAGA

Let A be an algebra with 1 over a field Φ . A unit a of A is called a Φ -biregular element if there exists a non-zero element $\alpha \in \Phi$ such that $1\alpha - a$ is a unit of A. In his paper [1], A. Hattori proved the following which played an essential role in the characterization of invariant artinian subrings of an artinian simple ring (cf. also [2; Lemma 42.1]): Let A be a semi-primary algebra with 1 over a field Φ . If the residue class ring \bar{A} or A modulo the Jacobson radical $\Re(A)$ is a simple ring and neither GF(2) nor $(GF(2))_2$ or if \bar{A} is not simple and no simple component of \bar{A} is GF(2), $(GF(2))_2$, GF(3) or GF(4), then A is generated by Φ -biregular elements of A as an additive group.

The purpose of this note is to present a slight generalization of the above. To this end, we shall introduce the following definitions: Let S be an arbitrary ring with 1. An element s of S is said to be biregular if both s and 1-s are units of S. The set of all biregular elements of S will be denoted by S^* , and S is defined to be biregularly generated if every element of S is expressible as a sum of elements of S^* .

Now, our theorem can be stated as follows:

Theorem. Let A be a semi-primary ring with 1, and $GF(2)^{(n_1)} \oplus (GF(2))_2^{(n_2)} \oplus GF(3)^{(n_3)} \oplus GF(4)^{(n_4)} \oplus A_1 \oplus \cdots \oplus A_k^{1}$ the representation of $A/\Re(A)$ as the direct sum of simple rings, where $A_i \neq GF(2)$, $(GF(2))_i$, GF(3), GF(4). If $n_1 = n_2 = 0$, $n_3 < 2$ and $n_4 < 2$ then A is biregularly generated, and conversely.

The proof of our theorem will be essentially due to the following lemmas:

Lemma 1. Let A be an artinian simple ring with 1. If $A \neq GF(2)$, GF(4), $(GF(2))_2$, then every element of A is expressible as a sum of even elements of A^* .

Lemma 2. Let A be an artinian simple ring with 1. If $A \neq GF(2)$, GF(3), $(GF(2))_2$, then 0 is expressible as a sum of two elements of A^* .

¹⁾ $GF(2)^{(n_1)}$ means the direct sum of n_1 copies of GF(2).

Proof of Lemma 1. Let A be represented as the complete $n \times n$ matrix ring over a division ring D with matrix units e_{ij} 's. We shall distinguish here between five cases:

(2)
$$D \neq GF(2)$$
, $GF(3)$, $GF(4)$: Let $a = \begin{bmatrix} d_{11} & ** \\ & \ddots & \\ & & d_{nn} \end{bmatrix}$ be an arbitrary

element of A. For every i there exists an element $d_i \in D$ such that $d_i \neq d_i$, $d_{ii}-1$, 0, 1. Then a is the sum of biregular elements

$$\begin{pmatrix} d_{11}-d_1 & 0 \\ \vdots & \vdots & \vdots \\ * & d_{nn}-d_n \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} d_1 & ** \\ \vdots & \vdots \\ 0 & d_n \end{pmatrix}.$$

(3) n>1 and D=GF(4): Evidently $D=\{0, 1, \alpha, \beta\}$, where $\alpha+\beta=1$, $\alpha\beta=1$, $\alpha^2=\beta$ and $\beta^2=\alpha$. For every $d\in D$ we have $de_{12}=(\alpha+de_{12})+\alpha$. Moreover, we obtain

One will easily see that these representations are decompositions into two biregular elements and every element of A is expressible as a sum of even biregular elements.

Thus, taking (1) into mind, one will readily obtain our assertion.

(5) n>2 and D=GF(2): In this case, our assertion follows from the next decompositions:

$$e_{11} = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ & \ddots & & & & & \\ & & 1 & 0 & & & \\ & & & 1 & 0 & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ &$$

Proof of Lemma 2. Let A be represented as the complete $n \times n$ matrix ring over a division ring D. We shall distinguish between three cases:

- (1) $D \neq GF(2)$, GF(3): There exists an element $d \in D$ different from $0, \pm 1$, namely, $d, -d \in A^*$.
- (2) n>2 and D=GF(2): By the case (5) in the proof of Lemma 1, 0 is evidently a sum of two biregular elements.
- (3) n>1 and D=GF(3): It suffices to prove the cases n=2 and n=3. If n=2 then $\begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$ and $\begin{pmatrix} 2 & 1 \\ 2 & 2 \end{pmatrix}$ are in A^* , and if n=3 then $\begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 0 \\ 1 & 2 & 0 \end{pmatrix}$ and $\begin{pmatrix} 2 & 1 & 2 \\ 2 & 2 & 0 \\ 2 & 1 & 0 \end{pmatrix}$ are in A^* .

Proof of Theorem. Without loss of generality, from the beginning we may assume that $\Re(A)=0$. As we can easily see that GF(2), $(GF(2))_2$, $GF(3) \oplus GF(3)$ and $GF(4) \oplus GF(4)$ are not biregularly generated, the converse part is evidently true. Accordingly, it remains to prove that $A=GF(3) \oplus GF(4) \oplus A_1 \oplus \cdots \oplus A_k$ is biregularly generated. To see this it suffices to prove that every element in GF(3), GF(4) or A_i is expressible as a sum of elements of A^* . We shall distinguish therefore between these cases:

- (1) a is in GF(3): As a is expressible as a sum of even elements of GF(3)* and 0 in GF(4) or in A_i is a sum of two elements of GF(4)* or of A_i * by Lemmas 1 and 2, a is expressible as a sum of even elements of A^* .
- (2) a is in A_i : As a is expressible as a sum of even elements of A_i^* and 0 in GF(4) or in each other A_j is a sum of two elements of GF(4)* or of A_i^* again by Lemmas 1 and 2, the present case comes to (1).
- (3) a is in GF(4): In any rate, a is a sum of one or two elements of GF(4)*. Hence, we can reduce the problem to the cases (1) and (2).
- As D. Zelinsky indicated in [3], every element of a closed primitive ring different from GF(2) is expressible as a sum of two units. This together with Lemmas 1 and 2 suggests the conjecture that if A is an artinian simple ring with 1 and $A \neq GF(2)$, GF(3), GF(4), $(GF(2))_2$, $(GF(2))_3$, then every element of A is expressible as a sum of two biregular elements. In fact, the conjecture can be proved if $A \neq GF(3)$, GF(4), $(GF(2))_a$.

REFERENCES

- [1] A. HATTORI: On invariant subrings, Japanese J. Math., 21 (1951), 121-129.
- [2] T. NAKAYAMA and G. AZUMAYA: Algebra II (Theory of rings), Tokyo, 1954 (in Japanese).
- [3] D.ZELINSKY: Every linear transformation is a sum of nonsingular ones, Proc. Amer. Math. Soc., 5 (1954), 627—630

DEPARTMENT OF MATHEMATICS,
OKAYAMA UNIVERSITY

(Received March 20, 1970)