DISCRETE ANALYTIC DERIVATIVE EQUATIONS
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Introduction. The concept of a discrete analytic function was intro-
duced by Jacqueline Ferrand [1], and many properties of discrete analytic
functions were obtained by Duffin [2]. In what follows, we need a few
definition concerning the discrete complex plane. The discrete complex
plane is the set of all lattice points in the complex plane with integer co-
ordinates. A region in the discrete complex plane is the union of unit
squares {z, z+1, z+1+14, z+:¢}. A chain z, z, -, zn is a set of points
in the discrete complex plane such that |z;—z._,|=1. A region is said to
be connected if any two points of the region can be combined by a chain
in the region. A simple connected region R is a simply connected set
which is the union of a finite number of unit squares. Thus the boundary
of R is a simple closed curve which is composed of edges of unit squares.
Throughout this paper, we assume that R is a rectangular region, i.e.
rectangular region is a simple connected region. Consider a complex
valued function f defined on a square {z, z-+1, z-+1+¢, z-+7}, f issaid
to be discrete analytic on that square if

Lf(2)=f(2)+if(z+1)+if(z+1+1)+*f(2+1)=0.

If f is discrete analytic on every squares in R we denote it by fE A(R).
If feA(R), Ferrand [1] defines a discrete derivative of f denoted by

6)6‘;_5:) by the difference equation
2£(8) , 25(a)

(1) 0z 0z _ f(9)—f(g)
2 p—q

where p and ¢ are neighboring points, i.e. |p—gq]=1.
f

It is shown [1] that if the value of {;—z is specified at some fixed

point in R, then (1) determines %éi uniquely and %’E—EA(R).

The line integral of f is defined as
103
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@ |r0n=2 L1 r)+7edi—zo.

where a@=2z, 2,::-, z,=0 1is a chain of points in R connecting a to b.
It follows [2] that if fe A(R), this integral is path independent and

€) F(b)—fla)= S%{_ bz

If @ and b belong to R, Duffin [2] defines a ‘“double dot" line in-
tegral by
b .
(4) Saf &) :glt)ot= ,,ZJ[%U (2.)F f(2,-1)][g(2a) 1 g(20-1)1(2, —2.-1)
where a=2, *+*, 2,=0 1is any chain of points in R connecting a to b.

It is shown in [2] that this integral is independent of path if f, g&
A(R). Duffin and Duris [3] define convolution product by

f*g(2)=S:f(z—t) : g(t)ot for all zeR

In [3], it is shown that for f and g€ A(R), a convolution product is
independent of integration path, and is also commutative, associative,
and distributive over usual pointwise addition.

Discrete derivative equations of the first order. In [4], Duffin
and Duris has discussed about the general solution of discrete derivative
equation of the first order with constant coefficent, If a'3¢16, then the
general solution of

agiz)—~aF(z)=b(z) with F(0)=C, where b(z)EA(R)

is Fl2)=Ce(z, a)-- Sje(z——t, a): b(t)ot

x s\Y
where C is an arbitrary constant, and e(z, a)=(§t2)(§:tz.) is

known as the discrete exponential function which is introduced by Ferrand
[1], the solution F(z) is defined and is single valued in R and F(z)E
A(R). .

Duffin and Duris do not devolope a theory to general case. In this
paper we shall consider the general case, such as

(5) alg—iz)~—aK(z)*F(z)=0
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where K(z)e& A(R) is given, and « 1is an arbitrary constant.
It is of interest, under what condltlons, there exists a analytic solu-
tion of (5). :

Theorem 1. Let K(z) be discrete analytic in R containing the origin.
If ab*[K(0)-- K(h)]=8 for h==x1 or i, then the discrete analytic
homogeneous derivative equations (5) with F(0)=C has no solution for
z=h, where C is a non-zero arbitrary constant.

Proof. Suppose, there exists a solution of (5) for z=*h. Putting (5)
into integral form we have

F(Iz)=a§:K(z)*F(z)r)‘z+F(O).
Let K(2)*F(z)= G(z), then
Fin=" 6+ c=4 {K(Iz—t) F(#)t+C
‘”’ AT K(©0) = KW)TF()+F(0)1+ C

ie. {8—ak [K(©O)-+KR)]IF(h)={8+ah'[K(0)+ K(h)]}C
Thus, if a#*[K(0)-+ K(k)]=8 it contradicts to assumption.

Theorem 2. Let K(z) be discrete analytic in R containing the
origin. If

®) agviz)—-aK(z)*F(z)=O with F(0)=C

has e solution in R,
then this solution is discrete analytic in R provided a satisfies at least
one of the following conditions :

(6) 8—+al K(0)+ K(:)]-0
) 8-+ai[ K(0)+ K(—1)]5-0
(8) 8—al K(0)+ K(—i)]5~0
9) 8—ai[ K(0)+ K(1)]540
Before proving this, we state the following lemma.
Lemma. [f —2L F(z) —aK(2)*F(2)=0 with F(0)=C, then

L F(z)=i7“L[K(z)*F(z)]
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Proof of Lemma. Let G(2)= K=+F(z), then we have
F(z)= aS;G(t)c?t +C
Flz-+1)= aS G(t)dt -+ C= F(2)-- aS Gt =F(2)+ 2 Gle-+ 1)+ G-
Flz+1+i)=F(2)- aS G-+ a{ Gyt

=F(2)+5 2rGz+1+ G(z)]—r LI G(z+1+8)+ Glz+1)].

Fla--i)=F@)+a| G)i=Fa)+ ﬁ[c(z+z) + G@)].
ive. LF@)=F@)1‘iF(z+1)—F(z+1+i)—iF(z+1)

:_;L L G(z)zizi-L[K(z)*F(Z)]-

Proof o f Theorem 2. Let G(z)= K*F(z), by Lemma, we have
L F(z )— 21 ().

(a) L G(z)= } K(z—1t): F(t)ot- HS K(z+1—1¢): F(f)at
—S:+I+k(z+1+i~t) : F(t)o‘t—iﬁ“x(z Fit): Pt

Since LK(z—t)=0, we get
(b) 0=S:[K(z——t)+z'K(z+1—i)~K(z—’rl+z'—t)—iK(z+i~t)]:F(t)r‘?t.
From (a) and (b), we have

L G(z)—zg K(z-+1—1): F(£)ot— j YK(z1-+i—1): F()t

~ij K(z+i—1): FPt="[ KO+ KO)L Fe2)

Substituting this result into L F(z), we get

L F(2) =%“[K(0)+ K(G)]LF(z)

i.e. L F(2){8+a[K(0)+K()}=
If 8+a[ K(0)+ K(i)]=~0, we have L F(z)=0, thus (6) is proved.
Similarly, from L K(z—?#)=0, we have



DISCRETE EQUATIONS OF THE FIRST ORDER 107

©) 0=S:+{1K(z—t)+z’K(z+1—t)—K(z+1+z’~t)—z’K(z+i—t)}:F(t)é‘t.

From (a) and (c), we get

L G(z)= S:lK(z—t) : F()dt— S::}%(z+1+i—t) : F(t)r?t—is :jK(z+i
— 1) F(t)3t= ~—%[K(O)+ K(—1]1L F(z).

Putting LG(z) into L F(z), we obtain LF(2){8+ai[ K(0)+ K(—1)]}=0.
If 8+ai[ K(0)+ K(—1)]5~0, we have LF(z)=0 thus (7) is proved.
By the same way, we can obtain the two expressions
LF(2){8—a[ K(0)+ K(—i)]}=0
and LF(2){8—ai[ K(0)+ K(1)]}=0;
therefore, if 8—a[ K(0)+ K(—i)]5~0 then LF(z)=0
and if 8—ai[ K(0)+ K(1)]540 then LF(z)=0. This proves Theorem 2.

Cororally. 1. K(z)€A(R), where R contains the origin
2. ah*[K(0)+ K(h)]+8 for h==x1 or =+i
3. (5) has a solution in R
=> this solution €A(R)

Theorem 3. Let K(z) be discrete analytic in R containing the origin.
If al*LK(0)+ K(h)]%8 for h=+1 or =*i.
Then there exists a nnique analytic function F(2) in R such that

5) @) oK@y F(2)=0 with FO)=C.

Proof. The definition of the double dot line integral yields from (5)
the stepping formula (10). Let G{z)= K=*F(z), we have

F(z+h)— F(2)="2[G(z+h)+ G(h)]

- %’22[1{(0)+ K(W)I[F(z+h)+F(2)]+ %S:K@“‘”’)
-+ K(z—t): F(t)ot
i e.

8- alf[ K(0) = K()]
A0)  Fleth)=-g= a0y + KUyT T @
dah S

8 alP[K(0) = K()]

[K(z+h—8)+K@z—D] : FE)ot

0
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where % equals *+1 or =+i,

Since F(0)=C, we may calculate to any z in R by (10), that is F(z2)
exists uniquely by successive substitution. By Theorem 2, we also know
that F(z)EA(R) It remains to prove that F(z) is a required solution.

Let 2F (O> =0, we use the symbols K(1)=K(1)+ K(0), K(2)= K(2)+ K(1).

And then,A from (10), we get F (1)=g—iz%€.
By the definition of the derivative (1), we have y—(l—)=2[F(1)~ C]

42K(1) § 4aK(1)
=——==_(C, Si G K(1—1%): F(t)ot=——"r"—

s_ar() - e eCl)=a) K(1—0): F{t)ot=g—"2e0s

oF(1) . .
we have 5, —aKrk (1)=0. Thus, (5) has a solution for z=1.
Similarly, from (10), we get
F(2 )_Mllp( D —2% _[K(@2)+KQ)I[FQ)+C).

aK(Q) 8—aK(1)
From (1), we have

EL) _arr@)-ra—2LL

_—LK(-)“{[K(Z)—I-SK(D]F(D [K(2)— K1)]C).

Since ac;(z)=agulr((2~t):1~“(t)at—~—2—K6 [K(2)+3K(1)1FQ)--[K2)

— K(1)]1C}, threfore, we have %gzl —aK*F(2)=0. Thus, (5) has a solu-

tion for z=2. By induction, it is easily proved that (5) has a solution for
the points on the positive x-axis, also on the positive y-axis. And by using
similar process, we have that (5) has a solution F(z) for the points on
the real and imaginary axis. Following the remarks of Duffin [2], a func-
tion fE A(R) is uniquely determined by its values on the real and imagi-
nary axes. Therefore Theorem 3 is proved.

Theorem 4. 1. K(2)EA(R), where R contains the origin
2. all[K(0)+ K(h)]5~8 for h==x1 or =*i

= There exists a unique analytic function F(2) in R such that
i‘;@—ax(z)*p(z)q(z) with F0)=C, where b(z)EA(R).
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The proof of this theorem is similar to the proof of Theorem 3. The step-
ping formula is

_ 8+4+ak[K(0)+ K(h)]
Flath) =3 PR 0)+ K ()] F)

4;1{4:[K(z+h—t)+K(z—t)j : F@t-+ [+ h)+b(:)])
] 8—al’[K©0)+ K(h)]

+

with 2O _ o).
0z

Remark. Theorem 4 is a generalization of Theorem 3.3 which is
mentioned by Duffin and Duris [4]. Since, there exists a discrete analytic
function e(z)=(—1)"**{ —4x+4yi+e(0)} such that e+F(z)=F(z) with
F(0)=0. (see [5]. p.47).
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