ON PERVIN’S QUASI UNIFORMITY

NORMAN LEVINE

1. Introduction

In [1], Pervin introduced a quasi uniformity #/(%) determined by
a topology T on the set X by taking sets of the form OX0OU € O0OXX,
0% as subbase. He proved that the topology induced by Z/(%) is in
fact the original topology ¥. Thus every topological space is quasi uni-
formizable.

It is the purpose of this paper to explore more fully the relationships
that exist between T and Z/(T). In §$2, the following topological pro-
perties are characterized in terms of Z(X): Ty, Ty, T. T=%F (¥ denoting
the class of all closed sets), T is discrete, T isindiscrete, ¥ has three
or less elements, (X, ) is disconnected, X is finite and ¥ is discrete,
In §4, relationships between continuity and uniform continuity are deter-
mined and compactness is characterized in terms of %7 (Z). In §5, we
give an example to show that “# (XI5 X Z(T,).

2. Topological properties

Theorem 2.1. (X, ) isa (i) Tyspace iff N=N{UNU"': Ue
(D)} () Tespace iff A=N\{U:Ucs Z®X)} and (ii) T,space iff N
=N\{cU: U Z()}.

Proof of (i). Suppose that (X, ) is a T,space and that (x, y)e
UNU""' for each Ue 77(Z). We must show that x=y. Suppose on the
contrary that xs£y. Case 1. There exists an O*=X% such that x=0*
and y&0* Then (x, y)&0*X0*U F0*X X=U*. Thus (%, »)EU*N
U*~', Case 2. There exists an 0*%T such that & 0% and yO% Then
(3, x)EO0EX ON ) € 0¥ xX X=U* Hence (%, y)EUNU*.

Conversely, suppose that A=N{UNU"': U %'} and suppose that
x5~y. Then (%, y) € UNU" for some Ue 7/ (). Case 1. (x, )& U. Then
(x, NEOXO\J FOXX for some OX and it follows that €0 and
y&0. Case 2. (x,»)£U"". Then(y, x)&U and case 1 may be applied.

Proof of (ii). Let (X, 3) be a Trspace and suppose that xscy. We
will show that (x, ¥)& U for some U Z/(). In fact, we may take U’
=F{yIx EyIUEF{yIx X
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Conversely, let x5y in X. Then (%, y)&U* for some U*e Z/(2)
and hence (x, »)&E0*X0*\J F0*X X for some O*&2I. Hence x=0*
and y&O*.

Proof of (iili). If A=N\{cU:Uec Z(T)}, then A isclosed in XX X
and (X, T) is T,

Conversely, suppose that (X, ¥) is a Tyspace and that xs4y. Theie
exist disjoint open sets O, and O, such that *&0, and y=0,. Hence
(%, y)cU where U=0,X0\J €0.%X X.

Theorem 2.2. Let § denote the family of closed sets in (X, ).
Then =55 iff U is a neighborhood of N\ whenever Us 7/ (T).

Proof. If T=%, then OXO\U FOX X is an open neighborhood «f
the diagonal for each O€%. Thus U in Z/(%) implies that U is a
neighborhood of the diagonal.

Conversely, suppose that U in Z/ (%) implies that U is a neighbo:-
hood of the diagonal. Let O=Z. Then OXOU FOX X Z(Z) and
hence there exists a GEI X I such that OX O\ FOX XD G2 A. Then
OXO\JFBOX EODGNG'2A and GNG'EIXZ. Let 2= Z0.
Then € GNG'[2]C(OXOJZFTOX €0)[x]= €0 and Z O is open.
It follows then that T=%§.

Corollary 2.3. Z/(X) is a uniformity iff T=%.

Proof. If Z/(3) is a uniformity, then U& Z/(X) implies that U
is a neighborhoood of A and hence by Theorem 2.2, T=%.

Conversely, suppose that £=g. It suffices to show that (OXO\J
EO0XX)'e Z(3) when O3, But (OXOU ZFOXX)'D0X0U F0
X E0=(0X0UJ FOXX)\(EFOX 00X X)E Z ().

Corollary 2.4. The following are equivalent: (i) (X, ) is discrefe
(i) T=F and (X, ) is a Tyspace (iil) Z(F) is a uniformity and ==
NUNU:.Ue Z@®)}.

Proof. (i) clearly implies (ii) and (ii) is equivalent to (iii) by corol-
lary 2. 3 and (i) of theorem 2. 1. To show that (ii) implies (i), it suffices
to show that {x} is closed for each x=X. But £=§ and (X,2) a Tr
space clearly implies that (X, ¥) is a T.-space and hence a T-space.

Theorem 2.5. (X, %) is trivial iff (X, 7 (X)) is trivial.

Proof. Exercise for the reader.
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Lemma 2.6, Let BCX, B5#X. If AXAUECAXXCBXB\U¥B
X, then ADB.

Proof. Let b=B and suppose that b&ZA. Take g¢B. Then (b, q)
EAXAUZFAXX, but (b, ) ZBXB\U € BX X, a contradiction.

Lemma 2.7. Let @=BCX and suppose that AXAJFAXXCB
WB\UZEBXX Then ACB.

Proof. Casel. B=X. Then ACB, Case 2. B=£X. Then by Lemma
2.6, ADB. Now suppose that AEB. Take a€ A, a¢#B and bEB.
Then (b, a)EAXACAXAJFAXX, but (b, a)£BXBUFBxX, a
contradiction.

Corollary 2.8. If O%4BCX and AXAJZFAXXCBXBUZEB
2 X, then A=DB.

Theorem 2.9. {OXOUEO0OXX:0&%} isa base for Z(X) iff T
consists of at most three sets.

Proof. If T={Q, X} orif T={@, 0, X}, then {XX X} or {OX
OJFO0XX, XXX} is a base for ().

Conversely, suppose that 340,52 X for i=1,2 and that {OXOU
¥OXX:0&%} is a base for Z(T). Then (0, X0\ Z 0, X X)MN(0,X
O\ F O, X X)DOXOUZFOXX for some O=Z. By Corollary 2.8, O,
=0=0, and hence ¥ consists of at most three sets.

Theorem 2.10. (X, ) is disconnected iff there exists an A such
that @FA5%<X and AXAJFCAX €A 7(I).

Proof. If (X, %) is disconnected, let A be both open and closed
and @£A++*X. Then AXAUFCAX FA=(AXAUFTAXX)(FA
X FAUAX X)e Z(%).

Conversely, suppose that F==A-~X and that AXA\U FAX FAc
%/(T). We will show that A is open (and by symmetry, & A is open).
Let a=A. Then (AXAUFAX FA)a]=A.

Theorem 2.11. (X, Z/()) is totally bounded (UE Z/(X) implies
that U[A]=X for some finite set A).

Proof. Let U= Z/(Z). Then UDN{O:;XO\J F O, X X:1<i<n}.
Consider the 2" sets of the form A/ \:--N\4, where A,=0; or A,= €0,
Pick g€ A:/N\-*MA, whenever AN--NA, 70 and let A be the set of
g-points thus picked. Clearly, A is finite and we show now that U[A]
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=X. Let x€X. Let A;=0,; if x€0, and let A;= €0, if x€ € 0.
Then NA;=@. Thereexistsa ¢ in A such that g&MNA;.. Then (g, %)
€U or x€U[A]. If (¢, x)&U, then(q, x)E0;X0\J C0,;%x X for some
7 and hence ¢€0, and x&€ %0, Then A;= %0, and g A,= 0,
a contradiction.

Corollary 2.12. A€ Z/(R) iff (i) X is finite and (ii) T is discrete.

Proof. Let A& Z7(T). By Theorem 2. 11, there exists a finite set
A such that X=A[A]=A. Thus, X is finite and (i) holds. (ii) follows
from the fact that Z/(%) is a discrete uniform space when A€ Z/(T).

Conversely, suppose that (i) and (ii) hold. Then A=N{{x} X {x}J
Elx}x X:xeX)e Z(2).

Theorem 2.13. If X is countable, then 7Z/(X) has a countable base.
If Z/(X) has a countable base, then (X, X) is a second axiom space.

Proof. If ¥={0;:i€ P}, then {O;XO\JECO,XX:iEP} is a
countable subbase for %/(T) and hence 77(%) has a countable base.

Suppose Z/(¥) has a countable base {U,:ieP}. Now UDN{0y
XONJ €0, X X:1=<j=<n,} for each i€ P. We will show that the {O;}
forms a subbase for . Let x&0&€2X. Then U[x]CO for some Ue
Z(Z). But U2 U22N{0:;x0:\J @”O}.Jx X:1<j<n,;} and hence N{Oy
XO0\J F0,;x X} [x]S0. But (0,;X0.\J €O0,;xX)[x]=0;; or X. Thus
xE0*CO where O* is an intersection of sets from the collection {O;;:
1§j§ﬂi}-

Theorem 2.14. (i) IFf (X,R) is regular, then c(A)YSTOXOJ GO0
XX for each O€Z. (i) If c¢(A)SOXOJECOXX for each OEZ, then
(X, ) is an Ryspace (x€0&EX implies that c(x)C0). (iii) If (X, ) is
T, then c(AN)STOXOUJ G OKXX for each OET.

Proof. (i) Suppose (x, y)EOX O\ ¢ OX X for some OZ. Then
x€0 and y&0. But x£0*CcO*CO for some 0*€Z since (X, I) is
regular. Hence (x, y)E0*X €’cO* and 0*X ZFcO*N\A=@. Thus (x,
VECA.

(ii) Let =02 and suppose that c(x)£0. Then take yEc(x)N
& 0. Thus (1, y)Ec{x) Xc(¥)Cc(2) X c(£)ScACTOXOU €OX X. Hence
(x,9)EOX0OUEO0OXX. But &0 and yE ¢ 0, a contradiction.

(iii) If (X, T) is T, then cA=ACOXO\U T OX X for each O€X.

The converse of (i) is false; take (X, %) any Tespace that is not
regular. The converse of (iii) is false; take any regular space that is not
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7.. The converse of (ii) is false; take (X, £) an infinite space with the
cofinite topology.

3. Subspaces

Theorem 3.1. Let (X', T') be a subspace of (X, T). Then Z(IT)=
X'xX'N\ 7% (2).

Proof. If O'=0NX' where O€%, then O'XO'UZC'O'Xx X'=X'
XX'MN(0OX0U €0XX).

4. Transformations

Theorem 4.1. Let (X, X) and (Y, Z") be topological spaces and f:
X—Y a transformation. Then f is continuous relative to T and T' iff
f is uniformly continuous relative to 7Z7(T) and Z/(I').

Proof. Only the necessity requires proof. Let O'XON\J € 0'X Y be
subbasic in Z/(X'). Then (FXf)(O'XONJEO'XY)D(fO'Xf'0"
UEf'0'xX. Since f'0'€g, it follows that (f X f)"(O'x0O\J E 0!
»Y)e Z(T).

Theorem 4.2. A net S:D—X is Z/(X)-Cauchy iff OEIT implies
that S is eventually in O or S is eventually in € O.

Proof. Let S:D—X be a Z/(%)-cauchy net and suppose that 0T,
Then there exists an N in D such that m, n==N implies that (S(), S(x))
E0OXO\JEOXX. Suppose S isnot eventually in O nor eventually in
& 0. Take m*=N and S(m*)£0. Take n*=N and S(n*)& € 0. Then
m*, n* =N, but (S(n*), S(m*))EOXO\UJ €0 XX, a contradiction.

Conversely, suppose S:D—X is a net with the property that S is
eventually in O or eventually in €O for each 0=Z. We will show
that S is then %/ (2)-cauchy. Let OxX O\U €0 X X be subbasic in Z/(X).
If S iseventually in O, then SX S is eventually in OX0OZ0O X0\ €0
xX. If S iseventually in 270, then SXS is eventually in €0 X XC
OXOUE0XX.

Corollary 4.3. Let S:D—X be a net. Then S is 7/ (X)-cauchy iff
S frequently in O€X implies that S is eventually in O.

In a space (X, %), anet S: D—X iscalled an O-net iff for O€g, S
frequently in O implies that S is eventually in O. In [2], the following
theorem is proved.

Theorem 4.4. (X, %) is compact iff every O-net in" X converges.
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Theorem 4.5. (X, X) is compact iff (X, Z (X)) is complete.
Proof. (X, Z/(X)) is complete iff every %/(T)-cauchy net converges

iff every O-net converges (Corollary 4. 3) iff (X, ¥) is compact (Theorem
4. 4).

Theorem 4.6. Let f: X—Y be a transformation and ' a topology
for Y. Let ¥ be the weak topology for X determined by f and I'.
Let 7/ be the weak quasi uniformity for X induced by f and Z/(T').
Then Z = 7/ (%).

Proof. f:X—->Y is T-T' continuous and by Theorem 4.1, f: X—Y
is Z(T)— Z/(Z') uniformly continuous. Thus ¥ Z(T). We show
now that Z'(X)C Z7. Let O'€I’. Then f'O'Xf'ONJEF'0'XX is
subbasic in Z(T). But fO'XfION\J Ef0' X XD(f Xf)"(0'x O
CO'xX)e .

5. Products

Example 5.1. For each positive integer 7, let (X, ;) be the two
point space {0,1} with the discrete topology and let (X, )= X {(X;, T):
i€ P}. Then Z(X)=*=x{ % (T,):i€ P}. For, let O=\U{P;'[o]:iE P}.
Then O€T and OXO\U EFOXXE Z(I). But OXO\J FOXXE(P, X
P)'AN-N(P, X P,)"'A for every integer » and hence OXO\U €0 X
XEX{Z(Z):ieP).
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