ON PERVIN'S QUASI UNIFORMITY

NORMAN LEVINE

1. Introduction

In [1], Pervin introduced a quasi uniformity $\mathscr{U}(\mathfrak{T})$ determined by a topology \mathfrak{T} on the set X by taking sets of the form $O \times O \cup \mathscr{C}O \times X$, $O \in \mathfrak{T}$ as subbase. He proved that the topology induced by $\mathscr{U}(\mathfrak{T})$ is in fact the original topology \mathfrak{T} . Thus every topological space is quasi uniformizable.

It is the purpose of this paper to explore more fully the relationships that exist between \mathfrak{T} and $\mathscr{U}(\mathfrak{T})$. In § 2, the following topological properties are characterized in terms of $\mathscr{U}(\mathfrak{T})$: T_0 , T_1 , T_2 , $\mathfrak{T}=\mathfrak{F}$ (§ denoting the class of all closed sets), \mathfrak{T} is discrete, \mathfrak{T} is indiscrete, \mathfrak{T} has three or less elements, (X, \mathfrak{T}) is disconnected, X is finite and \mathfrak{T} is discrete. In § 4, relationships between continuity and uniform continuity are determined and compactness is characterized in terms of $\mathscr{U}(\mathfrak{T})$. In § 5, we give an example to show that $\mathscr{W}(\times \mathfrak{T}_t) \neq \times \mathscr{U}(\mathfrak{T}_t)$.

2. Topological properties

Theorem 2.1. (X, \mathfrak{T}) is a (i) T_0 -space iff $\triangle = \bigcap \{U \cap U^{-1} : U \in \mathcal{U}(\mathfrak{T})\}$ (ii) T_1 -space iff $\triangle = \bigcap \{U : U \in \mathcal{U}(\mathfrak{T})\}$ and (iii) T_2 space iff $\triangle = \bigcap \{cU : U \in \mathcal{U}(\mathfrak{T})\}$.

Proof of (i). Suppose that (X, \mathfrak{T}) is a T_0 -space and that $(x, y) \in U \cap U^{-1}$ for each $U \in \mathcal{U}(\mathfrak{T})$. We must show that x = y. Suppose on the contrary that $x \neq y$. Case 1. There exists an $O^* \in \mathfrak{T}$ such that $x \in O^*$ and $y \notin O^*$. Then $(x, y) \notin O^* \times O^* \cup \mathscr{C}O^* \times X = U^*$. Thus $(x, y) \notin U^* \cap U^{*-1}$. Case 2. There exists an $O^{\sharp} \in \mathfrak{T}$ such that $x \notin O^{\sharp}$ and $y \in O^{\sharp}$. Then $(y, x) \notin O^{\sharp} \times O^{\sharp} \cup \mathscr{C}O^{\sharp} \times X = U^{\sharp}$. Hence $(x, y) \notin U^{\sharp} \cap U^{\sharp -1}$.

Conversely, suppose that $\triangle = \bigcap \{U \cap U^{-1} : U \in \mathcal{U}\}\$ and suppose that $x \neq y$. Then $(x, y) \notin U \cap U^{-1}$ for some $U \in \mathcal{U}(\mathfrak{T})$. Case 1. $(x, y) \notin U$. Then $(x, y) \notin O \times O \cup \mathscr{C}O \times X$ for some $O \in \mathfrak{T}$ and it follows that $x \in O$ and $y \notin O$. Case 2. $(x, y) \notin U^{-1}$. Then $(y, x) \notin U$ and case 1 may be applied.

Proof of (ii). Let (X, \mathfrak{T}) be a T_1 -space and suppose that $x \neq y$. We will show that $(x, y) \notin U$ for some $U \in \mathcal{U}(\mathfrak{T})$. In fact, we may take $U = \mathcal{U}\{y\} \times \mathcal{U}\{y\} \cup \mathcal{U}\{y\} \times X$.

Conversely, let $x \neq y$ in X. Then $(x, y) \notin U^*$ for some $U^* \in \mathcal{U}(\mathfrak{A})$ and hence $(x, y) \notin O^* \times O^* \cup \mathscr{C}O^* \times X$ for some $O^* \in \mathfrak{T}$. Hence $x \in O^*$ and $y \notin O^*$.

Proof of (iii). If $\triangle = \bigcap \{cU : U \in \mathcal{U}(\mathfrak{T})\}\$, then \triangle is closed in $X \times X$ and (X, \mathfrak{T}) is T_2 .

Conversely, suppose that (X,\mathfrak{T}) is a T_2 -space and that $x\neq y$. There exist disjoint open sets O_x and O_y such that $x\in O_x$ and $y\in O_y$. Hence $(x,y)\notin cU$ where $U=O_x\times O_x\cup \mathscr{C}O_x\times X$.

Theorem 2.2. Let \mathcal{F} denote the family of closed sets in (X, \mathfrak{T}) . Then $\mathfrak{T}=\mathcal{F}$ iff U is a neighborhood of \triangle whenever $U \in \mathcal{U}(\mathfrak{T})$.

Proof. If $\mathfrak{T} = \mathfrak{F}$, then $O \times O \cup \mathscr{C}O \times X$ is an open neighborhood of the diagonal for each $O \in \mathfrak{T}$. Thus U in $\mathscr{U}(\mathfrak{T})$ implies that U is a neighborhood of the diagonal.

Conversely, suppose that U in $\mathscr{U}(\mathfrak{T})$ implies that U is a neighborhood of the diagonal. Let $O \in \mathfrak{T}$. Then $O \times O \cup \mathscr{C}O \times X \in \mathscr{U}(\mathfrak{T})$ and hence there exists a $G \in \mathfrak{T} \times \mathfrak{T}$ such that $O \times O \cup \mathscr{C}O \times X \supseteq G \supseteq \triangle$. Then $O \times O \cup \mathscr{C}O \times \mathscr{C}O \supseteq G \cap G^{-1} \supseteq \triangle$ and $G \cap G^{-1} \in \mathfrak{T} \times \mathfrak{T}$. Let $x \in \mathscr{C}O$. Then $x \in G \cap G^{-1}[x] \subseteq (O \times O \cup \mathscr{C}O \times \mathscr{C}O)[x] = \mathscr{C}O$ and $\mathscr{C}O$ is open. It follows then that $\mathfrak{T} = \mathfrak{F}$.

Corollary 2.3. $\mathscr{U}(\mathfrak{T})$ is a uniformity iff $\mathfrak{T} = \mathfrak{F}$.

Proof. If $\mathscr{U}(\mathfrak{T})$ is a uniformity, then $U \in \mathscr{U}(\mathfrak{T})$ implies that U is a neighborhood of \triangle and hence by Theorem 2. 2, $\mathfrak{T} = \mathfrak{F}$.

Conversely, suppose that $\mathfrak{T}=\mathfrak{F}$. It suffices to show that $(O\times O\cup \mathscr{C}O\times X)^{-1}\subseteq \mathscr{U}(\mathfrak{T})$ when $O\in\mathfrak{T}$. But $(O\times O\cup\mathscr{C}O\times X)^{-1}\supseteq O\times O\cup\mathscr{C}O\times \mathscr{C}O\cup \mathscr{C}O\times X)\cap (\mathscr{C}O\times\mathscr{C}O\cup O\times X)\subseteq \mathscr{U}(\mathfrak{T})$.

Corollary 2.4. The following are equivalent: (i) (X, \mathfrak{T}) is discrete (ii) $\mathfrak{T}=\mathfrak{F}$ and (X, \mathfrak{T}) is a T_0 -space (iii) $\mathscr{U}(\mathfrak{T})$ is a uniformity and $\triangle = \bigcap \{U \cap U^{-1}: U \in \mathscr{U}(\mathfrak{T})\}.$

Proof. (i) clearly implies (ii) and (ii) is equivalent to (iii) by corollary 2. 3 and (i) of theorem 2. 1. To show that (ii) implies (i), it suffices to show that $\{x\}$ is closed for each $x \in X$. But $\mathfrak{T} = \mathfrak{F}$ and (X, \mathfrak{T}) a T_0 -space clearly implies that (X, \mathfrak{T}) is a T_2 -space and hence a T_1 -space.

Theorem 2.5. (X, \mathfrak{T}) is trivial iff $(X, \mathcal{U}(\mathfrak{T}))$ is trivial.

Proof. Exercise for the reader.

Lemma 2.6. Let $B \subseteq X$, $B \neq X$. If $A \times A \cup CA \times X \subseteq B \times B \cup CB \times X$, then $A \supseteq B$.

Proof. Let $b \in B$ and suppose that $b \notin A$. Take $q \notin B$. Then $(b, q) \in A \times A \cup \mathscr{C}A \times X$, but $(b, q) \notin B \times B \cup \mathscr{C}B \times X$, a contradiction.

Lemma 2.7. Let $\emptyset \neq B \subseteq X$ and suppose that $A \times A \cup \mathscr{C}A \times X \subseteq B \times B \cup \mathscr{C}B \times X$. Then $A \subseteq B$.

Proof. Case 1. B=X. Then $A\subseteq B$. Case 2. $B\neq X$. Then by Lemma 2. 6, $A\supseteq B$. Now suppose that $A\nsubseteq B$. Take $a\in A$, $a\notin B$ and $b\in B$. Then $(b, a)\in A\times A\subseteq A\times A\cup \mathscr{C}A\times X$, but $(b, a)\notin B\times B\cup \mathscr{C}B\times X$, a contradiction.

Corollary 2.8. If $\emptyset \neq B \subseteq X$ and $A \times A \cup \mathscr{C} A \times X \subseteq B \times B \cup \mathscr{C} B \times X$, then A = B.

Theorem 2.9. $\{O \times O \cup \mathscr{C}O \times X : O \in \mathfrak{T}\}\$ is a base for $\mathscr{U}(\mathfrak{T})$ iff \mathfrak{T} consists of at most three sets.

Proof. If $\mathfrak{T} = \{\emptyset, X\}$ or if $\mathfrak{T} = \{\emptyset, O, X\}$, then $\{X \times X\}$ or $\{O \times O \cup \mathscr{C}O \times X, X \times X\}$ is a base for $\mathscr{U}(\mathfrak{T})$.

Conversely, suppose that $\emptyset \neq O_i \neq X$ for i=1,2 and that $\{O \times O \cup \mathscr{C}O \times X \colon O \in \mathfrak{T}\}$ is a base for $\mathscr{U}(\mathfrak{T})$. Then $(O_1 \times O_1 \cup \mathscr{C}O_1 \times X) \cap (O_2 \times O_2 \cup \mathscr{C}O_2 \times X) \supseteq O \times O \cup \mathscr{C}O \times X$ for some $O \in \mathfrak{T}$. By Corollary 2. 8, $O_1 = O = O_2$ and hence \mathfrak{T} consists of at most three sets.

Theorem 2.10. (X, \mathfrak{T}) is disconnected iff there exists an A such that $\emptyset \neq A \neq X$ and $A \times A \cup \mathscr{C} A \times \mathscr{C} A \in \mathscr{U}(\mathfrak{T})$.

Proof. If (X, \mathfrak{T}) is disconnected, let A be both open and closed and $\emptyset \neq A \neq X$. Then $A \times A \cup \mathscr{C}A \times \mathscr{C}A = (A \times A \cup \mathscr{C}A \times X) \cap (\mathscr{C}A \times \mathscr{C}A \cup A \times X) \in \mathscr{U}(\mathfrak{T})$.

Conversely, suppose that $\emptyset \neq A \neq X$ and that $A \times A \cup \mathscr{C}A \times \mathscr{C}A \in \mathscr{U}(\mathfrak{T})$. We will show that A is open (and by symmetry, $\mathscr{C}A$ is open). Let $a \in A$. Then $(A \times A \cup \mathscr{C}A \times \mathscr{C}A) \lceil a \rceil = A$.

Theorem 2.11. $(X, \mathcal{U}(\mathfrak{T}))$ is totally bounded $(U \in \mathcal{U}(\mathfrak{T}))$ implies that U[A] = X for some finite set A.

Proof. Let $U \in \mathcal{U}(\mathfrak{T})$. Then $U \supseteq \bigcap \{O_i \times O_i \bigcup \mathscr{C}O_i \times X : 1 \leq i \leq n\}$. Consider the 2^n sets of the form $A_i \bigcap \cdots \bigcap A_n$ where $A_i = O_i$ or $A_i = \mathscr{C}O_i$. Pick $q \in A_1 \bigcap \cdots \bigcap A_n$ whenever $A_1 \bigcap \cdots \bigcap A_n \neq \emptyset$ and let A be the set of q-points thus picked. Clearly, A is finite and we show now that $U \cap A$

=X. Let $x \in X$. Let $A_i = O_i$ if $x \in O_i$ and let $A_i = \mathscr{C}O_i$ if $x \in \mathscr{C}O_i$. Then $\bigcap A_i \neq \emptyset$. There exists a q in A such that $q \in \bigcap A_i$. Then $(q, x) \in U$ or $x \in U[A]$. If $(q, x) \notin U$, then $(q, x) \notin O_j \vee O_j \vee \mathscr{C}O_i \times X$ for some j and hence $q \in O_j$ and $x \in \mathscr{C}O_i$. Then $A_i = \mathscr{C}O_j$ and $q \in A_j = \mathscr{C}O_i$, a contradiction,

Corollary 2.12. $\triangle \in \mathcal{U}(\mathfrak{T})$ iff (i) X is finite and (ii) \mathfrak{T} is discrete.

Proof. Let $\triangle \in \mathcal{U}(\mathfrak{T})$. By Theorem 2.11, there exists a finite set A such that $X = \triangle[A] = A$. Thus, X is finite and (i) holds. (ii) follows from the fact that $\mathcal{U}(\mathfrak{T})$ is a discrete uniform space when $\triangle \in \mathcal{U}(\mathfrak{T})$.

Conversely, suppose that (i) and (ii) hold. Then $\triangle = \bigcap \{\{x\} \times \{x\} \cup \mathscr{C} \{x\} \times X : x \in X\} \in \mathscr{U}(\mathfrak{T})$.

Theorem 2.13. If $\mathfrak T$ is countable, then $\mathscr U(\mathfrak T)$ has a countable base. If $\mathscr U(\mathfrak T)$ has a countable base, then $(X,\mathfrak T)$ is a second axiom space.

Proof. If $\mathfrak{T} = \{O_i : i \in P\}$, then $\{O_i \times O_i \cup \mathscr{C}O_i \times X : i \in P\}$ is a countable subbase for $\mathscr{U}(\mathfrak{T})$ and hence $\mathscr{U}(\mathfrak{T})$ has a countable base.

Suppose $\mathscr{U}(\mathfrak{T})$ has a countable base $\{U_i: i \in P\}$. Now $U_i \supseteq \cap \{O_{ij} \times O_{ij} \cup \mathscr{C}O_{ij} \times X: 1 \leq j \leq n_i\}$ for each $i \in P$. We will show that the $\{O_{ij}\}$ forms a subbase for \mathfrak{T} . Let $x \in O \in \mathfrak{T}$. Then $U[x] \subseteq O$ for some $U \in \mathscr{U}(\mathfrak{T})$. But $U \supseteq U_i \supseteq \cap \{O_{ij} \times O_{ii} \cup \mathscr{C}O_{ij} \times X: 1 \leq j \leq n_i\}$ and hence $\cap \{O_{ij} \times O_{ii} \cup \mathscr{C}O_{ii} \times X\}[x] \subseteq O$. But $(O_{ij} \times O_{ij} \cup \mathscr{C}O_{ij} \times X)[x] = O_{ij}$ or X. Thus $x \in O^* \subseteq O$ where O^* is an intersection of sets from the collection $\{O_{ij}: 1 \leq j \leq n_i\}$.

Theorem 2.14. (i) If (X, \mathfrak{T}) is regular, then $c(\triangle) \subseteq O \times O \cup \mathscr{C}O \times X$ for each $O \in \mathfrak{T}$. (ii) If $c(\triangle) \subseteq O \times O \cup \mathscr{C}O \times X$ for each $O \in \mathfrak{T}$, then (X, \mathfrak{T}) is an R_0 -space $(x \in O \in \mathfrak{T})$ implies that $c(x) \subseteq O$. (iii) If (X, \mathfrak{T}) is T_2 then $c(\triangle) \subseteq O \times O \cup \mathscr{C}O \times X$ for each $O \in \mathfrak{T}$.

- *Proof.* (i) Suppose $(x, y) \notin O \times O \cup \mathscr{C}O \times X$ for some $O \in \mathfrak{T}$. Then $x \in O$ and $y \notin O$. But $x \in O^* \subseteq cO^* \subseteq O$ for some $O^* \in \mathfrak{T}$ since (X, \mathfrak{T}) is regular. Hence $(x, y) \in O^* \times \mathscr{C}cO^*$ and $O^* \times \mathscr{C}cO^* \cap \triangle = \emptyset$. Thus $(x, y) \notin c\triangle$.
- (ii) Let $x \in O \in \mathbb{X}$ and suppose that $c(x) \not\equiv O$. Then take $y \in c(x) \cap \mathscr{C}O$. Thus $(x, y) \in c(x) \times c(y) \subseteq c(x) \times c(x) \subseteq c \triangle \subseteq O \times O \cup \mathscr{C}O \times X$. Hence $(x, y) \in O \times O \cup \mathscr{C}O \times X$. But $x \in O$ and $y \in \mathscr{C}O$, a contradiction.
- (iii) If (X, \mathfrak{T}) is T_2 , then $c \triangle = \triangle \subseteq O \times O \cup \mathscr{C}O \times X$ for each $O \in \mathfrak{T}$. The converse of (i) is false; take (X, \mathfrak{T}) any T_2 -space that is not regular. The converse of (iii) is false; take any regular space that is not

 T_2 . The converse of (ii) is false; take (X, \mathfrak{T}) an infinite space with the cofinite topology.

3. Subspaces

Theorem 3.1. Let (X', \mathfrak{T}') be a subspace of (X, \mathfrak{T}) . Then $\mathscr{U}(\mathfrak{T}') = X' \times X' \cap \mathscr{U}(\mathfrak{T})$.

Proof. If $O' = O \cap X'$ where $O \in \mathfrak{T}$, then $O' \times O' \cup \mathscr{C}'O' \times X' = X' \times X' \cap (O \times O \cup \mathscr{C}O \times X)$.

4. Transformations

Theorem 4.1. Let (X, \mathfrak{T}) and (Y, \mathfrak{T}') be topological spaces and $f: X \rightarrow Y$ a transformation. Then f is continuous relative to \mathfrak{T} and \mathfrak{T}' iff f is uniformly continuous relative to $\mathscr{U}(\mathfrak{T})$ and $\mathscr{U}(\mathfrak{T}')$.

Proof. Only the necessity requires proof. Let $O' \times O' \cup \mathscr{C}O' \times Y$ be subbasic in $\mathscr{U}(\mathfrak{T}')$. Then $(f \times f)^{-1}(O' \times O' \cup \mathscr{C}O' \times Y) \supseteq (f^{-1}O' \times f^{-1}O') \cup \mathscr{C}f^{-1}O' \times X$. Since $f^{-1}O' \in \mathfrak{T}$, it follows that $(f \times f)^{-1}(O' \times O' \cup \mathscr{C}O' \times Y) \in \mathscr{U}(\mathfrak{T})$.

Theorem 4.2. A net $S: D \rightarrow X$ is $\mathcal{U}(\mathfrak{T})$ -Cauchy iff $O \in \mathfrak{T}$ implies that S is eventually in O or S is eventually in CO.

Proof. Let $S: D \to X$ be a $\mathscr{U}(\mathfrak{T})$ -cauchy net and suppose that $O \in \mathfrak{T}$. Then there exists an N in D such that $m, n \geq N$ implies that $(S(m), S(n)) \in O \times O \cup \mathscr{C}O \times X$. Suppose S is not eventually in O nor eventually in $\mathscr{C}O$. Take $m^* \geq N$ and $S(m^*) \notin O$. Take $m^* \geq N$ and $S(n^*) \notin \mathscr{C}O$. Then $m^*, n^* \geq N$, but $(S(n^*), S(m^*)) \notin O \times O \cup \mathscr{C}O \times X$, a contradiction.

Conversely, suppose $S: D \rightarrow X$ is a net with the property that S is eventually in O or eventually in $\mathscr{C}O$ for each $O \in \mathfrak{T}$. We will show that S is then $\mathscr{U}(\mathfrak{T})$ -cauchy. Let $O \times O \cup \mathscr{C}O \times X$ be subbasic in $\mathscr{U}(\mathfrak{T})$. If S is eventually in O, then $S \times S$ is eventually in $O \times O \subseteq O \times O \cup \mathscr{C}O \times X$. If S is eventually in $\mathscr{C}O$, then $S \times S$ is eventually in $\mathscr{C}O \times X \subseteq O \times O \cup \mathscr{C}O \times X$.

Corollary 4.3. Let $S: D \rightarrow X$ be a net. Then S is $\mathcal{U}(\mathfrak{T})$ -cauchy iff S frequently in $O \in \mathfrak{T}$ implies that S is eventually in O.

In a space (X, \mathfrak{T}) , a net $S: D \rightarrow X$ is called an O-net iff for $O \in \mathfrak{T}$, S frequently in O implies that S is eventually in O. In [2], the following theorem is proved.

Theorem 4.4. (X, \mathfrak{T}) is compact iff every O-net in X converges.

Theorem 4.5. (X, \mathfrak{T}) is compact iff $(X, \mathcal{U}(\mathfrak{T}))$ is complete.

Proof. $(X, \mathcal{U}(\mathfrak{T}))$ is complete iff every $\mathcal{U}(\mathfrak{T})$ -cauchy net converges iff every O-net converges (Corollary 4. 3) iff (X, \mathfrak{T}) is compact (Theorem 4. 4).

Theorem 4.6. Let $f: X \rightarrow Y$ be a transformation and \mathfrak{T}' a topology for Y. Let \mathfrak{T} be the weak topology for X determined by f and \mathfrak{T}' . Let \mathscr{U} be the weak quasi uniformity for X induced by f and $\mathscr{U}(\mathfrak{T}')$. Then $\mathscr{U} = \mathscr{U}(\mathfrak{T})$.

Proof. $f: X \rightarrow Y$ is $\mathfrak{T} \cdot \mathfrak{T}'$ continuous and by Theorem 4.1, $f: X \rightarrow Y$ is $\mathscr{U}(\mathfrak{T}) - \mathscr{U}(\mathfrak{T}')$ uniformly continuous. Thus $\mathscr{U} \subseteq \mathscr{U}(\mathfrak{T})$. We show now that $\mathscr{U}(\mathfrak{T}) \subseteq \mathscr{U}$. Let $O' \in \mathfrak{T}'$. Then $f^{-1}O' \times f^{-1}O' \cup \mathscr{C} f^{-1}O' \times X$ is subbasic in $\mathscr{U}(\mathfrak{T})$. But $f^{-1}O' \times f^{-1}O' \cup \mathscr{C} f^{-1}O' \times X \supseteq (f \times f)^{-1}(O' \times O' \cup \mathscr{C} O' \times X) \in \mathscr{U}$.

5. Products

Example 5.1. For each positive integer i, let (X_i, \mathfrak{T}_i) be the two point space $\{0, 1\}$ with the discrete topology and let $(X, \mathfrak{T}) = \times \{(X_i, \mathfrak{T}_i) : i \in P\}$. Then $\mathscr{U}(\mathfrak{T}) \neq \times \{\mathscr{U}(\mathfrak{T}_i) : i \in P\}$. For, let $O = \bigcup \{P_i^{-1}[o] : i \in P\}$. Then $O \in \mathfrak{T}$ and $O \times O \cup \mathscr{C}O \times X \in \mathscr{U}(\mathfrak{T})$. But $O \times O \cup \mathscr{C}O \times X \not = (P_i \times P_i)^{-1} \triangle \cap \cdots \cap (P_n \times P_n)^{-1} \triangle$ for every integer n and hence $O \times O \cup \mathscr{C}O \times X \not \in \mathscr{U}(\mathfrak{T}_i) : i \in P\}$.

REFERENCES

- [1] W. J. Pervin: Quasi Uniformization of Topological Spaces, Math. Ann. 147 (1962).
- [2] L.C. ROBERTSON and S. P. FRANKLIN: O-sequences and O-nets, The American Mathematical Monthly, Vol. 72, Number 5, May 1965.

DEPARTMENT OF MATHEMATICS,
THE OHIO STATE UNIVERSITY

(Received November 18, 1969)