SOME GENERALIZATIONS OF DUALITY THEOREMS IN MATHEMATICAL PROGRAMMING PROBLEMS

MARETSUGU YAMASAKI

§ 1. Introduction and problem setting

Let X, Z and W be real linear spaces and suppose that Z and W are in duality with respect to a certain bilinear functional $((\ ,\))$. Let C and D be nonempty sets in X and Z respectively, and let f and g be finite-valued real functions on C and D respectively. Assume that $g(z) = -\infty$ for every $z \notin D$. Let A be a transformation from C into Z.

We shall be concerned with the following two problems:

- (I) Determine $M = \inf\{f(x) g(Ax); x \in C\}$,
- (II) Determine $M^* = \sup\{g^*(w) f_A^*(w) ; w \in W\}$,

where

$$g^*(w) = \inf\{((z, w)) - g(z); z \in D\}$$

and

$$f_{\perp}^*(w) = \sup\{((Ax, w)) - f(x) ; x \in C\}.$$

Here we define

$$r+\infty=\infty+r=\infty, r-\infty=-\infty+r=-\infty$$

for all real numbers r, and set

$$\infty + \infty = \infty$$
, $-\infty - \infty = -\infty$, $-(-\infty) = \infty$.

More precisely, we shall study the problems

- (i) the existence of x or w which attains the infimum or the supremum,
- (ii) relations between the values M and M^* .

An answer to problem (ii) is called a duality theorem.

R. T. Rockafellar [6] investigated these problems in the case where A is linear and continuous, C and D are convex sets and f and -g are convex functions. Our problems (I) and (II) contain the problems discussed by U. Dieter [3], K. S. Kretschmer [4] and R. Van Slyke and R. Wets [7]. M. Yamasaki [8] studied the above problems in the case where C is a convex set, D is a convex cone, f is a convex function, g=0 and A is convex with respect to D.

In the present paper, we shall generalize duality theorems given in [3], [4], [7] and [8] by making use of a well-known separation theorem. We shall introduce in §5 a condition which was called the normality condition in [6] and [7]. By means of this condition, duality theorems in §3 will be generalized.

§ 2. Preliminaries

For later use, we shall recall some notions and results in [1] and [2]. Let X and Y be real linear spaces in duality with respect to a certain bilinear functional ((,)). Let us denote the weak topology on X by w(X, Y) and the Mackey topology by s(X, Y). A locally convex Hausdorff topology t(X, Y) on X compatible with this duality is stronger than w(X, Y) and weaker than s(X, Y). If X is assigned t(X, Y), then every element of Y is identified with a t(X, Y)-continuous linear functional on X.

Let R be the set of real numbers and R_0 the set of non-negative real numbers.

We shall utilize the following separation theorem:

Proposition 1.10 Let K be a w(X, Y)-closed convex set in X and x_0 be an element of X such that $x_0 \notin K$. Then there exist $y_0 \in Y$ and $\alpha \in R$ such that

$$((x_0, y_0)) > \alpha \geq ((x, y_0))$$

for all $x \in K$.

Next we shall recall the conjugate operation of convex functions in [3], which will be used in § 4. For a finite-valued real convex function p on X with nonempty convex domain P, the conjugate function p^* and the conjugate set P^* are defined by

$$p^*(y) = \sup\{((x, y)) - p(x) ; x \in P\},\$$

 $P^* = \{y \in Y ; p^*(y) < \infty\}.$

Then p^* is a finite-valued real convex function with convex domain P^* . Let us define

$$[p, P] = \{(x, r); x \in P \text{ and } r \ge p(x)\}.$$

For a finite-valued real concave function q on X with nonempty convex domain Q, there are similar definitions:

$$q^*(y) = \inf\{((x, y)) - q(x); x \in Q\},\$$

^{1) [1],} p. 73, Proposition 4 and [2], p. 50, Proposition 1.

$$Q^* = \{ y \in Y ; q^*(y) > -\infty \},$$

 $[q, Q] = \{ (x, r) ; x \in Q \text{ and } r \leq q(x) \}.$

Then q^* is a finite-valued real concave function with convex domain Q^* .

Dieter proved

Proposition 2.²⁾ Let $X \times R$ and $Y \times R$ be in duality with respect to the bilinear functional <, > defined by

$$<(x, r), (y, s)>=((x, y))+rs$$

for all $(x, r) \in X \times R$ and $(y, s) \in Y \times R$.

- (1) If P is w(X, Y)-closed and p is lower semicontinuous with respect to w(X, Y), then [p, P] is $w(X \times R, Y \times R)$ -closed.
- (2) If [p, P] is $w(X \times R, Y \times R)$ -closed, then $p^{**} = (p^*)^* = p$ and $P^{**} = (P^*)^* = P$.

§ 3. Duality theorems

Let $Z \times R$ and $W \times R$ be in duality with respect to the bilinear functional <, > defined by

$$<\!(z, r), (w, s)> = ((z, w)) + rs$$

for every $(z, r) \in Z \times R$ and $(w, s) \in W \times R$. Let E, E_0 and L be the sets in $Z \times R$ defined by

$$E = \{(Ax-z, r+f(x)-g(z)); x \in C, z \in D \text{ and } r \in R_0\},$$

$$L = \{(0, r); 0 \in \mathbb{Z} \text{ and } r \in \mathbb{R}\},\$$

$$E_0 = E \cap L$$
.

In case $C \cap A^{-1}(D)$ is not empty, we have

$$E_0 = \{(0, r+f(x)-g(Ax)); 0 \in \mathbb{Z}, x \in C \cap A^{-1}(D) \text{ and } r \in \mathbb{R}_0\}.$$

First we shall study the existence of x which attains the value M of problem (I). We have

Theorem 1. Assume that the value M is finite. Then there exists $x \in C$ such that $Ax \in D$ and M=f(x)-g(Ax) if and only if the set E_0 is $w(Z \times R, W \times R)$ -closed.

Proof. Since M is finite, we have

$$\{0\}\times (M, +\infty) \subset E_0 \subset \{0\}\times \lceil M, +\infty).$$

^{2) [3],} p. 98, Hilfssatz 5 and p. 99, Hilfssatz 7.

Therefore the set E_0 is $w(Z \times R, W \times R)$ -closed if and only if (0, M) belongs to E_0 . We see easily that there exists $x \in C$ such that $Ax \in D$ and M = f(x) - g(Ax) if and only if $(0, M) \in E_0$.

Observe that the set E_0 is $w(Z \times R, W \times R)$ -closed whenever the set E is $w(Z \times R, W \times R)$ -closed, since the set E is $w(Z \times R, W \times R)$ -closed. However, the $w(Z \times R, W \times R)$ -closedness of the set E_0 does not necessarily imply the $w(Z \times R, W \times R)$ -closedness of the set E. This is shown by Example 5. 1 in [4] or Example 3. 5 in [7].

As for the $w(Z \times R, W \times R)$ -closedness of the set E_0 , we have

Proposition 3. Let X be a topological linear space and let Z be assigned w(Z, W). Assume that the functions f and -g are lower semicontinuous and that the transformation A is continuous. If $C \cap A^{-1}(D)$ is a nonempty and compact set, then the set E_0 is $w(Z \times R, W \times R)$ -closed.

Proof. Let $\{(0, r_t); t \in T\}$ be a net in E_0 which $w(Z \times R, W \times R)$ -converges to $(z, r) \in Z \times R$. Then z = 0 and there exists $x_t \in C \cap A^{-1}(D)$ such that $r_t \ge f(x_t) - g(Ax_t)$. By the compactness of $C \cap A^{-1}(D)$, there exists a subnet $\{x_t; t \in T'\}$ which converges to some $x \in C \cap A^{-1}(D)$. Then by the continuity of A and the lower semicontinuity of f and f and f we have

$$r = \lim_{t \in T'} r_t \ge \lim_{\overline{t} \in \overline{T'}} f(x_t) - \overline{\lim}_{t \in T'} g(Ax_t) \ge f(x) - g(Ax),$$

and hence $(0, r) \in E_0$. Therefore the set E_0 is $w(Z \times R, W \times R)$ -closed.

Next we shall investigate some relations between the values M and M^* . We have

Theorem 2. It is always valid that $M^* \leq M$.

Proof. In case $C \cap A^{-1}(D)$ is empty, we have $M = \infty$ and our assertion is obvious. In case $C \cap A^{-1}(D)$ is not empty, let x and w be arbitrary elements of $C \cap A^{-1}(D)$ and W respectively. The inequalities

$$f(x)+f_{A}^{*}(w) \geq ((Ax, w)),$$

$$g(Ax)+g^{*}(w) \leq ((Ax, w))$$

follow from the definitions of f_A^* and g^* in § 1. Thus we have

$$f(x)-g(Ax) \ge g^*(w)-f_A^*(w)$$
.

This completes the proof.

Before giving the converse relation $M^* \ge M$, we shall prepare

Lemma 1. If $w \in W$ and $\alpha \in R$ satisfy the inequality

$$\alpha \geq ((u, w)) - r$$

for all $(u, r) \in E$, then

$$\alpha \geq f_{A}^{*}(w) - g^{*}(w)$$
.

Proof. Since $(Ax-z, f(x)-g(z))\in E$ for any $x\in C$ and $z\in D$, we have

$$\alpha \ge ((Ax - z, w)) - f(x) + g(z) = \{((Ax, w)) - f(x)\} - \{((z, w)) - g(z)\}.$$

From the definitions of f_A^* and g^* , it follows that

$$\alpha \geq f_{A}^{*}(w) - g^{*}(w)$$
.

Now we shall prove

Theorem 3. If the value M is finite and the set E is convex and $w(Z \times R, W \times R)$ -closed, then $M = M^*$ holds.

Proof. For an arbitrarily fixed $\varepsilon > 0$, $(0, M - \varepsilon) \notin E$. Since E is a $w(Z \times R, W \times R)$ -closed convex set, there exist $(w, s) \in W \times R$ and $\alpha \in R$ such that

$$(M-\varepsilon)s > \alpha \ge ((u, w)) + rs$$

for all $(u, r) \in E$ by Proposition 1. From the fact that $(0, M+\varepsilon) \in E$, it follows that $(M-\varepsilon)s > (M+\varepsilon)s$ and hence s < 0. Writing $\alpha_0 = \alpha/s$ and $w_0 = -w/s$, we have

$$M-\varepsilon < \alpha_0 \leq -((u, w_0)) + r$$

for all $(u, r) \in E$. By means of Lemma 1, we see that

$$\alpha_0 \leq g^*(w_0) - f_A^*(w_0) \leq M^*$$
.

Therefore $M^* > M - \varepsilon$. By the arbitrariness of ε , we conclude that $M^* \ge M$. The converse inequality was given in Theorem 2. This completes the proof.

Theorem 4. If the value M^* is finite and the set E is convex and $w(Z \times R, W \times R)$ -closed, then $M = M^*$ holds.

Proof. Suppose $(0, M^*) \notin E$. By Proposition 1 there exist $(w, s) \in W \times R$ and $\alpha \in R$ such that

$$(1) M*s > \alpha \ge ((u, w)) + rs$$

for all $(u, r) \in E$. For a fixed $(u_1, r_1) \in E$, we have $(u_1, r_1 + t) \in E$ for all $t \in R_0$ and by (1)

$$\alpha \geq ((u_1, w)) + r_1 s + t s$$
.

Letting $t\to\infty$, we see that $s\le 0$. First we shall consider the case where s<0. Writing $\alpha_0=\alpha/s$ and $w_0=-w/s$, we have

$$(2) M^* < \alpha_0 \leq -((u, w_0)) + r$$

for all $(u, r) \in E$. It follows from Lemma 1 that

$$\alpha_0 \leq g^*(w_0) - f_A^*(w_0) \leq M^*$$
.

This is a contradiction. Next we shall consider the case where s=0. Then we have

$$(3) 0 > \alpha \ge ((u, w))$$

for all $(u, r) \in E$. On the other hand, there exist $v \in W$ and $\beta \in R$ such that

$$\beta \geq ((u, v)) - r$$

for all $(u, r) \in E$. In fact, by our assumption that M^* is finite, we can find $v \in W$ such that both $f_A^*(v)$ and $g^*(v)$ are finite. By the definitions of f_A^* and g^* , we have

$$\beta = f_A^*(v) - g^*(v) \ge ((Ax, v)) - f(x) - ((z, v)) + g(z)$$

$$\ge ((Ax - z, v)) - \{r + f(x) - g(z)\}$$

for all $x \in C$, $z \in D$ and $r \in R_0$, which implies (4). On account of (3) and (4), we have

$$\alpha t + \beta \geq ((u, tw + v)) - r$$

for all $(u, r) \in E$ and $t \in R_0$. We see by Lemma 1 that

$$\alpha t + \beta \ge f_A^*(tw+v) - g^*(tw+v) \ge -M^*$$
.

Letting $t\to\infty$, we have $M^*=\infty$, since $\alpha<0$. This is a contradiction. Thus $(0, M^*)\in E$. It follows that $M^*\geq M$. On account of Theorem 2, we have $M=M^*$.

With regard to the convexity of the set E, we have

Theorem 5. Assume that C and D are convex sets and f and -g are convex functions. If any one of the following conditions (M.1) and (M.2) is fulfilled, then the set E is convex:

(M. 2) D is a cone, A is convex with respect to D3, i. e.,

$$A(tx_1+(1-t)x_2)-tAx_1-(1-t)Ax_2 \in D$$

for any $x_1, x_2 \in C$ and $t \in R_0$ with 0 < t < 1, and g is increasing with respect to D, i. e., $g(z_1) \ge g(z_2)$ whenever $z_1 - z_2 \in D$.

Proof. Assume condition (M. 2). Let $(u_i, r_i) \in E(i=1, 2)$ and $t \in R_0$, 0 < t < 1. Then there exist $x_i \in C$, $z_i \in D$ and $s_i \in R_0$ such that $u_i = Ax_i - z_i$ and $r_i = s_i + f(x_i) - g(z_i)$. Let us denote $u_t = tu_1 + (1-t)u_2$, $r_t = tr_1 + (1-t)r_2$, $x_t = tx_1 + (1-t)x_2$, $z_t = tz_1 + (1-t)z_2$ and $s_t = ts_1 + (1-t)s_2$. Then $x_t \in C$, $z_t \in D$ and $s_t \in R_0$. Since A is convex with respect to D, we have $tAx_1 + (1-t)Ax_2 = Ax_t - v$ for some $v \in D$. Thus $u_t = Ax_t - (v + z_t) \in A(C) - D$. On the other hand, by the convexity of f and f and f and by the assumption that f is increasing with respect to f, we have

$$r_{t} = s_{t} + tf(x_{1}) + (1 - t)f(x_{2}) - tg(z_{1}) - (1 - t)g(z_{2})$$

$$\geq s_{t} + f(x_{t}) - g(z_{t}) \geq s_{t} + f(x_{t}) - g(v + z_{t}),$$

and hence $r_t = s + f(x_t) - g(v + z_t)$ for some $s \in R_0$. Therefore $(u_t, r_t) \in E$ and the set E is convex. Similarly we can prove that condition (M.1) implies the convexity of the set E.

By means of Theorem 5, we see that Theorems 3 and 4 are some generalizations of duality theorems in [3], [4], [7] and [8].

We shall study the $w(Z \times R, W \times R)$ -closedness of the set E. In the rest of this section, we always assume that X is a topological linear space, that Z is assigned w(Z, W), that the sets C and D are closed, that the functions f and -g are lower semicontinuous and that the transformation A is continuous. Then we have

Theorem 6. Assume that, for any $w(Z \times R, W \times R)$ -convergent net $\{(u_t, r_t); t \in T\}$ in E, there exist $\{x_t; t \in T\} \subset C$ and $\{z_t; t \in T\} \subset D$ such that

$$u_t = Ax_t - z_t, \quad r_t \ge f(x_t) - g(z_t)$$

and $\{x_t; t \in T\}$ contains a convergent subnet. Then the set E is $w(Z \times R, W \times R)$ -closed.

Proof. Let $\{(u_t, r_t); t \in T\}$ be a net in E which $w(Z \times R, W \times R)$ -converges to $(u, r) \in Z \times R$. By our assumption, there exist $\{x_t; t \in T\}$ $\subset C$ and $\{z_t; t \in T\} \subset D$ such that

$$u_t = Ax_t - z_t, \quad r_t \geq f(x_t) - g(z_t)$$

³⁾ We correct the definition of this notion in [8], p. 332 in the present form.

and $\{x_t; t \in T\}$ contains a subnet $\{x_t; t \in T'\}$ which converges to some x. Then $\{z_t; t \in T'\}$ converges to Ax-u=z, since A is continuous. Since C and D are closed, we have $x \in C$ and $z \in D$. By the lower semicontinuity of f and -g, we have

$$r = \lim_{t \in T'} r_t \ge \lim_{\overline{t \in T'}} f(x_t) - \overline{\lim}_{t \in T'} g(z_t) \ge f(x) - g(z).$$

Therefore $(u, r) \in E$ and the set E is $w(Z \times R, W \times R)$ -closed.

Corollary. If the set C is compact, then the set E is $w(Z \times R, W \times R)$ -closed.

Similarly we can prove

Proposition 4. Assume that A is homeomorphic and that the set D is compact. Then the set E is $w(Z \times R, W \times R)$ -closed.

§ 4. The case where A is linear and continuous

We shall recall the convex programming problems studied by Rocka-fellar $\lceil 6 \rceil$.

Let X and Y be real linear spaces which are in duality with respect to the bilinear functional $((\ ,\))_1$ and let Z and W be real linear spaces which are in duality with respect to the bilinear functional $((\ ,\))_2$. Let C and D be nonempty convex sets in X and Z respectively, and let f and -g be finite-valued real convex functions on C and D respectively. Let A be a linear transformation from X into Z which is w(X,Y)-w(Z,W) continuous and let A^* be its adjoint. Thus A^* is a linear transformation from W into Y which is w(W,Z)-w(Y,X) continuous and satisfies $((Ax,w))_2=((x,A^*w))_1$ for all $x\in X$ and $w\in W$.

By virtue of the conjugate operations for convex sets and convex functions defined in § 2, we see that the function g^* defined in § 1 is the conjugate function of the concave function g and that $f_A^*(w) = f^*(A^*w)$ holds, where f^* is the conjugate function of the convex function f. Let us denote by C^* and D^* the conjugate sets of convex sets C and D respectively. The convex programming problems discussed in [6] are as follows:

- (III) Determine $N = \inf\{f(x) g(Ax); x \in C \text{ and } Ax \in D\}$,
- (IV) Determine $N^* = \sup\{g^*(w) f^*(A^*w); w \in D^* \text{ and } A^*w \in \mathbb{C}^*\}$. Here we use the convention that the infimum and the supremum on the empty set are equal to $+\infty$ and $-\infty$ respectively.

These problems contain the problems investigated by Dieter [3], Kretschmer [4]. Dieter discussed the case where X=Z and A is the identity transformation. Kretschmer discussed the case where

$$f(x) = ((x, y_0))_1, C = P,$$

 $g(z) = 0, D = Q + z_0,$

where P and Q are convex cones which are w(Z, W)-closed and w(Z, W)-closed respectively, and $y_0 \in Y$ and $z_0 \in Z$ are fixed elements. In this case, problems (III) and (IV) are called linear programming problems. Van Slyke and Wets [7] investigated problem (III) in the case where g=0 and $D=\{b\}$, $(b\in Z)$.

Now we shall apply our results in § 3 to problems (III) and (IV). On account of Theorems 3, 4 and 5, we have

Proposition 5. Let $Z \times R$ and $W \times R$ be in duality as in § 3 and let E be the set in $Z \times R$ defined by

$$E = \{(Ax-z, r+f(x)-g(z)); x \in C, z \in D \text{ and } r \in R_0\}.$$

If the set E is $w(Z \times R, W \times R)$ -closed and either N or N* is finite, then $N=N^*$ holds.

Since problems (III) and (IV) have symmetry, we can derive a dual statement to the above result. Observing that

$$-N^* = \inf\{(-g^*(w)) - (-f^*(A^*w)); w \in D^* \text{ and } A^*w \in C^*\},$$
 we shall consider the following problem:

(V) Determine
$$-N^{**} = \sup\{-f^{**}(x) + g^{**}(A^{**}x); x \in C^{**} \text{ and } A^{**}x \in D^{**}\}.$$

It is always valid that $N^{**} \leq N$. If the sets [f, C] and [g, D] defined in § 2 are $w(X \times R, Y \times R)$ -closed and $w(Z \times R, W \times R)$ -closed respectively, then $f^{**} = f$, $g^{**} = g$, $C^{**} = C$ and $D^{**} = D$ by Proposition 2. In this case, the set F in $Y \times R$ defined by

$$F = \{ (A^*w - y, r - g^*(w) + f^*(y)); w \in D^*, y \in C^* \text{ and } r \in R_0 \}$$

plays the role of the set E in § 3. Noting $A^{**}=A$ and applying Theorems 3, 4 and 5, we have

Proposition 6. Assume that the sets [f, C] and [g, D] are $w(X \times R, Y \times R)$ -closed and $w(Z \times R, W \times R)$ -closed respectively. If the set F is $w(Y \times R, X \times R)$ -closed and either N or N^* is finite, then $N = N^*$ holds.

We shall give an application of Theorem 6.

Proposition 7. Let C and D be w(X, Y)-closed and w(Z, W)-closed respectively and let f and -g be lower semicontinuous with respect to w(X, Y) and w(Z, W) respectively. Assume that any w(X, Y)-bounded set in X is relatively w(X, Y)-compact. If we further assume that $A^*(D^*) \cap (C^*)^\circ$ is not empty, then the set E is $w(Z \times R, W \times R)$ -closed, where $(C^*)^\circ$ denotes the s(Y, X)-interior of C^* .

Proof. Let $\{(u_t, r_t); t \in T\}$ be a net in E which $w(Z \times R, W \times R)$ -converges to $(u, r) \in Z \times R$. Then there exist $x_t \in C$ and $z_t \in D$ such that $u_t = Ax_t - z_t$ and $r_t \ge f(x_t) - g(z_t)$. By the definitions of f^* and g^* , we have

$$r_{t} \ge ((x_{t}, y))_{1} - ((z_{t}, w))_{2} - f^{*}(y) + g^{*}(w)$$

for all $y \in C^*$ and $w \in D^*$. By our assumption, there are y_0 and w_0 such that $w_0 \in D^*$ and $y_0 = A^*w_0 \in (C^*)^\circ$. For any $y \in Y$, there exists $\varepsilon > 0$ such that $y_0 \pm \varepsilon y \in (C^*)^\circ$. Consequently

$$r_{t} \geq ((x_{t}, y_{0} \pm \varepsilon y))_{1} - ((z_{t}, w_{0}))_{2} - f^{*}(y_{0} \pm \varepsilon y) + g^{*}(w_{0})$$

$$= ((Ax_{t} - z_{t}, w_{0}))_{2} \pm \varepsilon (x_{t}, y))_{1} - f^{*}(y_{0} \pm \varepsilon y) + g^{*}(w_{0})$$

$$= ((u_{t}, w_{0}))_{2} \pm \varepsilon ((x_{t}, y))_{1} - f^{*}(y_{0} \pm \varepsilon y) + g^{*}(w_{0}).$$

Since $\{r_t-((u_t,w_0))_2;t\in T\}$ converges to $r-((u,w_0))_2$, there is $t_0\in T$ such that $\{r_t-((u_t,w_0))_2;t\in T,t>t_0\}$ is bounded. Consequently $\{((x_t,y))_1;t\in T,t>t_0\}$ is bounded for every $y\in Y$, and hence $\{x_t;t\in T,t>t_0\}$ is relatively w(X,Y)-compact by our assumption. Thus $\{x_t;t\in T\}$ contains a w(X,Y)-convergent subnet. Therefore the set E is $w(Z\times R,W\times R)$ -closed by Theorem 6.

Note that any w(X, Y)-bounded set in X is relatively w(X, Y)-compact provided that Y is a disk space (= espace tonnelé) and X is the topological dual space of Y([2], p.65, Théorème 1).

§ 5. Normality condition

We return to the general problem (I). Let E be as defined in § 3 and denote by \widetilde{E} the $w(Z\times R, W\times R)$ -closure of E. We shall introduce another quantity m defined by

$$m = \inf\{r; r \in R \text{ and } (0, r) \in \overline{E}\},\$$

where we set $m = \infty$ in the case where $(0, r) \notin \overline{E}$ for any $r \in R$. This

quantity was called the subvalue in the case of linear programming problems (cf. [4]).

We have

Theorem 7. It is always valid that $M^* \leq m \leq M$.

Proof. The inequality $m \le M$ follows immediately from the definitions of m and M. To prove $M^* \le m$, we may suppose that $m < \infty$. Let $(0, r) \in \overline{E}$. Then there exists a net $\{(u_t, r_t); t \in T\}$ in E which $w(Z \times R, W \times R)$ -converges to (0, r). For every $t \in T$, there exist $x_t \in C$, $z_t \in D$ and $s_t \in R_0$ such that $u_t = Ax_t - z_t$ and $r_t = s_t + f(x_t) - g(z_t)$. By the definitions of f_A^* and g^* , we have

$$r_t \ge f(x_t) - g(z_t) \ge ((Ax_t, w)) - f_A^*(w) - ((z_t, w)) + g^*(w)$$

= $((u_t, w)) + g^*(w) - f_A^*(w)$

for any $w \in W$ and hence $r \ge g^*(w) - f_A^*(w)$. Thus we have $M^* \le m$.

Theorem 8. If the set \overline{E} is convex and $M^* > -\infty$, then $M^* = m$ holds.

Proof. On account of Theorem 7, it suffices to show the inequality $M^* \ge m$ in the case where M^* is finite. Suppose $(0, M^*) \notin \overline{E}$. Applying Proposition 1 to $(0, M^*)$ and the $w(Z \times R, W \times R)$ -closed convex set \overline{E} , we can arrive at a contradiction by the same argument as in the proof of Theorem 4. Therefore $(0, M^*) \in \overline{E}$. Thus we have $M^* \ge m$.

Theorem 9. If the set \vec{E} is convex and $m < \infty$, then $M^* = m$ holds.

Proof. By Theorem 7, it is enough to show the inequality $M^* \ge m$ in the case where m is finite. For an arbitrarily fixed $\varepsilon > 0$, we have $(0, m - \varepsilon) \notin \overline{E}$ by the definition of m. Applying Proposition 1 to $(0, m - \varepsilon)$ and the $w(Z \times R, W \times R)$ -closed convex set \overline{E} , we can prove the inequality $m - \varepsilon < M^*$ by the same argument as in the proof of Theorem 3. By the arbitrariness of ε , we have $m \le M^*$.

Note that the set \overline{E} is convex whenever the set E is convex ([1], p. 50, Proposition 14).

By means of Theorem 5, we see that Theorems 8 and 9 are some generalizations of Theorem 2 in [4].

Now we introduce

Definition. Problem (I) is said to be normal if $\overline{E} \cap L = \overline{E}_0$, where L and E_0 are the sets defined in § 3 and \overline{E}_0 is the $w(Z \times R, W \times R)$ -closure of E_0 .

The normality condition was first introduced in [6], cf. [7]. We shall prove

Theorem 10. Problem (I) is normal if and only if M=m.

Proof. Observe that $\overline{E}_0 = \{0\} \times [M, +\infty)$ in case M is finite, $\overline{E}_0 = L$ in case $M = -\infty$ and \overline{E}_0 is empty in case $M = \infty$. Similarly, $\overline{E} \cap L = \{0\} \times [m, +\infty)$ in case m is finite, $\overline{E} \cap L = L$ in case $m = -\infty$ and $\overline{E} \cap L$ is empty in case $m = \infty$. Our theorem follows from these obsevations.

From Theorems 8, 9 and 10, we obtain

Corollary 1. Assume that problem (I) is normal and \overline{E} is convex. If $M < \infty$ or $-\infty < M^*$, then $M = M^*$.

From Theorems 7 and 10, we have

Corollary 2. If $M=M^*$, then problem (I) is normal. These corollaries are a generalization of Theorem 7 of [6]. We easily have

Proposition 8. If the set E is $w(Z \times R, W \times R)$ -closed, then problem (I) is normal.

By this proposition, we see that Corollary 1 is a generalization of Theorems 3 and 4. However it seems difficult to verify the normality in the case where the set E is not $w(Z \times R, W \times R)$ -closed.

We have

Proposition 9. Assume that the set E is convex. If L intersects the $s(Z \times R, W \times R)$ -interior E° of E, then problem (I) is normal.

Proof. Suppose $\overline{E_0} \neq \overline{E} \cap L$. Then there exists $(0, r_1) \in \overline{E} \cap L$ such that $(0, r_1) \notin \overline{E_0}$. By our assumption, there is $(0, r_0) \in L$ such that $(0, r_0) \in E^\circ$. Let U be a convex $s(Z \times R, W \times R)$ -neighborhood of $(0, r_0)$ satisfying $U \subset E^\circ$. Since $(0, r_1) \in \overline{E}$ and E is convex, we see that the set

$$V = \{(z, s); z = tu, s = (1-t)r_1 + tr \text{ for all } (u, r) \in U \text{ and } t \in R_0 \}$$

with $0 < t \le 1\}$

is contained in E ([1], p. 51, Proposition 15). It is clear that $L \cap V \subset L \cap E$ = E_0 . Since $(0, (1-t)r_1+tr_0) \in L \cap V$ for all $t, 0 < t \le 1$, we see that $(0, r_1) \in \overline{L \cap V} \subset \overline{E_0}$. This is a contradiction. Therefore $\overline{E_0} = \overline{E} \cap L$.

This is a straightforward extension of Proposition 5.2 in [7].

REFERENCES

- [1] N. BOURBAKI: Espaces vectoriels topologiques, Chap. I-II, Paris, 1953.
- [2] N. BOURBAKI: Espaces vectoriels topologiques, Chap. III-V, Paris, 1955.
- [3] U.DIETER: Optimierungsaufgaben in topologischen Vektorräumen I: Dualitätstheorie, Z. Wahrscheinlichkeitstheorie verw. Geb., 5 (1966), 89—117.
- [4] K.S. Kretschmer: Programmes in paired spaces, Canad. J. Math., 13 (1961), 221—238.
- [5] A. MURAKAMI and M. YAMASAKI: Duality theorems for continuous linear programming problems, to appear in J. Sci. Hiroshima Univ. Ser. A-I Math., 33 (1969).
- [6] R. T. ROCKAFELLAR: Duality and stability in extremum problems involving convex functions, Pacific J. Math., 21 (1967), 167—187.
- [7] R. VAN SLYKE and R. WETS: A duality theory for abstract mathematical programs with applications to optimal control theory, J. Math. Anal. Appl., 22 (1968), 679-706.
- [8] M. YAMASAKI: Duality theorems in mathematical programmings and their applications, J. Sci. Hiroshima Univ. Ser. A-I Math., 32 (1968), 331—356.

SCHOOL OF ENGINEERING, OKAYAMA UNIVERSITY

(Received October 28, 1969)