SOME GENERALIZATIONS OF DUALITY THEOREMS
IN MATHEMATICAL PROGRAMMING PROBLEMS

MARETSUGU YAMASAKI

§ 1. Introduction and problem setting

Let X, Z and W be real linear spaces and suppose that Z and W
are in duality with respect to a certain bilinear functional ((, )). Let C
and D be nonempty sets in X and Z respectively, and let f and g be
finite-valued real functions on C and D respectively. Assume that g(z)
=-—oco for every z¢&D. Let A be a transformation from C into Z.
We shall be concerned with the following two problems :
(I) Determine M=inf{f(x)—g(A%x);xEC},
(II) Determine M*=sup{g*(w)—f%i(w);wes W},
where
g*(w)=inf{((2, w))—g(2); zED}
and
fi(w)=sup{((Ax, w))—f(x); xEC}.
Here we define
7y-+oo=00+4y=00, y—o0o=-—00+yr=—0o0
for all real numbers 7r, and set
0+ oco=o00, —o0—oo=—00, —(—o0)=o00,
More precisely, we shall study the problems
(i) the existence of x or w which attains the infimum or the sup-

remum,
(ii) relations between the values M and M*,

An answer to problem (ii) is called a duality theorem.

R. T. Rockafellar [6] investigated these problems in the case where
A is linear and continuous, C and D are convex sets and f and —g
are convex functions. Our problems (I) and (II) contain the problems
discussed by U. Dieter [3], K.S.Kretschmer [4] and R. Van Slyke and
R. Wets [7]. M. Yamasaki [8] studied the above problems in the case
where C is a convex set, D is a convex cone, f is a convex function,
g=0 and A is convex with respect to D.
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In the present paper, we shall generalize duality theorems given in
[3], [4], [7] and [8] by making use of a well-known separation theorem.
We shall introduce in §5 a condition which was called the normality condi-
tion in [6. and [7]. By means of this condition, duality theorems in § 3
will be generalized.

§ 2. Preliminaries

For later use, we shall recall some notions and results in [1] and [2].

Let X and Y be real linear spaces in duality with respect to a cer-
tain bilinear functional ((, )). Let us denote the weak topology on X by
w(X, Y) and the Mackey topology by s(X, Y). A locally convex Hausdor{f
topology #(X, Y) on X compatible with this duality is stronger than
w(X, Y) and weaker than s(X, Y). If X is assigned # X, Y), then every
element of Y is identified with a #(X, Y)-continuous linear functional on X.

Let R be the set of real numbers and R, the set of non-negative real
numbers.

We shall utilize the following separation theorem :

Proposition 1.” Lef K be a w(X, Y)-closed convex set in X and %,
be an element of X such that xEK. Then there exist y»&€Y and aER
such that

(0 yo) >a=((x, 7))

for all xE K,

Next we shall recall the conjugate operation of convex functions in
[3], which will be used in § 4. For a finite-valued real convex function p
on X with nonempty convex domain P, the conjugate function p* and
the conjugate set P* are defined by

p*(y)=sup{((x, y))—p(x); xE P},
P*={yeY; p*(5) <o}
Then p* is a finite-valued real convex function with convex domain P¥*,

Let us define

[, P1={(x,7); xEP and r=p(x)}.

For a finite-valued real concave function ¢ on X with nonempty

convex domain €, there are similar definitions:

g*(y)=inf{((x, y))—q(x); xEQ},

1) [1], p.73, Proposition 4 and [2], p.50, Proposition 1.
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Q*={yEY; ¢*(5) >—},
(g, Q1={(x,7);x=Q and r=q(x)}.
Then g¢* is a finite-valued real concave function with convex domain Q*.
Dieter proved

Proposition 2.” Let XX R and YXR be in duality with respect to

the bilinear functional << , > defined by
<(x,7), (3, )>=(x, ) +7rs

for all (x,r)EXXR and (y,s) €Y <R.

(1) If P is w(X, Y)closed and p is lower semicontinuous with
respect to w(X,Y), then [p, P] is w(XX R, YXR)-closed.

2) If [p, P] is w(XKXR, YXR)closed, then p**=(p**=p and
P**=(P¥*)*=P,

§ 3. Duality theorems
Let ZXR and WXR be in duality with respect to the bilinear func-
tional << , > defined by
<(z,7), (w, s)>=((z, w))+rs
for every (z,7)EZXR and (w,s)EWXR. Let E, E, and L be the sets
in ZXR defined by

E ={(Ax—z r+f(x)—g(2);x€C,2€D and rER,},
L ={(0,7);0€Z and rER},
E,=ENL.
In case CNA~'(D) is not empty, we have
E.={(0, r=+f(x)—g(Ax)); 0€Z, x€ CNA™(D) and rER,}.

First we shall study the existence of x# which attains the value M of
problem (I). We have

Theorem 1. Assume that the value M is finite. Then there exists
xEC such that AxED and M=f(x)—g{Ax) if and only if the set E,
is w(ZXR, WX R)-closed.

Proof. Since M is finite, we have

{0} X (M, +0)C E,C {0} X[M, + o0).

2) [31, p.98, Hilfssatz 5 and p.99, Hilfssatz 7.
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Therefore the set E, is w(Z X R, WX R)-closed if and only if (0, M) be-
longs to E,. We see easily that there exists ¥ C such that Ax&€D and
M=f(x)—g(Ax) if and only if (0, M)EE.,.

Observe that the set E, is w(Z X R, WX R)-closed whenever the set
E is w(Z X R, WX R)-closed, since the set L is w(Z X R, WX R)-closed.
However, the w(Z X R, WX R)-closedness of the set E, does not necessarily
imply the w(Z X R, WX R)closedness of the set E. This is shown by
Example 5.1 in [4] or Example 3.5 in [7].

As for the w(Z X R, WX R)-closedness of the set K, we have

Proposition 3. Let X be a topological linear space and let Z be
assigned w(Z, W). Assume that the functions f and —g are lower
semicontinuous and that the transformation A is continuous. If CNA™(D)
is a nonempty and compact set, then the set E, is w(Z X R, WX R)-closed.

Proof. Let {(0,#,);tT} be a net in E, which w(ZXRE, WX R)-
converges to (z, 7)EZ X R, Then z=0 and there exists x,€ CNA (D)
such that r,=f(x,)—g(Ax,). By the compactness of CNAYD), there
exists a subnet {x,; fT'} which converges to some x= CNA™(D). Then
by the continuity of A and the lower semicontinuity of f and —g, we
have

r=lim r.=lim f(x,)— ;ILT g(Ax)=f(x)—g(Ax),

ter’ =Td

and hence (0, 7)EE,. Therefore the set E, is w(Z X R, Wx R)-closed.
Next we shall investigate some relations between the values M and
M*. We have

Theorem 2. It is always valid that M*< M.

Proof. Incase CNMA YD) is empty, we have M= and our asser-
tion is obvious. In case CMNAY(D) is not empty, let x and w be arbi-
trary elements of CN\A'(D) and W respectively. The inequalities

Flx) + fAw) = (Ax, w)),
g(Ax)+g*(w) = ((4x, w))
follow from the definitions of f% and g* in § 1. Thus we have
flx)—g(Ax) = g*(w) —fE(w).

This completes the proof.
Before giving the converse relation M*= M, we shall prepare



SOME GENERALIZATIONS OF DUALITY THEOREMS 73

Lemma 1. If weE W and a&ER satisfy the inequality
a = ((u, w))—r
for all (u, ¥)EE, then
az fhiw)—g*(w).
Proof. Since (Ax—z, f(x)—g(2))€E for any xC and z€D, we
have
azZ((Ax—z, w))—f(x)+g(2)
={((Ax, w))—f(2)} —{((z, w))—g(2)}.
From the definitions of f¥ 'and g*, it follows that
az fEw)—g*w).
Now we shall prove

Theorem 3. If the value M is finite and the set E is convex and
w(Z X R, WX R)-closed, then M= M* holds.

Proof. For an arbitrarily fixed ¢ >0, (0, M—e)&E. Since E is a
w(Z X R, WX R)-closed convex set, there exist (w, s) € WX R and aER
such that

(M—e)s >az=((u, w))+rs
for all (#, ¥)=E by Proposition 1. From the fact that (0, M+<)EE, it

follows that (M-—e)s >(M++¢€)s and hence s< 0. Writing a,=a/s and
w,= —w/s, we have

M—ela, < —((u, wy))+7r
for all (u, r)EE. By means of Lemma 1, we see that
= g*(wu)—fi(wn)g M*,

Therefore M*>M—e. By the arbitrariness of ¢, we conclude that M*
=M. The conversz inequality was given in Theorem 2. This completes
the proof.

Theorem 4. If the value M* is finite and the set E is convex and
w{Z X R, WX R)-closed, then M=M%* holds.

Proof. Suppose (0, M*)&ZE. By Proposition 1 there exist (w, s)E
WX R and a=R such that

1) M*s>az=((u, w))+rs
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for all («, »)EE. For a fixed (u, r.)EE, we have (u, r,+t)€E for all
tER, and by (1)

az=((u,, w))+rs+ts.
Letting #—o00, we see that s=<0. First we shall consider the case where
§<0. Writing q,=a/s and w,=—w/s, we have
(2) M*< ay=< —((u, wo))+7
for all (u, r)EE. It follows from Lemma 1 that
= g*(200) —fH(wo) = M™.

This is a contradiction. Next we shall consider the case where s=0. Then
we have

(3) 0>a=((u, w))
for all (x, r)EE. On the other hand, there exist v W and 3R such
that
4) B=((w, v)—r
for all (w, r)EE. In fact, by our assumption that M* is finite, we can
find v&€ W such that both f%(») and g*(v) are finite. By the definitions
of f¥ and g* we have
3= fi(v)—g*(w)=((A4x, v))—f(2)—((2, )+ g(2)
= ((Axr—z ) —{r+f(x)—g(2)}
for all x€C, 2D and r&R, which implies (4). On account of (3) and
(4), we have
at+3=(u, tw+v))—r
for all (#, 7r)EE and t&R, We see by Lemma 1 that
ar+3= ftw - v)—g*(tw -+v)=— M*,

Letting t—o0, we have M*=oo0, since @< 0. This is a contradiction.
Thus (0, M*)eE. 1t follows that M*=M. On account of Theorem 2,
we have M= M*,

With regard to the convexity of the set E, we have

Theorem 5. Assume that C and D are convex sets and f and —g
are convex functions. If any one of the following conditions (M. 1) and
(M. 2) is fulfilled, then the set E is convex:

M. 1) A islinear,
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(M. 2) Dis acone, A is convex with respect to D, i. e.,

for any x, ;€C and tER, with 0<t<1, and g isincreasing with
respect to D, i.e., g(z)=g(z,) whenever z,—z.€D.

Proof. Assume condition (M. 2). Let (u, r.)€E(i=1, 2) and tER,,
0<t<1. Then there exist x.€C, z;€D and s;€ER, such that u;=Ax,
—z; and r,=s;+ f(x;)—g(z;). Let us denote wu,=tu,+(1—u, r,=tr,+
(1—8)r, x=tx;+~(Q—0Hx, z=tz2,+1—1f)z. and s,=ts,--(1—4#)s,. Then
x»=C, €D and 5,€R, Since A is convex with respect to D, we
have tAx,+(1—{)Ax,=Ax,—v for some vED. Thus u,=Ax,—(+2z)
€ A(C)—D. On the other hand, by the convexity of f and —g and by
the assumption that g is increasing with respect to D, we have

Tc:&’?'tf(xx)+(1'_’t)f(x2)'—tg(zl)"‘(1"'t)g(zz)
=5, +f(xt)_g(zt)25t +f(x:)_g(v+2¢),
and hence 7,=s-+f(x)—g(v+2z) for some s=R, Therefore (u,r)EE
and the set E is convex. Similarly we can prove that condition (M. 1)
implies the convexity of the set E.

By means of Theorem 5, we see that Theorems 3 and 4 are some
generalizations of duality theorems in [3], [4], [7] and [8].

We shall study the w(ZXR, WX R)-closedness of the set E. In the
rest of this section, we always assume that X is a topological linear space,
that Z is assigned w(Z, W), that the sets C and D are closed, that
the functions f and —g are lower semicontinuous and that the trans-
formation A is continuous. Then we have

Theorem 6. Assume that, for any w(ZXR, WX R)-convergent net
{(ue, 7)) tETY} in E, there exist {x,;t€T}CC and {2,;t€T}CD such
that

u=Ax—z, rn=f(x)—g(z)
and {x.;tET} contains a convergent subnet. Then the set E is w(Z
X R, WX R)-closed.

Proof. Let {(u,r.);tET} be a net in E which w(ZXR, WXR)-
converges to (u, r)EZXR. By our assumption, there exist {x,;:E7T}
CC and {z;tT}CD such that

u,=Ax,—z, ri=f(x)—g(z)

3) We correct the definition of this notion in [8], p.332 in the present form.
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and {x,;?ET} contains a subnet {x;¢tE7T'} which converges to some
x. Then {z.;¢t€T'} converges to Ax—wu=z, since A is continuous.
Since C and D are closed, we have x=C and z=D. By the lower
semicontinuity of f and —g, we have

r=lim 7, Zlim f(x)—lim g(z) = f(x)—g(2).

teT’

Therefore (, #)EE and the set E is w(Z X R, WX R)-closed.

Corollary. If the set C is compact, then the set E is w(ZXR, W
X R)-closed.
Similarly we can prove

Proposition 4. Assume that A is homeomorphic and that the set D
is compact. Then the set E is w(ZXR, WX R)-closed.

§ 4. The case where A is linear and centinuous

We shall recall the convex programming problems studied by Rocka-
fellar [6].

Let X and Y be real linear spaces which are in duality with respect
to the bilinear functional ((, )), and let Z and W be real linear spaces
which are in duality with respect to the bilinear functional ((, )),. Let
C and D be nonempty convex sets in X and Z respectively, and let f
and —g be finite-valued real convex functions on C and D respectively.
Let A be a linear transformation from X into Z which is w(X, Y)—
w(Z, W) continuous and let A* be its adjoint. Thus A* is a linear
transformation from W into Y which is w(W, Z)—w(Y, X) continuous
and satisfies ((Ax, w)),=((x, A*w)), for all x=X and we W.

By virtue of the conjugate operations for convex sets and convex func-
tions defined in § 2, we see that the function g* defined in §1 is the
conjugate function of the concave function g and that fX(w)=F*(A*w)
holds, where f* is the conjugate function of the convex function f. Let
us denote by C* and D* the conjugate sets of convex sets C and D
respectively. The convex programming problems discussed in [6] are as
follows :

(II) Determine N=inf{f(x)—g(Ax);x=C and Ax=D},

(IV) Determine N*=sup{g*(w)— f*(A*w); weED* and A*weC*}.
Here we use the convention that the infimum and the supremum on the
empty set are equal to +oo and —oo respectively.
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These problems contain the problems investigated by Dieter [3],
Kretschmer [4]. Dieter discussed the case where X=Z and A is the
identity transformation. Kretschmer discussed the case where

f@) =Wz y))» C=P,

g(2)=0, D=Q+z,
where P and @ are convex cones which are w(Z, W)-closed and w(Z,
W)-closed respectively, and y,&Y and z,&EZ are fixed elements. In
this case, problems (III) and (IV) are called linear programming problems.
Van Slyke and Wets [7] investigated problem (III) in the case where g=0
and D={b}, (bE2Z).

Now we shall apply our results in § 3 to problems (III) and (IV). On
account of Theorems 3, 4 and 5, we have

Proposition 5. Let ZXR and WXR be in duality asin §3 and
let E be the set in ZXR defined by
E={(Ax—z, r+f(x)—g(2);xEC,z€D and rER,}.
If the set E is w(ZXR, WX R)-closed and either N or N* is finite,
then N=N* holds.
Since problems (III) and (IV) bave symmetry, we can derive a dual
statement to the above result. Observing that
—N*=inf{(—g¥w))—(—f*(A*w)) ; wED* and A*we C*},
we shall consider the following problem :
(V) Determine —N¥*=sup{—F**(x)+g**(A**x); x& C** and
A¥* g D*¥},
It is always valid that N**<N. If thesets [f, C] and [g, D] defined
in §2 are w(XXR, YX R)-closed and w(Z X R, WX R)-closed respectively,
then f**=f, g**=g, C**=(C and D**=D by Proposition 2. In this
case, theset F in Y X R defined by

F={(A*w—y, r—g*(w)+f*(y); wED*, y=C* and rER,}

plays the role of the set E in §3. Noting A**=A4 and applying The-
orems 3, 4 and 5, we have

Proposition 6. Assume that the sets [f, C] and [g, D] are w(X
X R, YX R)-closed and w(Z X R, WX R)-closed respectively. If the set F
is w(YX R, XX R)-closed and either N or N* is finite, then N=N*
holds.
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We shall give an application of Theorem 6.

Proposition 7. Let C and D be w(X, Y)closed and w(Z, W)-
closed respectively and let f and —g be lower semicontinuous with respect
to w(X,Y) and w(Z, W) respectively. Assume that any w(X, Y)-bounded
set in X is relatively w(X, Y)compact. If we further assume that
A¥(DMN(CH)° is not empty, then the set E is w(Z X R, WX R)-closed,
where (C*)° denotes the s(Y, X)-interior of C*.

Proof. Let {(u, r.);t<T} be a net in E which w(ZXR, WXR)-
converges to (#,r)€ZXR. Then there exist x,€C and z,ED such
that #,=Ax.—z and ».= f(x.)—g(z.). By the definitions of f* and g*
we have

reZ ((xe, ) — (20 w))r—f*(y)+g*w)
for all yeC* and weD* By our assumption, there are ¥, and w, such
that w,ED* and y,=A*w,=(C*)°. For any yEY, there exists ¢ >0
such that y,+=eye(C*)°. Consequently

7o Z ((xe, Yo ey — (20, wo))e—F*(30 % ey)+g™*(wo)
=((Ax,—z;, wo)): E (e, Y)h—f*(FoEey) -+ g*(wo)
= (s, o))t (%0, 31— *(yoEey)+g*(wy).
Since {r.—({(u.,, wy)).;tET} converges to r—((u, w,)), there is {,=T
such that {7,—((u., w)).; ¢ET, ¢t >t} is bounded. Consequently {((x,
Y itET, t >4} is bounded for every yEY, and hence {x,;tE T, t >1,}
is relatively w(X, Y)-compact by our assumption. Thus {x,;¢t€ T} con-
tains a (X, Y)-convergent subnet. Therefore the set E is w(ZXR, W
X R)-closed by Theorem 6.
Note that any w(X, Y)-bounded set in X is relatively w(X, Y)-com-
pact provided that Y is a disk space (= espace tonnelé¢) and X is the
topological dual space of Y ([2], p.65, Théoréme 1).

§ 5. Normality condition

We return to the general problem (I). Let E be as defined in § 3 and
denote by E the w(ZXR, W XR)closure of E. We shall introduce
another quantity m defined by

m=inf{r;»ER and (0, r)EE},

where we set m=oo in the case where (0,7)&E for any r&R. This
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quantity was called the subvalue in the case of linear programming pro-
blems (cf. [4]).
We have

Theorem 7. It is always valid that M*<m=<M.

Proof. The inequality m=<M follows immediately from the defini-
tions of m and M. To prove M*<m, we may suppose that m< oo, Let
(0, 7YEE. Then there exists a net {(u, 7.); €T} in E which w(ZXR,
WX R)-converges to (0,7). For every =T, there exist x,=C, z,€D
and s,€R, such that #,=Ax,—z and »,=s,+f(x)—g(z). By the de-
finitions of f% and g*, we have

re= flx)—g(z) = (Ax,, w)— fE(w)—((2., w))+g*(w)
= (s, w)) +g™(w)— fE(w)
for any we W and hence »=g*(w)—f¥(w). Thus we have M*<m.

Theorem 8. If the set E is convex and M*>—oo, then M*=m
holds.

Proof. On account of Theorem 7, it suffices to show the inequality
M*Z=m in the case where M* is finite. Suppose (0, M*)&E. Applying
Proposition 1 to (0, M*) and the w(ZX R, Wx R)-closed convex set E,
we can arrive at a contradiction by the same argument as in the proof of
Theorem 4. Therefore (0, M*)eE. Thus we have M*=m.

Theorem 9. If the set E is convex and m< oo, then M*=m holds.

Proof. By Theorem 7, it is enough to show the inequality M*=m
in the case where m is finite. For an arbitrarily fixed ¢ >0, we have
(0, m—e)&E by the definition of m. Applying Propesition 1 to (0, m—e¢)
and the w(Z X R, WX R)-closed convex set E, we can prove the inequality
m—e<_M™* by the same argument as in the proof of Theorem 3. By the
arbitrariness of e, we have m= M™*.

Note that the set E is convex whenever the set E is convex ([11,
p. 50, Proposition 14).

By means of Theorem 5, we see that Theorems 8 and 9 are some
generalizations of Theorem 2 in [4].

Now we introduce

Definition. Problem (I) is said to be normal if ENL=E, where L
and E, are the sets defined in § 3 and FE, is the w(Z X R, WX R)-closiire
of E,.



80 MAReTsUGU YAMASAKI

The normality condition was first introduced in [6], cf. [7].
We shall prove

Theorem 10. Problem (1) is normal if and only if M=m,

Proof. Observe that E,={0}xX[M, + ) in case M is finite, E,
=L incase M=—o and E, is empty in case M=oco, Similarly, ENL
={0}X [m, 4+ o) in case m is finite, ENL=L in case m=-—co and
ENL is empty in case m=-oc, QOur theorem follows from these obseva-
tions.

From Theorems 8, 9 and 10, we obtain

Corollary 1. Assume that problem (1) is normal and E is convex.
If Moo or —oo< M*, then M=M*,
From Theorems 7 and 10, we have

Corollary 2. If M=M?¥, then problem (I) is normal.
These corollaries are a generalization of Theorem 7 of [6].
We easily have

Proposition 8. Ifthe set E is w(Z X R, WX R)-closed, then problem
(D) is normal.

By this proposition, we see that Corollary 1 is a generalization of
Theorems 3 and 4. However it seems difficult to verify the normality in
the case where the set E is not w(ZX R, WX R)-closed.

We have

Proposition 9. Assume that the set E is convex. If L intersects
the s(ZX R, WX R)-interior E° of E, then problem (1) is normal.

Proof. Suppose E,~ENL. Then there exists (0, r)=ENL such
that (0, »,)&E, By our assumption, there is (0, 7,)&L such that (0, r,)
€E°, Let U be a convex s(ZX R, WX R)-neighborhood of (0, »,) satis-
fying UcCE®°. Since (0, r)€E and E is convex, we see that the set

V={(z, 8); z=tu, s=(1—8)r,+¢r for all (u,r)€EU and tER,
with 0<#=1}
is contained in E ([1], p. 51, Proposition 15). It is clear that LNVCLNE
=FE, Since (0, 1—r,+troLNV for all ¢, 0<¢t=<1, we see that
(0, rl)EW CE, Thisisa contradiction. Therefore E,=ENL.
This is a straightforward extension of Proposition 5.2 in [7].
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