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0. Introduction

In [1], Amitur presented an axiomatic treatment of radicals of rings.
Let = be a ring property. Then N is called a =-radical of aring R if
N is a unique maximal =-ideal of R and R/N is =-semisimple. The main
properties which a radical is generally required to satisfy are: the exis-
tence in every ring; the radical of an ideal I should be the intersection
of I and the radical of the whole ring. Up to now various radicals of
rings has been treated. In the category theory, Maranda [4] introduced
the notion of radical as a subfunctor 7 of the identity such that 7(A4/T(A))
=0 for every object A in a category /. Occasionally, a radical (func-
tor) possesses some properties, for example; T is an idempotent radical
(if 7 is aradicaland T?=T), T is a torsion radical or hereditary radical
(if T is a radical and left exact).

In 1, we construct a radical functor from a w-property and give the
condition that this radical functor is an idempotent, hereditary radical.
In 2, according to Miyashita [6], we give an analogue to the usual the-
orem on the Jacobson radical of a ring in an exact category and in 3, we
consider the special subcategory with respect to the radical functor given
in 2. For notations and terminologies which are not introduced here we
refer the readers to [5].

The author wishes to express his best thanks to Professors A. Hattori,
T. Nagahara and H. Tominaga for their helpful suggestions.

1. Radical property

Let %7 be a category with kernels and cokernels. & is called an
exact category provided that

(i) every monomorphism is a kernel of some morphism in &,

(i*) every epimorphism is a cokernel of some morphism in %,

(ii) every morphism in .%7 is a composite of a monomorphism and an
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epimorphism. (Note that the decomposition is unique up to equivalence.)
Let % be an arbitrary category. If f: A—> B is a morphism and
A'— B isa mfonomorphism, we shall denote the image of the composi-

tion A’—> A—>B by f(A') without confusion. A is called the sub-
object of B if there is a monomorphism from A to B, where A, BEObj
., and we shall refer to A— B as the inclusion. We define the sub-
oject A,—> B to be contained in A.— B if there is a morphism A,—>
A, such that A,—>B=A,—> A.—> B. (Note that A,—> A; must be a
monomorphism and unique.) In this case we write 4,2 A4,(CB). If A4,
and A, are subobjects of A such that A,C A, and A.C A, then A, and
A, are isomorphic subojects of A. Therefore we may regard A, and A,
as the same subobject.

An exact category .9 has images and inverse images and finite inter-
sections and finite unions (see [5; Prop. 1.14.1, p. 18 and Cor. 1. 15. 3]).

Now let = be a subobject property. For any A in a category with
unions, we denote by =(A) the class of all =z-subobjects of A. Then we
set \U;A,=R(A), where A; runs through =(A4). We define the follow-
ing:

Definition 1. 1. Let .27 be an exact category with unions. We will
call the property = a radical property if the following conditions are
satisfied :

(1) Zero object 0 is a =-subobject of every A=0bj 7.

(2) Every image of a w-subobject is a =-subobject.

(3) A/R(A) contains no non-zero =-subobject.

Throughout the rest of this section, % is a locally small exact
category with unions unless otherwise specified.

Now let .97 be the full subcategory of % with the object class
{R(A)}scovy;, and 7,: R(A)—> A be the inclusion morphism in %, For
any f:A—> B in %, we have

Im(A,~—> R(A) —> A——> B)CR(B)

{(where A,==(A)) by the condition (2). Since % is an exact category
with anions, we have

* F(R(A) =F(\J:A)=\U:f(A)SR(B).

by [5; Prop. 1.11.2]. Hence we have the following commutative dia-
gram:
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R (A) 7a s A
Im(flrd)\ Jf
R(B) 4 »B

" s
where R(A) — Im(fr,)—> B is the decomposition of R(A)LA—>B
and Im(fr.,)—> R(B) is given by (*). In the above diagram, the mor-
phism R(A)—> R(B) is uniquely induced by f, which will be denoted by
R(f).

Theorem 1. 1. R: & —> G2 is a subfunctor of the identity.

Proof. Consider the following two commutative diagrams in &7":

rA) - pmy—F8_pc R(4) _ReN
74 s Yo 74 0]
Ai—7 B—%& ¢ Ai—8& ¢

Then we have
roR(g)R(f)=gfn=roR(gf)-

Since 7y is a monomorphism, R(g)R(f)=R(gf). On the other hand, Im
(1z)=Im(r.)=R(A), and so we have R(1,})=1pcn.

Corollary 1. 2. R is a radical functor in the sense of Dickson [2]
and Maranda [4].

Proof. By the radical property (3), A/R(A) does not have non-zero
m-subobject. Therefore R(A/R(A))=0.

Consider an arbitrary category %, a subcategory %', and A&
Obj”, A reflection for A€Obj¥ is an Ref(4)E0bj! together
with a morphism

ps:Ref(A)— A
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such that for every A'=O0bj.%"’ and every morphism A’'—> A in &%
there exists a unique morphism A'—Ref(A) in %' making the diagram

A!

Ref(4) 22— 4

commutative. If every object in & has a reflection in %/, then &' is
called a refiective subcategory of &7, and Ref becomes a functor from
&7 to &', called the reflector of %7 in .%7’. Then we have:

Theorem 1. 3. The full subcategory G2 is a reflective subcategory
of S with reflector R if and if R is an idempotent radical.

Proof. Let 2 is a reflective subcategory with reflector R. Then
there is a unique morphism R(A) —> R(R(A)) such that the diagram

R(A4)
IB(A)

r
R(R(A)) —=—R(A) |
is commutative. Clearly R(A)=R(R(A)), thatis, R is idempotent.
Conversely, if R is idempotent, that is, R(B)=R(R(B)) for all Be
Obj.57, then R(B) is the union of all =-subobjects of R(B). By the condi-
tion (2) and [5; Prop. 1.11.2], we have the commutative diagram

R(B)

RA)A 54

for any morphism R(B)—>=A in %, where R(B)—>R(A) is the inclu-
sion through Im(R(B)—> A). Hence 2 is a reflective subcategory of
¥ with reflector R.
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Theorem 1. 4. R is hereditary if and only if for any monomorphism
f:A—B, R(AY=ANR(B).

Proof. Consider the commutative diagram in .97,

0 T LR VN A CVRN Vo
(1.5) 7. s re
0 va—27 yB—2 yC »0

where g:B—> C is the cokernel of f. Then we have a monomorphism
fra=rzR(f) and therefore R(f) is a monomorphism. On the other hand
R(g)R(f)=R(gf 2=0, annger(R(g)) contains Im(R(f)).

Now let X—> R(B)—> R(C)=0. Since O0=r;R(g)x=grzx, there is
a morphism a¢: X—> A such that »zx=fa. By [5; Prop. 1.8.1], R(A)
=R(B)NA if and only if the left square in (1. 5) is a pull back diagram.
Therefore, if R(A)=R(B)M\A, there is a morphism X— R(A) such that

X—> R(A)—> R(B)=X—> R(B).

Hence we have Ker(R(g))=R(A).
Conversely, if R is a left exact functor, we have a row exact com-
mutative diagram (1. 5). Then for any morphisms & and y where

T 'B I
X—>R(B)—>B=X——>A——>B,

we obtain O=gfy=grzx=r.R(g)x. 7 is a monomorphism, so R(g)x=0.
Then there is a morphism X—> R(A) such that X—> R(A)—> R(B)=
X—> R(B). Therefore we get

X—RA)—A—>B=X—>A—>B.
But A— B is a monomorphism, so we have
X—>R(A)— A=X—>A.
Hence the left square of the diagram (1. 5) is a pull back diagram, that is,
R(A)=R(B)NA.

2. Special redical

In this section, we consider a special 7-property.
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Definition 2. 1. Let M be an object in a category .27. A subobject
K of M in &7 is said to be superfluous in M if for any subobject A of
M with the inclusion v: A—M, K\UA=M implies that » is an iso-
morphism. (A= M in the sense of 1.) This is equivalent to K\JA#*#M
for any proper subobject 4. (Proper implies that v is not an isomorphism.)
Evidently zero object O is superfluous in M.

The following follows [3; p. 362].

Lemma 2. 1. Lef M be an object in an exact category S and let
S(M) be the class of all subobject of M. If A, B, C arein S(M) such
that BC A, then

AN(B\UC)=BU(ANC).

Proposition 2. 2. Let % be an exact category and M, M'&0bj.% .,
If K is a superfluous subobject of M then so is f(K) of M' for all
fe[M, M],,, where [M, M'], is the set of all morphisms from M to M’
in 5.

Now let %7 be a locally small exact category with unions and R*(M)
the union of all superfluous subobjects in M. Then by the Proposition
2.2, we have:

Corollary 2. 3. In a locally small exact category 7 with unions,
the following follows:

(1) f(R¥(M)SR*M) for any fELM, M].,.

(2) R¥A)CTR*(M) for any subobject A of M.

If {A.;} is an arbitrary ascending chain of subobjects of A and if B
is any subobject of A such that B is contained in \U;A;, then B is con-
tained in A; for some {. Under this condition, we have:

Theorem 2. 4. Let 7 be a locally small exact category with unions
‘and intersections satisfying the condition as above. Then the following
Sfollows :

(i) If R*(M)%=M, then M has a maximal subobject. In this case,
R¥(M) is the intersection of all maximal subobjects of M.

(ii) R*(M/R*(M))=0.

Proof. (i): Assume R*(M)#M. Let K be any subobject of M
with KZR*(M). Clearly K is not a superfluous subobject of M. Then
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there is a proper subobject X of M such that K\UX=M. Now we set
S={X;: X; is a subobject of M containing X and X2 K}. Then using
Zorn'’s lemma, X is contained in some maximal subobject X, of M with
KZ X,. This shows that R*(M) contains the intersection of all maximal
subobjects of M. Evidently every superfluous subobject of M is contain-
ed in all maximal subobjects of M. Hence R*(M) coincides the intersec-
tion of all maximal subobjects of M.

(iiy: If M=R*(M), then R*(M/R*¥(M))=0 isclear. If R*(M)+M,
then M has a maximal subobject A. Since A contains R*(M), there is
a one to one correspondence between maximal subobjects of M and maxi-
mal subobjzcts of M/R*(M). Therefore the intersection of all maximal
subobjects of M/R*(M) is equal to R*( M)/R*(M)=0 and this intersection
contains R*(M/R*(M)). Hence R*(M/R*(M)=0.

Now let = be, “being superfluous”, then under the assumption of
Theorem 2.4, = is a radical property by Proposition 2.2 and Theorem
2.4. Hence R* is a radical functor. R*(M) exactly corresponds to the
Jacobson radical of a ring. But it is not known whether in Theorem 2. 4,
if M has a maximal subobject then R*(M) is the intersection of all maxi-
mal subobjects of M. In general, this radical functor R* is not left exact.
Throughout the rest of this section, % is a locally small exact category.

Let Perf (%) be the full subcategory of &% with all MEO0Obj” which
satisfies the following condition: For any subobject A of M, there is a
subobject B such that A\UB=M and AMNB is superfluous in B. We
call B a s-complement of A (in M), and Perf (.8) the perfect full sub-
category of 7, Often, a s-complement of A will be denote by A, though
it is not unique, Then the following is essentially given in [6; Prop. 1. 3],
or will be shown by direct computation :

Proposition 2. 5. Let M=A\UBEOb-Y', where A and B are
subobjects of M. Then the following holds :

(i) B is a s-complement of A if and only if B is minimal subobject
of M with respect to the property A\UB=M.

(ii) If B is a s-complement of A, then KB is superfluous in B
for every super fluous subobject K of M.

The next will be easily seen in [6; Lemma 1.5]:

Lemma 2. 6. Let A, B, C be subobjects of M=0bj.7 such that
AUC=BUC and ANC=BNC. If ADB, then A=B.
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Theorem 2. 7. Let M be an object in & with unions. If a sub-
object A of M satisfies the descending chain condition for subobjects
and ANR*(M)=0, then A is the union \JU A; of a finite number of
minimal subobjects A; of A such that ANA;=0 for is£j.

Proof. By the Proposition 2. 5 (i) and Lemma 2. 6, A has a s-comple-
ment subobject B in M. Since ANBER*(B)SR*(M) by Corollary 2. 3,
we have ANBC ANRKR*(M)=0. Hence M= A\UB. Since A satisfies the
descending chain condition for subobjects and R*(A)=R¥*(M)MNA=0, the
above argument shows that for any subobject A4’ of A, we have A"UA;
=A and A'NA.=0. Repeating the above argument, by the descending
chain condition, we shall obtain our conclusion.

Corollary 2. 8. If M satisfies the descending chain condition for
subobject and R*(M)=0, then M is the union \Ji-.M; of a finite number
of minimal subobjects M; of M such that MN\M,=0 for isj.

3. Subcategory Perf (&7)

In this section, .27 be a locally small exact category with unions and
we consider the full subcategory Perf (&) given in 2. The following Pro-
positions are essentially given in [6; p.89]:

Propsition 3. 1. IFf M is an object in Perf (%), then M/ K is an
object in Perf (7)) for any superfluous subobject K in M.

Proposition 3. 2. Let 0—=B—> M be an exact sequence in . If
M is an object in Perf (), then sois B.

Theorem 3. 3. Perf (.9) is an exact full subcategory of 5.

Proof. Let A— M is a monomorphism in Perf (%7). If B is a
s-complement of A in M, then B isin Perf (%) by Proposition 3. 2 and
ANB is superflucus by the definition. Therefere B/(ANB)=M/A is an
Perf (%) by [6; Cor. 1.16. 7] and Proposition 3. 1. Since Perf (.%7) is
full subcategory, the exact sequence

0—A—M— M/A—0
(in &) is in Perf (.%"). Hence Perf (%) is a normal subcategcery with
cokernels. By Proposition 3. 2, Perf (.%7") is a conormal subcategory with
. kernels. Since Perf (&) is full subcategory of the exact category %7,
the exactness is clear by Proposition 3. 2.
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In general, the familiar distributivity relation for sets
(*x) (UxAi)f\B o Ui(A,:f\B)

does not hold in a category. However, if we assume that {A;} is a direct
family of subgroups of an abelian group A and B is another subgroup,
then it can be seen that (**) holds. Finally we shall prove the following :

Theorem 3. 4. Lef ¥ be a locally small exact category with unions
and intersections. Assume for any direct family of subobjects {A:} and
any subobject B of A, (**) holds. If R¥*, introduced in 2, is a radical
Sfunctor, then R* is a left exact functor from Perf (%) to .97

Proof. Let0 — A Sem 0—>B —>0 be an arbitrary exact sequence
in Perf (&). By Theorem 1.3, R* is the left exact functor if and only if
R*(A)=R*(M)NMA. Therefore it is sufficient to show that R*(A) contains
R*(M)NA. Since R*(M) is the union of all superfluous subobject K of
M, then we have,

R¥ MNA=(J:KiNA=U(K.NA)

by the condition (**), Since M is in Perf (%), A is a s-complement of
some subobject A’ of M. Then Ki/\A is superfluous in A by Proposi-
tion 2. 5 (ii). Hence K./N\A is contained in R*(A) and so R*(M)NA is
contained in R*(A).
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