SOME REMARKS ON ASYMPTOTES
IN A METRIC SPACE

SHIGEKAZU HAGIWARA

In the paper we prove three theorems on a G-space defined by H.
Busemann [1]*. The definition of a G-space and the notations in the
paper are the same as in [1]. The definition of an asymptote is a little
modified by following Y. Nasu [2]. We first prove a theorem with respect
to the divergence property in [1] (p. 230), i.e., we give a condition under
which this property holds in a straight G-space of 2-dimensions, where the
word “dimension” is given in Menger Uryson’s sense. Next we deal with
the set of the asymptotic conjugate points to a ray, i. e., we prove two
theorems. One is concerned with the metric of a 2-dimensional G-space
such that the set K (x) of the asymptotic conjugate points to a ray 1 and
the other is concerned with the connected components of the set K ().
The results are shown in the theorems 1, 2 and 3.

§ 1. We prove the following

Theorem 1. Let N be a straight G-space of 2-dimensions and p an
arbitrary point of R. Further let 1, and Y, be two rays issuing from
the point p and =x,(f), 0=t<<+oo, and x(t), 0<t<<+co, be the para-
metric representations by their arc-lengths of the rays 1, and T respec-
tively. 1If for a point p, there exists a positive number ¢ such that for
any two rays Y, and Y, issuing from the point p a positive number 1,
exists such that x(v,>c for t1=t, (or %), >c for t=t,), then the
divergence property holds in the space.

Proof. Let g be a point on the ray t, such that %,(!)=¢g and » a
foot of the point ¢ on the ray 1. such that x(#)=r. If ¢/ is always
bounded as ¢ tends to infinity, then the condition of the theorem holds
and we see

lim 2,(f)t,= o0 . )

If ¢ tends to infinity and then #' also tends to infinity but the segment

*) Numbers in brackets refer to the references at the end of the paper.
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T(q, ») always contains a bounded point, the property (1) holds again.
Hence it is necessary to prove that the property (1) (or llim 2,(2)x, = o0)
holds in the case where T(g,r) is always unbounded aswt tends to
infinity.

The point p has a sphere neighborhood S(p,7)(»>>0) such that
S(p, r) is divided into two domains D, and D,, since the space is a simply
connected 2-dimensional manifold [1]. Let », and », be points on 1, and
1, respectively such that r, r,¢S(p,»), and further let C, and C, be
simple curves which connect 7, and r, such that the domains D, and D,
contain C, and C, except the end points », and 7»,., We take n-+1
points g} (=r)), ¢}, ¢, -, g7 (=r.), and g3(=r)), g3, -**, g (=7.) on the curves
C, anl C, respectively. Let t}(=t), 1, ---, 17", 7 (=1) and u(=1), 1,
<+, 137, 18 (=1,) be the rays issuing from the point p through the points
% qi, v+, gt and g3, ¢3, +++, g4 respectively. Then for two consecutive rays
v/ and ti™' where /=1, 2, =0, 1, -, n—1, a positive number # exists
such that

2t ' >e for t=# (2)
(or xi(f)ri*'>e for t=t)),

where #{(¢#), 0=<¢<C-+ oo, are the parametric representations by arc-lengths
(1=1,2, §=0,1, ---, —1). This easily follows from the assumption of the
theorem.
We put
toe=max(t],i=1,2, j=0,1, -, n—1).

We then have 2u inequalities: x/{(@#)v*'>e for t=¢, i=1,2, j=0,1, -, »n
—1. Further we have from the above assumption that T(g, ) cuts the
rays 1}, 1}, -+, 17 (or 13, 13, .-+, 14) at points s}, s}, ---, st (or s5, s3, -+-, s3) re-
spectively such that

si=xl(m), i=1,2, j=0,1, -, n,

si=si=gq, si=si=r, and ui>t,.
On the other hand, it is easy to see s’si*'=e for any i=1,2, j=0,1, -,
n—1. We thus have

T(q, r)>ne.

Since » is an arbitrary positive integer, it is easy to see that the property
(1) holds. Thus the theorem is proved.

§ 2. In this paragraph we prove two theorems, Before we do it, let
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T be aray and ¢ a coray from a point p to the ray t. The carrier of all
corays to the ray t which contain 3 as a subray is called the asymptote
through the point p to the ray r. If the asymptote has a point ¢ as its
initial point, ¢ is said an asymptotic conjugate point to the ray r. There
does not necessarily exist only one asymptote from the point & to the ray
. Now we prove the following

Theorem 2. Let N be a G-space and ¥ a ray on R. If the set of
asymptotic conjugate points to the ray T has an isolated point p, then the
corays issuing from the point p simply cover the whole space except the
point p. If the space is of 2-dimensions in Menger Uryson’s sense and
a positive number <, exists such that N—S(p, ) is of non-positive
curvature, N—S(p, 7o) is a non-expanding fube.

Remarks. The definition of non-positive curvature is given in [1].
Under the condition of the theorem the whole space is not of non-positive
curvature. If the space is of non-positive curvature the set of asymptotic
conjugate points to a ray is vacous.

Proof. Let p be an isolated point of the set K(r). Then p has a
neighborhood S(p, 7)(<=0) disjoint from the set K(r) except the point p.
If a point & of S(p, <) does not coincide with the point p, there exists a
unique coray I, from x to the ray t. The asymptote 9, to the ray ¢,
which contains I, as a subray, has p as its initial point. We show this.

If this is not so, the initial point of 2, is not csntained in S(p, 7).
Let {$.} be a sequence of points in S(p, v) which converges to the point
p and 2, the asymptote to the ray t through p.. Suppose each 2, has
not its initial point in S(p, ©). Then a suitable subsequence of {2,,} con-
verges to a coray to the ray v through the point p, which contradicts
that p is an asymptotic conjugate point. If = is sufficiently small, the
initial point of an asymptote through a point of S(p, ) coincides with the
point p. It follows from this that all rays issuing from the point p simply
cover the whole space and the set K(r) coincides with the point p. Thus
the first part of the theorem is proved. Next we prove the last part.

It is easy to see that the limit circle at the point p to the ray r is
the point p itself. It follows from this that the limit circles to the ray t
coincide with the circles whose centers are the point p. The relation
between ray and coray with respect to the rays issuing from the point p
is symmetric and transitive in R—S(p, r) and so is on the space R. It
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is also clear that the asymptote containing r as a subray has p as its
initial point. The point p is also the set of the asymptotic conjugate
points to any ray issuing from p.

Since R—S(p, =y) is a half open tube, the universal covering surface
N is homeomorphic to a half open plane whose boundary lies over the
circle Cip,t,) (=«x|px=c,). Let T anl I’ be consecutive rays on R’
whose initial points are ¢ and g¢' respectively. Then g and g’ lie over
the initial point ¢ of the ray 1 and the boundary curve from g to ¢’ lie
over the circle C(p, v;). We denote this curve by C. Let » and s be
points on C(p, <) suificiently near g such that the point ¢ lies hetween
7 and s, anl suppose t, and &, are corays to r from the points » and
s respectively. Then we can see that there exist the rays I, and I; which
lie over the rays g, and &, respectively and issue from the points 7 and
5 on C which lie over the points » and s respectively, The rays I, and
Is are corays to one of the rays T and i’. To prove the last part of the
theorem, we assume that the half open tube 91~—§(p, 7,) is an expanding
one. Then the rays T and I’ are not corays on R’ each other. Now we
can further assume that ¥, is a coray to the ray T and I, a coray to the
ray T. Then by the assumption the points 7 and § are near the end
points ¢ and g’ of C respectively. It is easy to see that C contains a
point which lies over an asymptotic conjugate point lying on the circle
C(p, 7). This contradicts that the circle C(p, 7,) is disjoint from the set of
the asymptotic conjugate points. We see from this that the half open tube
R —S(p, wv) is non-expanding one. The theorem is thus proved.

Next we prove the following

Theorem 3. Let N be a G-space, v a rayon R and the set K(x) of
the asymptotic conjugate points to 1. If the set K(X) is closed and com-
pact, the set K(x) is connected.

Proof. To prove the theorem, suppose the set K(r) consists of two
components K, and K.,. Then the sets K, and K, are closed and dis-
joint each other. We see from this that there exist two open sets O, and
O, such that 0,0 K,, 0,0 K, and O,MN\0,=¢ and further such that the
asymptote through any point of O; (=1, 2) has a point of K; (:=1,2) as
its initial point. Let C be a simple curve from a point p, of K, to a
point p, of K,. When a point » moves from p, to p, on C, if p is near
p1, the initial point of the asymptote through p is a point of K, and, if
p is near p, the initial point of the asymptote through p is a point of
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K.. It follows from this that a point p exists on C such that the asymp-
tote through p is straight. If this is not so, this contradicts that the sets
K, and K, are disjoint each other. On the other hand, if there exists the
asymptote through p which is a straight line, we again come to a contra-
diction, since the sets K, and K., are compact. It follows from this that
there can not exist on R two compact components of the set K(r). The
theorem is thus proved.

As can easily be seen from the theorem, if the set K(¥) is closed and
not connected, any component of the set K(t) is not compact. Similarly
the set K(x) does not contain a compact component and an unbounded
component.

Example. In a 3-dimensional Euclidean space referred to the rec-
tanyular coordinates (x, y,z), consider an ellipsoid x*/a*+3*/b*+2*/c*=1
(@>c>b>0). We then have a surface § by joining the half upper part of
the ellipsoid : z=41—2%/a*—3*/6* and the half cylinder: 2%/a’+3*/b'=1,
z=<0. The section of the ellipsoid by xz-plane is a geodlesic curve. We
denote this section by C. The point A(e, 0,0) has a neighborhood V
such that VN C is the shortest connection between the end points. Thus
we see that there exist on C the points A’ and A’ such that the subarc
of C from A’ and A" is the shortest connection with A as its center
and the largest among such subarcs. In this case, the points A’ and A"
are symmetric with respect to xy-plane. Similarly there exist on the el-
lipsoid the points B’ and B'' which have the above property and have
B(—a, 0,0) as its center. Then the subarc of C from A’ to B’ is sup-
posed to be on the half ellipsoid of the surface S. We denote this arc by
K. The arc K is compact anil the set of asymptotic conjugate points to
theray: x=a, y=0, —oo<lz=0.
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