ON UNIFORMITIES GENERATED BY FILTERS ## NORMAN LEVINE - 1. A filter \mathfrak{F} on a set X generates a uniformity $\mathscr{U}(\mathfrak{F})$ by taking as base sets of the form $A \cup F \times F$ where A is the diagonal in $X \times X$ and $F \in \mathfrak{F}$. - In § 4, we obtain characterizations for principal ultrafilters, principal filters, filters \mathcal{F} with the property that $\bigcap \mathcal{F}$ has at most one point. - In § 5, we characterize the topologies which arise from uniformities generated by filters. Completeness, total boundedness and compactness of $\mathscr{U}(\mathfrak{F})$ are treated in § 6, 7, and 8. We shall call a uniformity \mathscr{U} for a set X a filter generated uniformity if there exists a filter \mathfrak{F} on X such that $\mathscr{U} = \mathscr{U}(\mathfrak{F})$. Such uniformities will be termed fg-uniformities. In this case, (X, \mathscr{U}) will be called an fg-uniform space, or simply an fg-space. In \S 9, we show that subspaces and quotient spaces of fg-spaces are fg-spaces. Furthermore, the supremum of a family of fg-uniformities is an fg-uniformity. 2. Theorem 2. 1 Let \mathcal{F} be a filter on X and let $\mathcal{U}(\mathcal{F})$ be the set of relations U such that $X \times X \supseteq U \supseteq A \cup F \times F$ for some F in \mathcal{F} . Then $\mathcal{U}(\mathcal{F})$ is a uniformity for X. *Proof.* (i) $\Delta \subseteq A \cup F \times F$ (ii) $(A \cup F \times F)^{-1} = A \cup F \times F$ (iii) $(A \cup F \times F) \cap (A \cup F' \times F') = A \cup (F \cap F') \times (F \cap F')$ and (iv) $(A \cup F \times F) \cap (A \cup F \times F) = A \cup F \times F$. 3. Theorem 3. 1 Let $\mathfrak{F}_1 \subseteq \mathfrak{F}_2$ be two filters on X. Then $\mathscr{U}(\mathfrak{F}_1) \subseteq \mathscr{U}(\mathfrak{F}_2)$. The proof is trivial. Frequent use will be made of the following **Lemma 3. 2** Let F and F^* be two subsets of X and suppose that F^* has at least two elements. If $A \cup F \times F \supseteq A \cup F^* \times F^*$, then $F \supseteq F^*$. *Proof.* Let $x \in F^*$. Take $y \neq x$ and $y \in F^*$. Then $(x, y) \in F^* \times F^* \subseteq A \cup F \times F$. Thus $(x, y) \in F \times F$ and $x \in F$. **Theorem 3. 3** Let \mathfrak{F}_1 and \mathfrak{F}_2 be two filters on X and suppose that \mathfrak{F}_2 is not a principal ultrafilter. If $\mathscr{U}(\mathfrak{F}_1) \subseteq \mathscr{U}(\mathfrak{F}_2)$, then $\mathfrak{F}_1 \subseteq \mathfrak{F}_2$. *Proof.* Let $F_1 \in \mathfrak{F}_1$. Then $\sqcup \cup F_1 \times F_1 \in \mathscr{U}(\mathfrak{F}_1)$ and hence $\sqcup \cup F_1 \times F_1 \supseteq \sqcup \cup F_2 \times F_2$ for some $F_2 \in \mathfrak{F}_2$. Since \mathfrak{F}_2 is not a principal ultrafilter, F_2 has at least two elements and hence by lemma 3.2 $F_1 \supseteq F_2$. Thus $F_1 \in \mathfrak{F}_2$. 4. In this paragraph, we obtain characterizations for various kinds of filters \Im in terms of the associated uniformity $\mathscr{U}(\Im)$. **Theorem 4.1** A filter \mathcal{F} on X is a principal ultrafilter iff $\mathcal{U}(\mathcal{F})$ is discrete. *Proof.* Suppose $\mathscr{U}(\mathfrak{F})$ is discrete. Then $J\supseteq J\cup F\times F$ for some $F\in\mathfrak{F}$. Clearly then, F is a singleton set and \mathfrak{F} is a principal ultrafilter. Conversely, suppose that \mathfrak{F} is a principal ultrafilter. Then there exists a point $x\in X$ such that $\{x\}\in\mathfrak{F}$. Then $J=J\cup\{x\}\times\{x\}$ and hence $J\in\mathscr{U}(\mathfrak{F})$. Thus $\mathscr{U}(\mathfrak{F})$ is discrete. Corollary 4.2 A filter \mathcal{F} on X is a principal filter iff $\mathcal{U}(\mathcal{F})$ is a principal filter. Proof. Case 1. Suppose $\mathfrak F$ is a principal ultrafilter. Then $\mathscr U(\mathfrak F)$ is discrete by theorem 4.1 and hence is a principal filter. Case 2. $\mathfrak F$ is not a principal ultrafilter. Suppose that $\mathscr U(\mathfrak F)$ is a principal filter. Then there exists an $F^* \in \mathfrak F$ such that $U \supseteq J \cup F^* \times F^*$ for all $U \in \mathscr U(\mathfrak F)$. Then $J \cup F \times F \supseteq J \cup F^* \times F^*$ for all $F \in \mathfrak F$ and by lemma 3.2, $F \supseteq F^*$ since F^* has at least two points. Thus $\mathfrak F$ is a principal filter. Conversely, suppose $\mathfrak F$ is a principal filter. Then there exists an $F^* \in \mathfrak F$ such that $F \supseteq F^*$ for all $F \in \mathfrak F$. Then $J \cup F \times F \supseteq J \cup F^* \times F^*$ for all $F \in \mathfrak F$. It follows then that $\mathscr U(\mathfrak F)$ is a principal filter. **Theorem 4.3** Let \mathcal{F} be a filter on the set X. Then $\cap \mathcal{F}$ has at most one point iff $\mathcal{U}(\mathcal{F})$ is separated. *Proof.* Suppose that $x\neq y$ and $\{x,y\}\subseteq \cap \mathfrak{F}$. Then $(x,y)\in J\cup F\times F$ for all $F\in \mathfrak{F}$. Then $(x,y)\in U$ for all $U\in \mathcal{U}(\mathfrak{F})$ and thus $J\neq \cap \mathcal{U}$. Thus \mathcal{U} is not separated. Conversely, in \mathcal{U} is not separated, then $J\neq \cap \mathcal{U}$. Then there exist points $x\neq y$ such that $(x,y)\in \cap \mathcal{U}$. Thus, $(x,y)\in J\cup F\times F$ for all $F\in \mathfrak{F}$ and hence $\{x,y\}\subseteq F$ for all $F\in \mathfrak{F}$. It follows then that $\cap \mathfrak{F}$ contains more than one point. Corollary 4. 4 Let \mathcal{F} be a filter on X. Then \mathcal{F} is a principal ultrafilter or $\bigcap \mathcal{F} = \emptyset$ iff $\mathcal{F}(\mathcal{U}(\mathcal{F}))$ is discrete. Proof. If \mathfrak{F} is a principal ultrafilter, then $\mathscr{U}(\mathfrak{F})$ is discrete by theorem 4.1. Thus $\mathfrak{F}(\mathscr{U}(\mathfrak{F}))$ is discrete. If $\bigcap \mathfrak{F} = \emptyset$, then $\mathfrak{F}(\mathscr{U}(\mathfrak{F}))$ is discrete. For let $x \in X$. Then $x \notin F$ for some F in \mathfrak{F} . Hence $(J \cup F \times F)[x] = \{x\}$ and thus $\{x\}$ is open. Conversely, suppose that $\mathfrak{F}(\mathscr{U}(\mathfrak{F}))$ is discrete and suppose that \mathfrak{F} is not a principal ultrafilter. We will show that $\bigcap \mathfrak{F} = \emptyset$. Let $x \in X$. There exists an $F^* \in \mathfrak{F}$ such that $(J \cup F^* \times F^*)[x] = \{x\}$. Since \mathfrak{F} is not a principal ultrafilter, F^* has at least two points. If $x \in F^*$, then $(J \cup F^* \times F^*)[x] = F^* \neq \{x\}$, a contraciction. It follows then that $\bigcap \mathfrak{F} = \emptyset$. 5. Theorem 5. 1 Let (X, \mathfrak{F}) be a topological space. Then there exists a filter \mathfrak{F} on X for which $\mathfrak{F} = \mathfrak{F}(\mathscr{U}(\mathfrak{F}))$ iff there exist sets A and B in X such that (1) $X = A \cup B$, (2) $a \in A$ implies that $\{a\}$ is both open and closed, (3) $\mathscr{N}(b_1) = \mathscr{N}(b_2)$ for all b_1 and b_2 in B, \mathscr{N} denoting neighborhood system and (4) $A \cap B = \emptyset$. Proof. Suppose that there exists a filter \mathfrak{F} on X such $\mathfrak{F}=\mathfrak{F}(\mathscr{U}(\mathfrak{F}))$. Case 1. \mathfrak{F} is a principal ultrafilter. Then by theorem 4.1, $\mathscr{U}(\mathfrak{F})$ is discrete and thus $\mathfrak{F}(\mathscr{U}(\mathfrak{F}))$ is discrete. Let A=X and $A=\emptyset$. Clearly, (1)—(4) hold. Case 2. \mathfrak{F} is not a principal ultrafilter. In this case, let $B=\bigcap\mathfrak{F}$ and $A=\mathscr{C}B$, \mathscr{C} denoting the complement operator. Clearly, (1) and (4) hold. We show now that (2) holds. If a is in A, then $a\notin F^*$ for some F^* in \mathfrak{F} . Then $(A\cup F^*\times F^*)[a]=\{a\}$ and thus $\{a\}$ is both open and closed. To show (3), let $b\in B$. We will show that $\mathscr{N}(b)=\mathfrak{F}$. If $N\in\mathscr{N}(b)$, there exists an $F\in\mathfrak{F}$ such that $(A\cup F\times F)[b]\subseteq N$. Since $b\in \cap\mathfrak{F}$, it follows that $F\subseteq N$ and hence $N\in\mathfrak{F}$. Conversely, let $F\in\mathfrak{F}$. Then $(A\cup F\times F)[b]=F$ and hence $F\in\mathscr{N}(b)$. Conversely, suppose that there exist sets A and B in X for which (1)—(4) hold. Case 1. $B=\emptyset$. Then \Im is discrete and $\Im=\Im(\mathscr{U}(\Im))$ where \Im is any principal ultrafilter. Case 2. $B\neq\emptyset$. Let $\Im=\mathscr{N}(b)$ where b is arbitrary in B. We assert first that $\Im\subseteq\Im(\mathscr{U}(\Im))$. To this end, let $x\in O\in\Im$. If $x\in A$, then $x\neq b$ and $b\in\mathscr{C}\{x\}\in\mathscr{N}(b)$. Thus $\mathscr{C}\{x\}=F\in\Im$ for some F. It follows then that $\{x\}=(J\cup F\times F)[x]\subseteq O$. If $x\in B$, then $\mathscr{N}(x)=\mathscr{N}(b)=\Im$ and hence $O\in\Im$. Thus $(J\cup O\times O)[x]=O$. We show next that $\Im(\mathscr{U}(\Im))\subseteq\Im$. For let $x\in O\in\Im(\mathscr{U}(\Im))$. If $x\in A$, then $x\in\{x\}\subseteq O$ and $\{x\}\in\Im$. If $x\in B$, then $\mathscr{N}(x)=\mathscr{N}(b)=\Im$. But there exists an $F\in\Im$ such that $(J\cup F\times F)[x]\subseteq O$ and hence $x\in F\subseteq O$. Since $F \in \mathcal{N}(x)$, it follows that $O \in \mathfrak{J}$. **6.** Lemma **6.1** § is a $\mathcal{U}(\mathfrak{F})$ -cauchy filter in X. Proof. If $U \in \mathcal{U}(\mathfrak{F})$, then $U \supseteq A \cup F \times F \supseteq F \times F$ for some $F \in \mathfrak{F}$. **Lemma 6. 2** If \mathfrak{F}^* is a $\mathscr{U}(\mathfrak{F})$ cauchy filter in X and if \mathfrak{F}^* is not a principal ultrafilter, then $\mathfrak{F}^*\supseteq\mathfrak{F}$. *Proof.* Let $F \in \mathfrak{F}$. Then $A \cup F \times F \in \mathcal{U}(\mathfrak{F})$ and hence $F^* \times F^* \subseteq A \cup F \times F$ for some F^* in \mathfrak{F}^* . But F^* has at least two points since \mathfrak{F}^* is not a principal ultrafilter. It follows from lemma 3.2 that $F^* \subseteq F$ and $F \in \mathfrak{F}^*$. **Theorem 6.3** Suppose \mathcal{F} is a filter on X with the propery that $\bigcap \mathcal{F} = \emptyset$. Then \mathcal{F} is an ultrafilter iff \mathcal{F} is the only $\mathcal{U}(\mathcal{F})$ -cauchy filter which is not principal. **Proof.** Suppose that \mathfrak{F} is an ultrafilter. Since $\cap \mathfrak{F} = \emptyset$, \mathfrak{F} is not principal and by lemma 6.1, \mathfrak{F} is $\mathscr{U}(\mathfrak{F})$ -cauchy. Suppose now that \mathfrak{F}^* is any $\mathscr{U}(\mathfrak{F})$ -cauchy, non principal filter. By lemma 6.2, $\mathfrak{F}^* \supseteq \mathfrak{F}$ and since \mathfrak{F} is an ultrafilter, it follows that $\mathfrak{F}^* = \mathfrak{F}$. Thus \mathfrak{F} is the only $\mathscr{U}(\mathfrak{F})$ -cauchy non principal filter on X. Conversely, suppose that \mathfrak{F} is the only $\mathscr{U}(\mathfrak{F})$ -cauchy, non principal filter on X. To show that \mathfrak{F} is an ultrafilter, let $\mathfrak{F}'\supseteq\mathfrak{F}$. Then $\bigcap\mathfrak{F}'\subseteq\bigcap\mathfrak{F}=\emptyset$ and thus \mathfrak{F}' is not principal. \mathfrak{F}' is clearly $\mathscr{U}(\mathfrak{F})$ -cauchy since \mathfrak{F} is. Thus $\mathfrak{F}'=\mathfrak{F}$. 7. Completeness of $\mathscr{U}(\mathfrak{F})$ is investigated in this paragraph. **Theorem 7.1** $(X, \mathcal{U}(\mathfrak{F}))$ is complete iff \mathfrak{F} is a convergent filter. *Proof.* If $(X, \mathcal{U}(\mathfrak{F}))$ is complete, then \mathfrak{F} is convergent since by lemma 6.1, \mathfrak{F} is $\mathcal{U}(\mathfrak{F})$ -cauchy. Conversely, suppose that \mathfrak{F} is convergent and that \mathfrak{F}^* is a $\mathcal{U}(\mathfrak{F})$ -cauchy filter. Case 1. \mathfrak{F}^* is a principal ultrafilter. Then $\mathcal{N}(x^*) \subseteq \mathfrak{F}$ for some x^* and \mathfrak{F}^* is convergent. Case 2. \mathfrak{F}^* is not a principal ultrafilter. By lemma 6.2, $\mathfrak{F}^* \supseteq \mathfrak{F}$ and hence \mathfrak{F}^* is convergent. Corollary 7.2 If \mathfrak{F} is a filter on X, then $(X, \mathscr{U}(\mathfrak{F}))$ is complete iff $\cap \mathfrak{F} \neq \emptyset$. *Proof.* Suppose $x^* \in \cap \mathcal{F}$. By theorem 7.1, it suffices to show that $\mathcal{N}(x^*) \subseteq \mathcal{F}$. If $N \in \mathcal{N}(x^*)$, there exists an $F \in \mathcal{F}$ such that $(\mathbb{I} \cup F \times F)$ $[x^*]\subseteq N$. Then $F\subseteq N$ and $N\in\mathfrak{F}$. Conversely, suppose $(X,\,\mathcal{U}(\mathfrak{F}))$ is complete. By theorem 7.1, \mathfrak{F} is convergent and hence there exists a point x^* such that $\mathcal{N}(x^*)\subseteq\mathfrak{F}$. We show now that $x^*\in \cap\mathfrak{F}$. If $x^*\notin F^*\in\mathfrak{F}$, then $(J\cup F^*\times F^*)[x^*]\subseteq \{x^*\}$ and hence $\{x^*\}$ is open. Then $\{x^*\}\in \mathcal{N}(x^*)\subseteq\mathfrak{F}$ and hence $\{x^*\}\in\mathfrak{F}$. But $\{x^*\}\cap F^*=\emptyset$, a contradiction. Corollary 7.3 If $(X, \mathcal{U}(\mathfrak{F}))$ is not separated, then $(X, \mathcal{U}(\mathfrak{F}))$ is complete. *Proof.* By theorem 4.3, $\bigcap \mathcal{F}$ has at least two points and thus $\bigcap \mathcal{F} \neq \emptyset$. By the preceding theorem, $(X, \mathcal{U}(\mathcal{F}))$ is complete. 8. Theerem 8.1 $(X, \mathcal{U}(\mathfrak{F}))$ is totally bounded iff $F \in \mathfrak{F}$ implies that $\mathscr{C}F$ is finite. *Proof.* Sufficiency. Let $U \in \mathcal{U}(\mathfrak{F})$. Then $U \supseteq A \cup F \times F$ for some $F \in \mathfrak{F}$. Let $x_1 \in F$, $\mathscr{C}F = \{x_2, \dots, x_n\}$. Then $U[x_1, \dots, x_n] = X$. Necessity. Suppose $F \in \mathfrak{F}$. Then $J \cup F \times F \in \mathcal{U}(\mathfrak{F})$ and hence there exist x_i such that $(J \cup F \times F)[x_1, \dots, x_n] = X$. Then $\mathscr{C}F \subseteq (J \cup F \times F)[x_1, \dots, x_n] \subseteq F \cup \{x_1, \dots, x_n\}$. Thus $\mathscr{C}F \subseteq \{x_1, \dots, x_n\}$ and hence $\mathscr{C}F$ is finite. Theorem 8. 2 $(X, \mathcal{U}(\mathfrak{F}))$ is compact iff (1) $\cap \mathfrak{F} \neq \emptyset$ and (2) $F \in \mathfrak{F}$ implies that $\mathscr{C}F$ is finite. The proof follows from theorem 8.1 and corollary 7.2. 9. In this final section, we will be concerned with fg-uniformities for a set X (see § 1). Theorem 9.1 Let $\mathcal{U} = \bigvee \mathcal{U}_{\alpha}$ where \mathcal{U}_{α} is an fg-uniformity for X for each $\alpha \in J$. Then \mathcal{U} is an fg-uniformity for X. *Proof.* For each $\alpha \in J$, there exists a filter \mathfrak{F}_a such that $\mathscr{U}_a = \mathscr{U}(\mathfrak{F}_a)$. Case 1. $F_i \cap \cdots \cap F_n \neq \emptyset$ for all F_i in $\bigcup \mathfrak{F}_a$. Let $\mathfrak{F} = \bigvee \{\mathfrak{F}_a : \alpha \in J\}$. Then $\mathscr{U}(\mathfrak{F}) = \bigvee \{\mathscr{V}(\mathfrak{F}_a) : \alpha \in J\}$ as the reader can easily verify. Case 2. $F_1 * \cap \cdots \cap F_n * = \emptyset$ for some $F_i *$ in $\bigcup \mathfrak{F}_a$. In this case, $\bigvee \mathscr{U}_a$ is discrete since $J = \bigcap \{J \cup F_i * \times F_i * \}$. Thus \mathscr{U} is generated by any principal ultrafilter. **Lemma 9. 2** Let \mathfrak{F} be a filter on X and let Y be a set. Suppose $f: X \rightarrow Y$ and $\mathfrak{F}^* = \{F^*: Y \supseteq F^* \supseteq f[F] \text{ for some } F \text{ in } \mathfrak{F}\}$. Then f is uniformly continuous relative to $\mathcal{U}(\mathfrak{F})$ and $\mathcal{U}(\mathfrak{F}^*)$. *Proof.* This follows from the identity $A \cup F \times F \subseteq (f \times f)^{-1} (A \cup f[F] \times f[F])$ where A is the diagonal in the appropriate space. **Lemma 9.3** Let \mathcal{F} be a filter on X and \mathcal{V} a uniformity for Y. Suppose that $f: X \rightarrow Y$ is uniformly continuous relative to $\mathcal{U}(\mathcal{F})$ and \mathcal{V} . Then $\mathcal{V} \subseteq \mathcal{U}(\mathcal{F}^*)$ where \mathcal{F}^* is defined as in lemma 9.2. *Proof.* If $V \in \mathcal{V}$, then $(f \times f)^{-1}[V] \supseteq J \cup F \times F$ for some $F \in \mathcal{F}$ and it follows that $V \supseteq J \cup f[F] \times f[F]$. Thus $V \in \mathcal{U}(\mathcal{F}^*)$. **Theorem 9.4** Let $f:(X, \mathcal{U}) \rightarrow (Y, \mathcal{V})$ be a uniform identification, that is, let f be onto and let \mathcal{V} be the largest uniformity for Y for which f is uniformly continuous relative to \mathcal{U} . If \mathcal{U} is an fg-uniformity, then so is \mathcal{V} . Proof. Apply lemma 9.2 and lemma 9.3. **Theorem 9.5** Let (Y, \mathcal{V}) be a subspace of (X, \mathcal{U}) . If \mathcal{U} is an fg-uniformity for X, then \mathcal{V} is an fg-uniformity for Y. Proof. Let $\mathscr{U} = \mathscr{U}(\mathfrak{F})$ where \mathfrak{F} is a filter on X. Case 1. $Y \cap F^* = \emptyset$ for some $F^* \in \mathfrak{F}$. Then $J_Y = Y \times Y \cap (J_X \cup F^* \times F^*) \in Y \times Y \cap \mathscr{U}(\mathfrak{F}) = Y \times Y \cap \mathscr{U} = \mathscr{V}$. Thus $J_Y \in \mathscr{V}$ and \mathscr{V} is discrete. A discrete uniformity is always fg. Case 2. $Y \cap F \neq \emptyset$ for all F in \mathfrak{F} . Then $Y \cap \mathfrak{F}$ is a filter on Y and $\mathscr{V} = \mathscr{U}(Y \cap \mathfrak{F})$ as the reader can check. ## REFERENCES - [1] JOHN L. KELLEY: General Topology, D. Van Nostrand Company, Inc., 1955, - [2] WILLIAM J. PERVIN: Foundations of General Topology, Academic Press, 1964. - [3] WOLFGANG J. THRON: Topological Structures, Holt, Rinehart and Winston, 1966. THE OHIO STATE UNIVERSITY (Received March 7, 1969)