ON UNIFORMITIES GENERATED BY FILTERS

NORMAN LEVINE

1. A filter §§ on a set X generates a uniformity Z/(g) by taking as
base sets of the form A JF X F where 4 is the diagonal in XX X and F
e%.

In § 4, we obtain characterizations for principal ultrafilters, principal
filters, filters § with the property that M has at most one point.

In § 5, we characterize the topologies which arise from uniformities
generated by filters.

Completeness, total boundedness and compactness of Z/(§) are treat-
ed in § 6, 7, and 8.

We shall call a uniformity %/ for a set X a filter generated unifor-
mity if there exists a filter § on X such that %= Z/(%). Such unifor-
mities will be termed fg-uniformities. In this case, (X, %) will be called
an fg-uniform space, or simply an fg-space.

In § 9, we show that subspaces and quotient spaces of fg-spaces are
fg-spaces. Furthermore, the supremum of a family of fg-uniformities is an
fg-uniformity.

2. Theorem 2.1 Let § be a filter on X and let 7/ (%) be the set
of relations U such that XX XDUIMNIFXF for some F in §. Then
Z () is a uniformity for X.

Proof. (i) ACAMJEXF (i) (WFX F)'=0JFXF (i) (AJF X F)
NUJF' X FY= N J(FNF)X(FNF') and (iv) (A\JF X F)o({\JF X F)=4
\UFXF.

3. Theorem 3.1 Let FCH. be two filters on X. Then Z(F)C
7 ().

The proof is trivial.

Frequent use will be made of the following

Lemma 3.2 Let F and F* be two subsets of X and suppose that
F* has at least two elements. If NIJFXFDONJF*X F*, then FDOF*.

Proof. Let xF*. Take ys=x and y&F* Then (x, y)EF* X F*
CANJFXF., Thus (x,y)€EFXF and xEF.
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Theorem 3.3 Let 5§, and F. be two filters on X and suppose that
Be is not a principal ultrafilter. If Z2(F\)C 2 (Fn), then FHCFe.

Proof. Let F\€%,. Then SJF, KF,€ 7Z/(5) and hence NJF,X
FIDNJF, X F, for some F,=%, Since ¥, is not a principal ultrafilter,
F, has at least two elements and hence by lemma 3.2 F,DF, Thus F,
ST

4. Tn this paragraph, we obtain characterizations for various kinds of

filters § in terms of the associated uniformity Z/(%).

Theorem 4. 1 A filter § on X is a principal wltrafilter iff Z(F)
is discrete.

Proof. Suppose Z7(3) is discrete. Then J4D.NJFXF for some F
€%. Clearly then, F is a singleton set and § is a principal ultrafilter.
Conversely, suppose that % is a principal vltrafilter. Then there exists
a point xEX such that {x}|€%. Then J=U{x} X {2} and hence J&
7Z(F). Thus Z/(B) is discrete.

Corollary 4.2 A filter F on X is a principal filter iff Z(§F) is
a principat filter.

Proof. Casel. Suppose §{ is a principal ultrafilter. Then % (§)
is discrete by theorem 4.1 and hence is a principal filter. Case 2. § is
not a principal ultrafilter. Suppose that Z/(§) is a principal filter. Then
there exists an F*&{ such that UDJ\JF*XF* for all Ue Z(®).
Then JUFXFNJF*XF* for all FEF and by lemma 3.2, FDF*
since F* has at least two points, Thus & is a principal filter. Conver-
sely, suppose § is a principal filter. Then there exists an F*&g such
that FOF* for all FER. Then NJFXFONJF*X F* for all FES.
It follows then that Z/(¥) is a principal filter.

Theorem 4.3 Let § be a filter on the set X. Then NG has at
most one point iff Z(F) is separated.

Proof. Suppose that x5y and {x, y} CN\F. Then (x, y)ENIJFXF
for all FEF. Then (x, y)EU for all U Z/(F) and thus J55MN\ %. Thus
Z is not separated. Conversely, in % is not separated, then Js£N %
Then there exist points x5y such that (x, y)ENZ/. Thus, (x, y)E
NJFXF for all FE® and hence {1, y}CF for all FEE. It follows then
that N contains more than one point.
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Corollary 4.4 Let § be a filter on X. Then § is a principal
ultrafilter or NF=@ iff J(Z(F)) is discrete.

Proof. If ¥ is a principal ultrafilter, then Z/(%) is discrete by
theorem 4.1. Thus J(Z/(F)) is discrete. If NF=¢, then J(Z(F)) is
discrete. For let x=X. Then x&F for some F in . Hence (LJFX
F)Tx]={x} and thus {x} is open. Conversely, suppose that J( Z(§))
is discrete and suppose that $ is not a principal ultrafilter. We will show
that NF=®. Let x=X. There exists an F¥*&F such that (NJF* X F¥)
Tx]={«}. Since § is not a principal ultrafilter, F* has at least two
points, If x=F*, then (NJF*XF*)[x]=F*s4{x}, a contraciction. It
follows then that NF=.

5, Theorem 5.1 Let (X, ) be a topological space. Then there
exists a filter § on X for which I=3Z/(F)) iff there exist sets A and
B in X such that (1) X=A\UB, (2) a= A implies that {a} is both open
and closed, (3) A (b)=A4b) for all b, and b, in B, N~ denoting
neighborhood system and (4) AN\B=a.

Proof. Suppose that there exists a filter § on X such J=3J( %
(®). Casel. § is a principal ultrafilter. Then by theorem 4.1, Z/ (%)
is discrete and thus J( Z7(3)) is discrete. Let A=X and A=&. Clearly,
(1)—(4) hold. Case 2. § is not a principal ultrafilter. In this case, let
B=Ng and A= € B, % denoting the complement operator. Clearly,
(1) and (4) hold. We show now that (2) holds. If ¢ isin A, then a&F*
for some F* in % Then (N\JF*X F*)[a]={a} and thus {e} is both
open and closed. To show (3), let b&B. We will show that ./ (d)=F.
If Ne./7(b), there exists an FEF such that (NAJFX F)[b] C N. Since
beENE, it follows that FCN and hence Ne§. Conversely, let FESR.
Then (NFXF)[b]=F and hence Fe_+7(b).

Conversely, suppose that there exist sets A and B in X for which
(1)—(4) hold. Case 1. B=¢. Then I is discrete and J=J( Z(§)) where
% is any principal ultrafilter. Case 2, B#®. Let {=./7(b) where b
is arbitrary in B. We assert first that ICTI(Z(®)). To this end, let
ze0€ey. If x4, then x#b and b €{z}=.4(b). Thus F{x}=
Fe{ for some F. It follows then that {x}=(NJFXF)[x]C0O. If x&
B, then A4 (x)=4"(b)=% and hence O=F. Thus (NJOXO0)[x]=0. We
show next that J( Z(F)CJI. For let 2€0€J(Z/(F)). If x=A, then
2&{x} <0 and {x}E€J. If xEB, then A4 (2)=A4"(b)=F. But there
exists an FE$§ such that (NJFX F)[x]CO0 and hence x=FCO0. Since
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Fe " (x), it follows that O€3.

6. Lemma 6.1 § isa Z/(®)-cauchy filter in X.
Proof. If Us Z/(F), then UDNJFXFDOFXF for some FEZP.

Lemma 6. 2 If §* is a Z/(F) cauchy filter in X and if F* is not
a principal ultrafilter, then F*DOF.

Proof. Let FEE. Then NJFXFeE Z/(F) and hence F*X F¥C
AJFXF for some F* in §* But F* has at least two points since F*
is not a principal ultrafilter. It follows from lemma 3.2 that F*CF and
Feg*.

Theorem 6.3 Suppose F is a filter on X with the propery that
NF=¢. Then § is an uitrafilter iff § is the only Z/(F)-cauchy filter
which is not principal.

Proof. Suppose that § is an ultrafilter. Since NF=®, F is not
principal and by lemma 6.1, § is #/(§)-cauchy. Suppose now that F*
is any Z/(§)-cauchy, non principal filter. By lemma 6.2, §*2F and
since § is an ultrafilter, it follows that $¥*=% . Thus ¥ is the only
7/ (§)-cauchy non principal filter on X.

Conversely, suppose that $ is the only %7($)-cauchy, non principal
filter on X. To show that ¥ is an ultrafilter, let 2% Then NF'C
NF=@ and thus F is not principal. F' is clearly 7 (F)-cauchy since F
is., Thus §'=%.

7. Completeness of Z/(§) is investigated in this paragraph.

Theorem 7.1 (X, Z/(R)) is complete iff F is a convergent filter.

Procf. 1f (X, Z(®)) is complete, then § is convergent since by
lemma 6.1, § is Z/(F)-cauchy. Conversely, suppose that ¥ is conver-
gent and that §* is a %/ (¥)-cauchy filter. Case 1. F* is a principal
ultrafilter. Then 4 (#*)C% for some x* and §* is convergent. Case 2.
&* is not a principal ultrafilter. By lemma 6.2, $*2% and hence F* is
convergent,

Corollary 7. 2 If § is a filter on X, then (X, 7/ (%)) is complete
iff NBxa.

Proof. Suppose x*&NE. By theorem 7.1, it suffices to show that
A (eNCF. If NeA"(a*), there exists an FEF such that (JNJFXF)
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[¥*]CSN. Then FCN and N€&§. Conversely, suppose (X, Z(%)) is
complete. By theorem 7.1, § is convergent and hence there exists a point
%% such that A (x*)CF. We show now that s*eNG. If 2*E&F*eF,
then (WUJF*X F¥)[#¥]C{«*} and hence {x*} is open. Then {2*}E
A (#¥)CF and hence {1*}=F. But {x*}N\F*=4¢, a contradiction.

Corollary 7.3 If (X, Z(R)) is not separated, then (X, 7 (F)) is
complete.

Proof. By theorem 4.3, N has at least two points and thus NF
/. By the preceding theorem, (X, Z/(§)) is complete.

8. Theercm 8.1 (X, Z(})) is totally bounded iff FEF implics
that E°F is finite.

Proof. Sufficiency. Let U Z/(55). Then UDMNJFXF for some
FEF. Let x,€F, €F={x, -, %.{. Then Ulx, -+, 2.]=X.

Necessity. Suppose FEF. Then JUFX Fe Z/({¥) and hence there
exist x; such that (JJFXF)[x, -, #.J=X. Then FFC(JJFXF)[x,
e, 2, ]S FPU{%y -+, 2}, Thus EFC{z, -, 2.} and hence ZF is
finite.

Theorem 8. 2 (X, ZZ (%) is compact iff (1) NFxP and (2) FEF
implies that € F is finite.
The proof follows from theorem 8.1 and corollary 7.2,

9. In this final section, we will be concerned with fg-uniformities for
a set X (see § 1).

Theorem 9. 1 Let 7/ =\/ %, where Z; is an fg-uniformity for X
for each a4, Then 72 is an fg-uniformity for X.

Proof. For each a=., there exists a filter &, such that Z/=
7Z(3.). Casel. FN\---NF,>¢ for all F; in \U®.. Let F=V (F.:asi}.
Then Z(§)=\/{ Z(§.}: a1} as the reader can easily verify. Case 2.
FXN\---N\FX=¢ for some F* in \UZ. In this case, \/ % is discrete
since J=N\[SNJF*X F*}. Thus 7/ is generated by any principal ultra-
filter.

Lemma 9.2 Let § be a filter on X and let 'Y be a set. Suppose
F:X>Y and F*={F*:YDF*Df[F] for some F in §|. Then f is
uniformly continuous relative to Z(g) and 2/(F*).
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Proof. This follows from the identity \JFX FC(fXf) (IJfF[F]
X f[F]) where dJ is the diagonal in the appropriate space.

Lemma 9.3 Let § be a filter on X and 7~ a uniformity for Y.
Suppose thal f: X—Y is uniformly continuous relative to Z(%) and 7 .
Then 7°C ZZ(F*) where F* is defined as in lemma 9.2.

Proof. If Ve 77, then (fXf)7'[VIDANJFXF for some FEF and
it follows that V2ONJf[F] X fLF]. Thus Ve Z/(F*).

Theorem 9.4 Let f:(X, Z)>(Y, 7°) be a uniform identification,
that is, let f be onto and let 7~ be the largest uniformity for Y for
which f isuniformly continuous relative to Z7. If %/ is an fg-unifor-
mity, then sois 7 .

Proof. Apply lemma 9.2 and lemma 9.3.

Theorem 9. 5 Let (Y, #7) be a subspace of (X, 7). If % is an
Sfg-uniformity for X, then 7" is an fg-uniformity for Y.

Proof. Let Z'= 7z/(¥) where § is a filter on X. Case 1. YN\F*
=¢ for some F*€E. Then Jr=YXYN(J;UF*XFHEYX YN
=YXYNZ=7". Thus 4yE ¥ and ¥ is discrete. A discrete uni-
formity is always fg. Case 2. YNF=2¢® for all F in §. Then YN is
afilter on ¥ and 2 "= Z(YNE) as the reader can check.
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