GROUP RINGS WITH NILPOTENT UNIT GROUPS

Dedicated to Professor Keizo Asano on his 60th birthday
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In their paper [1], J. M. Bateman and D. B. Coleman stated the
following : Let F be a field, and G a finite group. (a) Let the group
ring FG be semi-simple. Then the unit group of FG is nilpotent if and
only if G is abelian. (b) Let the characteristic of F be a prime p divi-
ding the order of G. Then the unit group of FG is nilpotent if and only
if G is a nilpotent group such that the q-Sylow subgroup is abelian for
every prime g5=p. Unfortunately, they used there an incorrect lemma,
which should be corrected as follows :

Lemma 1. Lef S be a ring with 1, and N a nilpotent ideal of S.
If S/ N is commutative and [N,S]={[x, y]=2y—yx|xEN, yES} is
contained in N* then the unit group S* of S is nilpotent. In particular,
if S/N*® is commutative then S° is nilpotent.

Proof. We define (u, v)=wu"'27'uv for u, vES", and inductively

(s, *=+, 20, )=((st, **+, tn_), w0,) for uy, ---, u,£S°. Then, we see by induc-
tion that for n>1

@y, wooy u)—1= (o1, ==+, wnr) "0 [(ugy +o-, #0)—1, w,]JE N, Since N
is nilpotent, it follows that S* is nilpotent.

Remark. Let D=Q-+ Qi+ Qj--Qij be the quaternion division alge-

bra over the rational number field @. We consider the ring S={ (g 2)]

dED,a=C=Q+Qi}). Then, N={(3 o)|d€D} is an ideal of S with
N*=0 and S/N is isomorphic to the field C. For an arbitrary integer

. 1 0V Oyl O\ O' /1 O\ O\/1 O\vV—:i O
#, Wwe have (nj 1)(0 z')(nj 1) <0 i) = (nj 1)(0 i) —nj 1)(0 ~i)
=<2;lzj ?), whence one will easily see that S° is not nilpotent. This

example shows that the assumption [V, S]CN? is indispensable in Lem-
ma 1. Next, we shall claim that the converse of Lemma 1 is not true.

Evidently the radical N of the ring S= {(2‘ (c))la, b, ceGF(2)} coincides
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with {(} 8)|beGF(2)} and S/N is isomorphic to GF@)PGF(2). More-
over, S '={<é (1)), G (1])} is commutative and [N, S]5£0=N"
Now, we shall prove the following:

Proposition. Let S be a semi-primary ring with 1 such that the
radical R s nilpotent and S*=S|R® is commutative, and let G be a
finite group. If (1) G is commutative or (2) S/R is of prime characte-
ristic p and G is a nilpotent group such that the q-Sylow subgroup is
commutative for every prime qw=p, then the unit group of the group ring
SG is nilpotent.

Proof. We consider the ring homorphism 1 of &=SG onto the
group ring &%*=S*G deifined by >).es5.0—> > ,cs5F0 where s¥ is the
residue class of s,&S modulo K. Evidently, RG is nilpotent and Ker 4
=R'G=(RGY. If G is oommutative then &/(RG)* is isomorphic to the
commutative ring ©*, and hence &' is nilpotent by Lemma 1. It re-
mains therefore to prove the case (2). Let G=HX P where P is a p-
group and H an abelian group of order prime to p. By [3; Corollary
1], the respective radicals R and R* of SP and S*P are 3 ,cpS(p—1)
+RP and Y,epS*(0—1)-+H(R/R*)P. Moreover, noting that (RH)* con-
tains Ker 2 and A(RH)*)=(R*H)?, we see that &/(RH)* is isomorphic to
S*/(M*H):. As H is contained in the center of €* and [e, =] =[c—1,
t—1]eR*H)* for every o, P, it is easy to see that (&*/(J*H)* and
hence) &/(MH)* is commutative. As was noted in the proof of [3;
Corollary 1], $1* is contained in RP for some k, which implies that RH
is nilpotent. Hence, again by Lemma 1, &" is nilpotent.

As is well-known, the unit group of the complete nxX#n matrix ring
D, over a division ring D is not nilpotent for »>1. Moreover, it is
known that the unit group of a division ring D is not solvable if D is not
commutative ([2] or [4]). Accordingly, we readily obtain

Lemma 2. If the unit group of an artinian semi-simple ring S is
nilpotent then S is commulative.

Combining the proposition with Lemma 2, we can generalize some-
what the statement cited at the opening of this note.

Theorem. Let S be an artinian semi-simple rving, and G a finite
group. Then, the unit group of the group ring SG is nilpotent if and
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only if S is commutative and either (1) G is abelian or (2) S is of
prime characteristic p and G is a nilpotent group such that the q-Sylow
subgroup is commutative for every prime q5=p.

Proof. By the validity of our proposition, it suffices to prove the
only if part. If S is simple and the characteristic of S does not divide
the order of G then, as is well-known, SG is artinian semisimple. Hence,
S and G must be commutative by Lemma 2. Next, if S is a simple ring
of prime characteristic p dividing the order of G then by the fact noted
just above S and every g¢-Sylow subgroup of G are commutative (gz&p).
Now, combining those above, we can readily complete our proof.

Although the converse of our proposition is not valid, we obtain the
following :

Corollary. Let S be a semi-primary ring with 1, and G a finite
group. If the unit group of SG is nilpotent then the residue class ring
S of S modulo its radical R is commutative and either (1) G is com-
mutative or (2) S is of prime characteristic p and G is a nilpotent
group such that the g-Sylow subgroup is commutative for each prime q5=p.

Proof. We consider the ring homomorphism ¢ of SG onto SG de-
fined by X.c5.0 —>2 .cq5.0 Where s, is the residue class of s, modulo
R. Asis well known, Ker #=RG is contained in the radical of SG, and
so the unit group of SG is nilpotent. Hence, the corollary is evident by
our theorem.
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Added in proof. After the submission of this manuscript, the writers
have learned that K. Eldridge has subimnitted a short paper that correct
the error in [1]. Also P. B. Bhattacharya and S. K. Jain [Notices of Amer.
Math. Soc. 16 (1969), 562] have presented a counterexample to the lemma
of [1], provided another proof for the theorem of [1], and shown that if
S is an artinian ring with 1 and G is a finite group such that the unit
group of SG is nilpotent then SG satisfies a polynomial identity (xy—yx)"
=0. Indeed, the last is an easy consequence of our theorem.



