ON FINITE DIMENSIONALITIES OF RING EXTENSIONS FOR PRIMITIVE RINGS WITH NON-ZERO SOCLES

Dedicated to Professor Keizo Asano on his 60th birthday

TAKASI NAGAHARA

Let A be an arbitrary ring and B a subring of A. As in [2], we shall say that A has a right dimensionality over B if B is a primitive ring with a non-zero socle, that is, a ring having faithful minimal right ideals and I'A is a faithful, homogeneous completely reducible B-module for some minimal right ideal I' of B. In this case the right dimensionality $[A:B]_R$ is defined to be the cardinal number of irreducible direct summands of B-module I'A.

In this paper, we shall make some remarks on the results of [1, Th. 2 and its corollary] and [2, VI. §§6, 7] which are the study of dimensionalities for primitive rings with non-zero socles, where this paper depends heavily on [2].

Throughout the present paper, when M is a right A-module (resp. a left A-module), we place ourselves in the situation described by the symbol M_A (resp. $_AM$). Moreover, when A has a right A-module M (resp. a left A-module M), we place ourselves in the situation described by the symbol M_A (resp. M_A). For a right A-module M, we have $M_{A,L}$ where M is the ring of all the M-endomorphisms of M; and by M_A we denote the ring of all the M-endomorphisms of M. If M is a faithful right M-module then M-module M-m

We note first the following lemma which is well known.

Lemma 1. Let M be a faithful right A-module and $M = \sum_{i \in I} N_i$ a direct sum of A-submodules where all the N_i are mutually A-isomorphic. If N is one of the N_i then ${}_{(M)}\bar{A}/A \cong_{(N)}\bar{A}/A$ (F/I) where for $f \in_{(M)}\bar{A}$, fF is the restriction of f to N.

Throughout the rest of this note, we shall understand by a primitive ring a right primitive ring, that is, a ring which has a faithful irreducible right module. If A is a primitive ring having minimal right ideals then every minimal right ideal of A is a faithful right A-module, which is isomorphic to every faithful irreducible right A-module ([2, Prop. III. 5. 2]); and the socle of A is the sum of the minimal right ideals of A ([2, pp. 63, 64]). If A is a primitive ring having no minimal right ideals then we say that the socle of A is zero ([2, p. 63]). If B is a subring of A which is primitive and has a non-zero socle then, for any two minimal right ideals I_1 , I_2 of B, I_1A is A-isomorphic to I_2A ([2, Prop. III. 7. 4, Prop. III. 9. 1]).

By the above remarks and Lemma 1, we have the following

Corollary 1. Let A be a primitive ring with a non-zero socle. Let M and M' be right A-modules which are faithful, homogeneous completely reducible. Then, there exists a ring isomorphism F of $_{(M)}\bar{A}$ onto $_{(M')}\bar{A}$ such that

- (a) $_{(M)}\bar{A}/A \cong_{(M')}\bar{A}/A$ (F/I), and if B is a subring of A then
 - (b) $_{(M)}\bar{A}/_{(M)}\bar{B}\cong_{(M')}\bar{A}/_{(M')}\bar{B}$ (F).

In case Coro. 1 (a), we write $\bar{A} =_{(M)} \bar{A}$. This is a homogeneous distinguished ring of endomorphisms in the sense of [2, Def. VI. 3. 1]. In case Coro. 1 (b), if, in addition, M is homogeneous completely reducible as B-module, by $\bar{A} \supset_{(M)} \bar{B}$ we denote the situation $(M) \bar{A} \supset_{(M)} \bar{B}$.

For primitive rings, we have Dieudonné, two notions: Height and index ([1], [2]) which are as follows: Let $A \supset B$ be primitive rings.

- (a) If A has a non-zero socle and some minimal right ideal I of A is a faithful, homogeneous completely reducible B-module, then we define the (right) height of A over B to be the cardinal number of irreducible direct summands of B-module I.
- (b) If B has a non-zero socle and for some minimal right ideal I' of B, I'A is a completely reducible A-module, then we define the (right) index of A over B to be the cardinal number of irreducible direct summands of A-module I'A.

In case (b), I'A contains a minimal right ideal of A, and whence, the soele of A is non-zero. Thus, the above definitions and [2, Prop. VI. 6. 1] imply the following

Lemma 2. Let $A \supset B$ be primitive rings.

- (a) Let the socle of A be non-zero. If there exists the height of A over B then $\bar{A} \supset_{(*)} \bar{B}$, and conversely.
- (b) Let the socle S' of B be non-zero. If there exists the index of A over B then A has a non-zero socle S such that $S \supset S'$, and conversely.

Remark. Let $A \supset B$ be primitive rings with non-zero socles S, S' respectively. If there exists the height of A over B then the situation $\bar{A} \supset_{(*)} \bar{B}$ (resp. $\bar{A} =_{(*)} \bar{B}$) may be written as $\bar{A} \supset \bar{B}$ (resp. $\bar{A} = \bar{B}$). A right A-module M is faithful, homogeneous completely reducible if and only if MS = M ([2, Th. IV. 14. 1]). Hence, there exists the height of A over B if and only if IS' = I for every minimal right ideal I of A. If there exists the index of A over B then the index is finite ([2, Prop. VI. 6. 1]).

The following corollary will be easily seen.

Corollary 2. Let $A \supset B$ be primitive rings with non-zero socles S, S' respectively, and let M be a right A-module.

- (a) If there exists the height of A over B and M_A is faithful, homogeneous completely reducible then the ring extension ${}_{(M)}B \rightarrow {}_{(M)}\bar{A}$ coincides with the composed ring extensions $B \rightarrow \bar{B} \rightarrow \bar{A}$, $B \rightarrow A \rightarrow \bar{A}$.
- (b) When there exist the height and the index of A over B, M_A is faithful, homogeneous completely reducible if and only if so is M_B .

The following proposition is a slight variation of the result of [2, Prop. VI. 6. 3].

Proposition 1. Let A be a primitive ring, and B a subring of A which is primitive and has a non-zero socle S'. If $[A:B]_R$ exists and is finite then A has a non-zero socle S such that $S \supset S'$.

Proof. Let I' be a minimal right ideal of B. Then I'A has a finite composition series as B-module. Hence I'A has a finite composition series as A-module. Therefore I'A contains a minimal right ideal of A. Thus A has a non-zero socle. Then we have $S \supset S'$ by [2, Prop. VI. 6. 3].

The following corollary is a direct consequence of Prop. 1 and [2, Prop. VI. 6. 1].

Corollary 3. Let A be a primitive ring, and B a subring of A which is primitive and has a non-zero socle. Then, $[A:B]_R$ exists and is finite if and only if the index of A over B exists and the height of A over B exists and is finite; and when this is so $[A:B]_R$ is the product of the height and the index.

The following proposition contains the result of [2, Coro. VI. 6. 1].

Proposition 2. Let A be a primitive ring, and B a subring of A which is primitive and has a non-zero socle. Let T be an intermediate ring of A/B which is primitive.

- (a) If $[A:B]_R$ exists and is finite then the socle of T is non-zero, $[A:T]_R$ and $[A:B]_R$ exist, and $[A:B]_R = [A:T]_R [T:B]_R$.
- (b) Let the socle of T be non-zero. If $[A:T]_R$ and $[T:B]_R$ exist and are finite then $[A:B]_R = [A:T]_R [T:B]_R$.

Proof. Our assertion (b) is a direct consequence of Prop. 1 and [2, Coro. VI. 6. 1]. The proof of (a) is as follows. Since $[A:B]_R$ is finite, by Prop. 1, the socle S of A is non-zero and contains the socle S' of B. If I' is a minimal right ideal of B then $\{0\} \rightleftharpoons I'T \subset I'A$, and which are faithful, homogeneous completely reducible B-modules. Hence $[T:B]_R$ exists and is finite. By Prop. 1, the socle S^* of T is non-zero and contains S'. Moreover we have $I'T \subset S^*$ and $I'A \subset S$. Since $S^* \cap S(\supset I'T \rightleftharpoons \{0\})$ is an ideal of S^* and S^* is a simple ring, it follows that $S^* \subset S$. Thus the index of A over T exists by Lemma 2. Let I be a minimal right ideal of A. Then IS' = I, and so, $IS^* = I$. Hence the height of A over T exists by the remark of Lemma 2. Moreover the height is finite. Therefore, it follows from Coro. 3 that $[A:T]_R$ exists and is finite. Thus, by (b), we have our assertion (a).

Now, we shall prove the following proposition which is useful in the rest of our study.

Proposition 3. Let A be a ring, and B a subring of A which is primitive and has a non-zero socle. Then the following conditions are equivalent.

- (a) A is primitive, $[A:B]_R$ exists and equals to 1.
- (b) $B \subseteq A \subseteq \bar{B}$.
- (c) $\bar{A} = \bar{B}$ (in the sense of the remark of Lemma 2).

Particularly we have $[\bar{B}:B]_R=1$.

Proof. Let I' be a minimal right ideal of B. Then I'=e'B, where e' is a minimal idempotent of B ([2, Prop. III. 10. 1]). Moreover Hom $(e'B_B, e'B_B)$ is a division ring, and which is the ring of all the endomorphisms $x \rightarrow ax$ $(x \in e'B)$, $a \in e'Be'$ ([2, Prop. III. 7. 3]). Now, we shall give a cyclic proof of our proposition in the order $(a)\Rightarrow(c)\Rightarrow(b)\Rightarrow(a)$. Assume (a). Then e'A = (e'B)A = e'B, and this is a minimal right ideal of A. Since A is primitive, e'A is a faithful irreducible right A-module. Since e'Ae'=e'Be', we have Hom $(e'A_A, e'A_A)=$ Hom $(e'B_B, e'B_B)$. Hence we obtain $\bar{A} = \bar{B}$. This proves that (a) implies (c). Next (c) \Rightarrow (b) is obvious. Assume (b). Then $\bar{B}/B = {}_{(e'B)}\bar{B}/B$ (Coro. 1), and A has a faithful irreducible right A-module e^tB . Hence A is a primitive ring. Let S' be the socle of B. Since e'B=e'S' and is a faithful irreducible right S'-module, we have $\overline{S'} = \overline{B} \supset A \supset B \supset S'$. Hence, by Prop. 2 (a), it suffices to prove that $[\overline{S'}:S']_R=1$. If $f\in S'$ and $g\in \overline{S'}$ then e'S'f is a finitely generated left e'S'e'-module ([2, p. 75, Structure theorem for primitive rings with non-zero socles]), and whence, by the density theorem for irreducible modules ([2, p. 31]), the restriction of g to e'S'f coincides with the restriction of some $h \in S'$ to e'S'f, which implies $fg = fh \in S'$. Hence $S'\overline{S'} \subset S'$, that is, $S'\overline{S'} = S'$. Then we have $(e'S')e'S'\overline{S'} = (e'S')e'S'$. This implies $[\overline{S'}:S']_R=1$.

Proposition 4. Let $A \supset A' \supset B$ be primitive rings and let the socle of B be non-zero. Assume that $[A:B]_R$ exists and is finite. Then $[A:B]_R = [A':B]_R$ if and only if $\bar{A} = \bar{A}'$.

Proof. By Prop. 2, $[A:A']_R$ and $[A':B]_R$ exist and $[A:B]_R = [A:A']_R[A':B]_R$. Hence $[A:B]_R = [A':B]_R$ if and only if $[A:A']_R = [A:A']_R$ and this is equivalent to that $\bar{A} = \bar{A}'$ (Prop. 3).

Proposition 5. Let A be a primitive ring, and B a subring which is primitive and has a non-zero socle. If $[A:B]_R$ exists and is finite then $[\bar{A}:\bar{B}]_R = [A:B]_R$.

Proof. Since $\bar{A} \supset A \supset B$ and $\bar{A} \supset \bar{B} \supset B$ (Coro. 2), it follows from Prop. 2 and Prop. 3 that $[\bar{A}:A]_R[A:B]_R = [\bar{A}:B]_R = [\bar{A}:\bar{B}]_R[\bar{B}:B]_R$. Noting that $[\bar{A}:A]_R = 1$ and $[\bar{B}:B]_R = 1$ (Prop. 3), we obtain $[A:B]_R = [\bar{A}:\bar{B}]_R$.

The following proposition contains the results of [1, Coro. of Th. 2] and [2, Th. VI. 7. 1].

Proposition 6. Let $A \supset B$ be primitive rings such that B has a non-zero socle and $[A:B]_R$ exists and is finite. Let M be a right A-module. Then, M_A is faithful, homogeneous completely reducible if and only if so is M_B . In this case, if $L = Hom(M_A, M_A)$ and $L' = Hom(M_B, M_B)$ then $[L':L]_R = [A:B]_R$.

Proof. By Coro. 2 and Coro. 3, M_A is faithful, homogeneous completely reducible if and only if so is M_B . Assume the conditions. Then $\bar{A} \supset \bar{B}$ are homogeneous distinguished rings of endomorphisms of M ([1, Def. VI. 3. 1]). Therefore, by [2, Th. VI. 7. 1], we have $[L':L]_R = [\bar{A}:\bar{B}]_R$. Since $[\bar{A}:\bar{B}]_R = [A:B]_R$ (Prop. 5), it follows that $[L':L]_R = [A:B]_R$.

Remark. Let A, B, M, L, and L' be as in the preceding proposition, and let M_A (=M) be faithful, homogeneous completely reducible. Then the index of A over B equals to the index of \overline{A} over \overline{B} and the height of A over B equals to the height of A over B. Hence, by [1, Th. 2] (or the proof of [2, Th. VI. 7.1]), the index of A over B equals to the height of L' over L and the height of A over B equals to the index of L' over L. This is a generalization of [1, Th. 2].

REFERENCES

- [1] J. DIEUDONNÉ: Le théorie de Galois des anneaux simples et semi-simples, Comment. Math. Helv., 21 (1948).
- [2] N. JACOBSON: Structure of rings, Providence (1964).
- [3] T. NAKAYAMA and G. AZUMAYA: Daisûgaku II (in Japanease), Iwanami Shoten, Tokyo, 1954.
- [4] A. ROSENBERG and D. ZELINSKY: Galois theory of continuous transformation rings, Trans. Amer. Scc., 79 (1955), 429—452.

DEPARTMENT OF MATHEMATICS,
OKAYAMA UNIVERSITY

(Received July 18, 1969)