A CHARACTERIZATION OF QUATERNION ALGEBRAS

HISAO TOMINAGA

In the present note, we shall prove the following theorem with a quite elementary proof.

Theorem. Let $A(\ni 1)$ be a central simple (Artinian) algebra over C whose characteristic is different from 2. If $A' = \{x \in A \setminus C \text{ (complement of } C \text{ in } A\}$; $x^2 \in C\} \cup \{0\}$ forms a non-zero additive group then A is a quaternion algebra (and conversely).

Proof. We claim first that $A' \oplus C$ is a subring of A. In fact, if x, y are in A' then $c(x, y) = xy + yx = (x + y)^2 - x^2 - y^2 \in C$, and then $(xy)^2 = x$ $(c(x, y) - xy)y = c(x, y) \cdot xy - x^2y^2$. Hence, $(xy - c(x, y)/2)^2 \in C$, whence it follows $xy \in A' \oplus C$. As a direct consequence of this fact, we have $(xz)y + y(xz) \in C \oplus Cy$ for $x, y, z \in A'$. Now, let $A = \sum_{i=1}^{n} De_{ij}$, where $E = \{e_{ij}\}$ is a system of matrix units and $D = V_A(E)$ (centralizer of E in A) a division ring. We shall distinguish here between two cases.

Case I. n=1: To be easily seen, $A' \oplus C$ is algebraic over C, and hence a division ring. Evidently, there exist some $x \in A'$ and $u_0 \in A$ such that $xu_0 \neq u_0 x$. If u is an arbitrary element of A such that $x \neq uxu^{-1} = x_1$ ($\in A'$) then $x \neq (u+1)x(u+1)^{-1} = x_2(\in A')$. We have then $x-x_2=(x_2-x_1)u$. whence it follows $u=(x-x_2)(x_2-x_1)^{-1} \in A' \oplus C$. On the other hand, if v is an arbitrary element of $V_A(x)$ then $x \neq (u_0+v)x(u_0+v)^{-1}$. Accordingly, by the above, $v=(u_0+v)-u_0 \in A' \oplus C$. We have seen thus $A' \oplus C = A$. Derived Evidently, there exists then an element $y \in A' \setminus C[x]$ and there holds $C[x, y] = C \oplus Cx \oplus Cy \oplus Cxy$. Now, suppose $A \neq C[x, y]$, and take an arbitrary element z from $A' \setminus C[x, y]$. Then, $C[x, y, z] = C \oplus Cx \oplus Cy \oplus Cz \oplus Cxy \oplus Cyz \oplus Czx \oplus Cxyz$. However, as $(xz)y+y(xz)\in C \oplus Cy$ by the remark stated at the opening of this proof, $xyz=x(c(y,z)-zy)=c(y,z)\cdot x-(xz)y$ and $xyz=(c(x,y)-yx)z=c(x,y)\cdot z-y(xz)$ yield a contradibtion $xyz\in C \oplus C$

¹⁾ Then, as was noted in [1; p. 578], A satisfies the polynomial identity $(xy-yx)^2x-x(xy-yx)^2=0$, and so A is a quaternion division algebra by [2; Th. 6.2]. Another elementary proof is given in [3].

 $Cx \oplus Cy \oplus Cz$. Hence, A = C[x, y] and [A : C] = 4.

Case II. n>1: We have n=2. In fact, if n>2 then $(e_{12}+e_{23})^2=e_{13}$ does not belong to C. Next, suppose $D\neq C$, and choose two elements $a,b\in D$ such that $ab\neq ba$. We have then $(ae_{12}+be_{21})^2=abe_{11}+bae_{22}\notin C$. This contradiction proves our assertion $A=\sum_1^2 Ce_{ij}$.

REFERENCES

- [1] I. KAPLANSKY: Rings with a polynomial identity, Bull. Amer. Math. Soc. 54 (1948), 575—580.
- [2] M. HALL: Projective planes, Trans. Amer. Math. Soc. 54 (1943), 229-277.
- [3] P. VAN PRAAG: Une charactérisation des corps de quaternions, Bull. Soc. Math. Belgique, 20 (1968), 283—285.

DEPARTMENT OF MATHEMATICS,
OKAYAMA UNIVERSITY

(Received June 6, 1969)