A REMARK ON LYAPUNOV-HALMOS-BLACKWELL’S
CONVEXITY THEOREM

SHO0z0O KOSHI

1. In this note, we shall give another simple proof of the following
theorem due to Lyapunov, Halmos and Blackwell: Let p1, s, -+, 1, be
non-atomic completely additive measures on a s-complete Boolean lattice
B and their total variations be finite. Then the set of all points (1(B),
1a(B), o+, t4,(B)) for BEDB is convex in the n-dimensional space. We use
only elementary tool of measure theory for proving this theorem. As for
the closedness theorem, we can not improve the proof of Blackwell.

At the final part of this note, we shall show that this theorem can not
be generalized even in infinite-dimensional nuclear spaces, But this
theorem 1is true in strictly inductive limit of Euclidean spaces which is
infinite dimensional.

2. Let ¢ be a completely additive measure on o-complete Boolean
lattice B, whose total variation is finite. An element BE® is an atom
for r, if n(B)s~0 and p(X)=(B) or =0 for all XCB, X&B. ¢ is
called non-atomic if there is no atom for s It is easily seen that p*(=p
U0) and g (=(—p)\J0) are non-atomic if # is non-atomic.

Lemma 1. The following conditions are equivalent :

(1) = is non-atomic.

(2) For every €>0 and FEB with j;(F)5=0, there exists BCF
with BE® and 0<|p(B)|<Ze.

(3) For every real number 1>i>0 and FEDB, there exists BEDB
with BCF and p{(B)=2n(F).

Proof. (1)=>(2) If ¢ is non-atomic and u(F)s=0 where FE%B, then
we can find X, YEB, X, YCF such that p*(X)<e/2, p*(Y)=0 and
r~(N=e/2, p(X)=0 with XNY=¢ (minimum of B) and either 1*(X)
s£0 or n(Y)s£0. If p*(X)5#n,(Y), then B=X\UY has a desired
property. If p*(X)=z"(Y), then we can replace X or Y so that p*(X)
=41~ (Y) by the non-atomicity of #* and p.

(2)=>(3) This can be proved by Zorn’s lemma.

(3)=>(1) It is clear.
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Lemma 2. If i, and i, are non-atomic on B, then i+, is non-
atomic on B.

Proof. Since maximum 1 of B can be decomposed into E\JE;=1,

where E({=1, 2) are mutually disjoint and , is positive or negative on
E,, we can suppose that »#,=0 or 1,<0.
‘ Now, suppose that we find an atom F&X3B for /#,+ . For every
n=1,2, -, there exists F,e8 with (1/2")u,(F)=p(F,); FOF,DF,+D
F,D- and (14+@)(F)=0(u+m)(F)%0n=1,2, ). For G=MNi-1Fa
we have /,(G)=0. Hence, /(G)=(x+ "z)(G)—llm (12 1) (Fo) = (21 1)
(F)540 and 1 Gy) = (10, + X Gy = (o2, + 1) (F) or =0 for every G,CG,
G,E8. But, this contradicts to the non-atomicity of ..

Lemma 3. If n, and 1, are measures with finite variation on B
and 1,(1)=2(1), then for every 1>i>0, there exists FEDB with pr(F)
= n,(F)=212,(1).

Proof. Since () -+ 5)(1)={(n{ -+ )(1), we may suppose that /,=0
and p,=0. It suffices to prove that ¢, and s, are non-atomic on some
non trivial Boolean sublattice B,C {G; 1 (G)=p(G), GEB}.

We can decompose 1 into 1=E\JE, ENE,=¢; E, E.E8; i—
/. is positive on E, and p,—y, is positive on E, with (p,— )" (Ez)=
(pt— 1) (ED)=0. If (,—pa)*=0 or (a—pn)* =(,—m)" =0, then p,=
/%2 because of r4,(1)=r51). If (1,—)*5<0 and (r—/2) 550, for >0
we can get F\CE, F.CE, F, F,€B with 0<(y—u)" (F)=m(F)=
€/2, 0<<(tta— )" (Fy)<(Fy)<e/2, by virtue of the non-atomicity of s,
and (4.

By virtue of Lemma 2, if 0<<(r,— )" (F,) =0<<0'=(y1,—,)*(F3), then
F, may be changed so that (u,—¢,)"(F.)=4 and both n(F;) (:=1,2) are
not identically 0 at the same time.

Hence, we have

(11— 1) (F NI Fo)= (10— 1) (FA\UF2) — (11— 102) "(F\U F)
= (= 1) " (F) = (tta— )" (F2) =0
and so
0< it (FA\JFy) =t F\UF)S €/24-¢/2.
Hence, we can construct a non trivial Boolean latlice B,C {G; 1(G)=

1:(G), GE®B} such that s, and p, are non-atomic on B, and 3B, contains
all Ge®B with ¢, (G)=r,(G)=0.
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Lemma 4. If pn(i=1,2, -+, n) are non-atomic and positive or negative
on B and 14(1) coincide with each other, them &, is non-atomic with
respect to some Boolean sublattice B,_, which is contained in {B; 11(B)
=...=un,(B), BE8B}.

Proof. By induction, we suppose that /i, is non-atomic on some Bo-
olean sublattice B,_,C{B; (B)= -+ =,_(B), BE®B} such that B,.,
contains all Be®B with #(B)= «» =p¢,_(B)=0. If r, is non-atomic

l}

on B,_, then r, is non-atomic on some B,_; by Lemma 3. Suppose
now that E€%B,., is an atom for y, with respect to B, For every
positive integer m, 11,(Fn)=(1/2™)(E), tro(Fn)= 11.{E)#0, F,EB,_, with
EDFDF,D--DF,2--. For G=F\Fm, #(G)=0 and G is an atom for
/.. For every HC G, HES, ,fz,(H)::'.z(H)=---=,a,,_,(H)=0 i.e. HE®, ..
But s, is non-atomic on {G,; G,C G, G,&B]}, so we have a contradiction.

Proof of Theorem.

§
We can decompose 1 into 1=\UFE,, where y,, -+, , are positive or
i=l

negative on E,. By Lemma 4, we can easily obtain the conclusion. (one
may remark that in the proof of our theorem, Lemma 3 is essential.)

3. Let R be a locally convex space and B be a Boolean lattice. We
call a mapping s+ from B to R R-valued measure if ,U.(DBi)=i,u(B;)
(by the topology of R) for mutually disjoint family B; (i =1l,- .‘IZ, o) gfl B.

Let R be strictly inductive limit of Euclidean spaces i.e. R=C)R,1
where R, is n-dimensional with R,CR,.,.. The range of R-valued lfr_—xéaa-
sure on non-atomic Boolean lattice 2B is closed and convex because the set
{#(BYNR,; BE®} is closed and convex for all n=1, 2, ---.

Proposition. Let R be a nuclear vector lattice which is not contain-
ed in inductive limit of Euclidean spaces. Then, there exists a R-valued
measure it on Borel sets of interval [0,1] such that its range is not con-
vex. (For the definition of nuclear vector lattice, see [3]).

Proof. For every n=0,1, 2, ---, we shall consider a family of subsets

{U} of the interval [0, 1] formed by unions of the subsets: [0, 2i>, [-;ﬁ,

2 2"—2 2"—1\ [2"—1 _ 1 .
?"), ,I: 5 g ),[ o ,1] such that m(U)—7, where m is Lebe-
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sque measure on [0, 1].

Arranging these subsets for all =1, 2, --, we shall assign numbers:
U, Uy, -

Note that the linear subspace of L,[0,1] generated by the characte-
ristic functions of U, (denoted by X ) is dense in L,[0, 1].

If m(E)=% for a Borel set E, then m(E* =% and m(ENU.)=m

(E°NU,) if m(EﬂU,,):%.

By [3], R is considered as generalized sequence space. Since R is
not inductive limit of Enclidean space by assumption, we can find an
element xR whose co-ordinates are not O at least for infinite countable
index. Without loss of generality, we can assume that ¥=(a, a), @, *,
a, ) where a,>07=0,1,2, ).

Now, we shall define R-valued measure / on a Borel field 8 of [0, 1]
as follows :

r(EY=(amm(E), a m(ENU), *-, a.m(ENU,), ++*)

where E€B and m is Lebesque measure on B,
It is easy to see that g is R-valued measure on B. If the range of /.
is convex, then we must have a Borel set E&®3 such that

/”(E)= (—‘;l: %) %y IR -aii') "')1

since ([0, 1])=(ay, % —;ﬁ -++) and /($)=(0, 0, -+-0, ---).

Hence, m(E)= % and m(ENU,)= % =m(E‘NU,).
Since

| X0, —Xm= (o ~X)dm=m(EAU)~m(ENV,)=0
¢ Un

and the linear subspace generated by {X,,—"} is dense in L,[0, 1], we have
Xe—Xpe=0 considering as an element of L.[0, 1]. This is a contradiction
i.e. the range of B by x is not convex.

Since every nuclear F-space with bases is considered as nuclear vector
lattice, this proposition is true if R is infinite dimensional nuclear F-

space with bases. (c.f. [5])
It is noticed that the range of B by p# is convex if the range is weakly

closed.
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