ON GROUP RINGS OVER SEMI-PRIMARY RINGS

KAORU MOTOSE

Throughout the present paper, A will represent a semi-primary ring
(with 1), namely, a ring such that the residue class ring A of A modulo
the Jacobson radical Ri=NR(A4) is (right or left) Artinian, G a multipli-
cative group of finite order, and H a normal subgroup of G. Moreover,
we use the following conventions: G=\Ui.,Ha,(6,=1) is the right coset
decomposition of G modulo H, and G*= G/ H. We consider the follow-
ing commutative diagram of group rings and ring epimorphisms:

*
AG ¥ s AG*
Ar1 l 1:’;" l Yra
AG »y AG*

where le 2 reels Ol —> PR A N]l‘ik P Dol o—> Zpeaaa"'* and 'lT‘z
and v are similarly defined.” We set =¥ =3y, and further for
H=G we write =+ and ¢=n, namely, ¢: 2l,eelo0—> 2iocels
and ¢: >,eqd,01—> > el

Evidently, Ker $y={2X,c68:0; Toecatto =0}, Ker ¢={>cct,0; Xoes
a-.ER}, Ker yn=R-G, Ker ¥ = {T: 2 entnr0i: Lyenan=0 for i=1,2,
-, t} and Ker = {13 1ents0:; ZhentyER for i=1,2, -, t}.

If ¢, and ¢’ denote respectively the restrictions of ¢, and ¢ to A H,
then we obtain Ker F=2>"{., Ker ¢y-0; and Ker +»=33_, Ker ¢/,

- The main theme in the present paper will concern the radical of AG,
and our results (Ths. 1—3) will contain [4; Prop. 1], [1; Cor. 1.1] and
[2; Th.], respectively.

The author wishes to express his thanks to Professors K. Kishimoto
and H. Tominaga for their useful advices.

1. The following is evident by [3; Th.46.2], and will be used freely
in our subsequent study.

Lemma 1. AG is semi-primary and the radical N(AG) contains
R(AH)-G.

1) ao- means the residue class of (€ A) modulo R, and o* the residue class of ¢ modulo H.
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We shall prove first the following whose proof is quite similar to that
of [4; Prop. 1].

Theorem 1. If t=(G:H) is a unit of A then R(AG)=R(AH)-G.

Proof. Let f: M —> N be an AG-epimorphism where M and N are
(unital) left AG-modules. If g: N—=M is an AH-homorphism of N into
M such that fg=1, then g*=(G:H)'-Xi..07'gr is an AG-homomor-
phism of N into M such that fg*=1. Thus, we see that any AG-
module is (AG, AH)-projective, and therefore any AG/R(AH)- G-module
is (AG/R(AH)- G, AH/NR(A H))-projective. As AH/R(AH) is semi-simple,
it follows then AG/R(AH)- G is semi-simple. Hence, R(AH)- GDR(AG).

The next is rather familiar, and will be used in the proof of Th. 2,

Lemma 2. Lot A be semi-simple. If G is a p-group and pA=0
then N(AG)=Ker &,

Proof. Evidently, Ker $2R(AG). It remains therefore to prove
R(AG)DKer ¢,. Let the order of G be p°. We shall prove the assertion
by the induction on e¢. In case e=1, it is easy to see that (Ker ¢,)’=
(Y, ccA(1—a)?=0. Next, suppose ¢=>1 and that our assertion is true
for e—1. As G is a p-group, we can find a normal subgroup H of G
such that (G: H)=p. By the induction hypothesis, Ker +#=R(AH)-GS
NR(AG). Since AG is Artinian, Ker ¥ is then nilpotent. Evidently,
Wi (Ker ) SR(AG*), and so +f(Ker ¢)”=0 by the case e=1, which
means that Ker ¢, is nlpotent.

Corollary 1. If G isa p-group and PA=0 then R(AG)=Ker ¢.

Proof. Evidently, Ker $2OR(AG). On the other hand, by Lemma 2,
r(Ker H)CSRH(AG), and so we can find some positive integer % such that
(Ker d)*CKer y=R+GSR(AG). Hence, we have Ker ¢CNR(AG).

Now, we can prove the following that contains [1; Cor.1.1].

Theorem 2. If G has a normal p-Sylow subgroup P and pA=0
then RAG)=R(AP)-G.

Proof. By Th. 1, we have }(R(AG)SR(AG)=N(AP)-G. Hence,
by Cor. 1, it follows R(AG)CSY (R(AP)- G)=R(AP)-G. completing the
proof.

2. In this section, we shall restrict our attention to the case that A
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is a primary ring. The proof of the following will proceed in the same
wav as in that of [2; Lemma], and may be omitted.

Lemma 3. Let A be primary, and the order | G| of G greater than
1. If « is aunit of AG whenever H() is a unit of A, then A is of
characteristic p(5%0) and G is a p-group.

Now, we shall give a slight generalization of [2; Th.].

Theorem 3. If A is primary and |H|>1, then the following condi-
tions are equivalent :

(1) A is Oof characteristic p, and H is a p-group.

(2) AH is primary.

(3) « is a unit of AG whenever (<) is a unit of AG*.

(4) « is a unit of AG whenever w¥(«) is a unit of AG*.

Proof. The implications (3)<==>(4) and (1)=>(2) are easy consequences
of Ker yn=N:G*CTR(AG*) and R(AH)=Ker ¢'(Cor. 1), respectively.

(2)=>(3): As the radical R(AH) of the primary ring AH coincides
with Ker ¢/, we have Ker 1»=73" Ker ¢'. o;=N(AH)- GSR(AG). Hence,
there holds (3).

(3)=(1): If y isin Ker+ then 1—y is a unit of AG. Hence, Ker
$'C Ker v&R(AG). Noting here that {s} is a free AH-basis of AG,
we readily see that Ker ¢’ is a quasi-regular ideal of AH. Hence, by
Lemma 3, we obtain (1).

The proof of the next corollary proceeds in the same way as that of
the above theorem did.

Covollary 2. If A is completely primary and |H|>1, then the fol-
lowing conditions are equivalent :

(1) A is of characteristic p, and H is a p-group.

(2) AH is completely primary.

(8) « is aunit of AG whenever Q) is a unit of AG*.

(4) « is aunit of AG whenever () is a unit of AG*.

Finally, we shall prove the following :

Corollary 3. If A is a strougly primary ring® and |G|>1 then
the following conditions are equivalent :
(1) A is a completely primary ring such that A is of characteristic

2) Namely, A is a ring such that 4 is simple and idempotents of A can be lifted.
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p, and G isa p-group.
(2) AG is completely primary.
(3) AG contains no non-trivial idempotents.
4) @ is a unit of AG whenever H(@) is non-zero.

Proof. (1)=>(3) and (1)=>(2) are clear by Cor. 2.

(3)=>(1): Suppose g is a prime factor of |G| different from the
characteristic of A. Now, take a subgroup @ of G whose order is gq,
and consider the element e=g™'- Y co0. It is easy to see that & is a non-
trivial idempotent.

(2)=>(4) : If $(a@)5~0 then « is not contained in Ker p=R(A4 G) which
means that « is a unit of AG.

(4)=>(1): By Lemma 3, A is of characteristic p and G is a p-group.
Hence, R(AG)=Ker ¢ by Cor. 1. Accordingly, if a is not contained in
R(AG) then ¢(a)s40, and then « is a unit. This means that AG is a
completely primary ring.
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