A NOTE ON SEPARABLE EXTENSIONS OF COMMUTATIVE RINGS

MOTOSHI HONGAN and TAKASI NAGAHARA

Commutative separable algebras have been studied in [1] and [2], [3] where the main ideas are based on the theory of fields. Moreover, in [4], G. J. Janusz presented a number of explicit results for commutative separable algebras. In this paper, we shall make a remark on commutative separable algebras (Theorem), where this paper depends heavily on [4].

Throughout the present paper, A will be a commutative ring with the identity element 1, and B a subring of A containing the identity element 1 of A. As in [4], if A is projective, and separable over B then A will be called a strongly separable B-algebra. By [5, Villamayor's Theorem], a strongly separable B-algebra is a finitely generated B-module. Moreover, by [4, Th. 1.1], a strongly separable B-algebra with no proper idempotents (no idempotents except 0 and 1) can be imbeded in a Galois extension of B with no proper idempotents. If D is a Galois extension of D then the Galois group will be denoted by D0 our purpose of this paper is to prove the following theorem.

Theorem. Let $A \supseteq B$, and A a strongly separable B-algebra without proper idempotents. Then, B[a] is separable over B for every $a \in A$ if and only if A is a field.

Firstly, we shall prove the following

Lemma. Let B[a] be a commutative ring without proper idempotents, and $a \notin B$. If B[a] is a strongly separable B-algebra then a is not nilpotent.

Proof. Let N be a ring extension of B[a] without proper idempotents which is Galois over B. Then, there exists an element σ of G(N/B) such that $a = a^{\sigma} = b$. By [4, Lemma 2.7 and Lemma 2.1], a - b is an inversible element of N. If $a^n = 0$ for some natural number n then $b^n = 0$, and so, we have a contradiction

$$0 = (a-b)^{2n} = \sum_{i=0}^{2n} (-1)^{i} {2n \choose i} a^{2n-i} b^{i} = 0$$

Hence a is not nilpotent.

Now, we shall prove our theorem.

The proof of Theorem. Let N be a ring extension of A without proper idempotents which is Galois over B. If A is a field then, for every nonzero element a of B, we have $(a^{-1})^{\sigma} = (a^{\sigma})^{-1} = a^{-1}$ for all $\sigma \in$ G(N/B), which implies $a^{-1} \in B$; hence B is a field, and A is separable over B in the sense of classical separability, and so, every element of A is separable over B. Conversely, we assume that B[a] is separable over B for every $a \in A$. At first, we shall prove that B is a field. Let a be an element of A which is not contained in B. Then, there exists an element σ of G(N/B) such that $a \neq a^{\sigma}$. By [4, Lemma 2.7 and Lemma 2.1], $a-a^{\sigma}$ is an inversible element of N. Let b be a nonzero element of B. Then $b(a-a^{\sigma}) \neq 0$. Hence $ba \neq (ba)^{\sigma}$, and so, $ba - (ba)^{\sigma} = b(a-a^{\sigma})$ is an inversible element of N. Therefore b is an inversible element of Since $(b^{-1})^{\tau} = (b^{\tau})^{-1} = b^{-1}$ for all $\tau \in G(N/B)$, we have $b^{-1} \in B$. Thus B is a field. Since A is a finitely generated B-module, A is an Artinian ring. By lemma, the radical of A is zero. Hence A is a semisimple ring. Noting that A has no proper idempotents, A is a field.

The following corollaries are direct consequences of our theorem.

Corollary 1. Let $A \supseteq B$, and A a strongly separable B-algebra without proper idempotents. If A is not a field then there exists an intermediate ring B[a] of A/B such that B[a] is not separable over B.

Corollary 2. Let A be a strongly separable B-algebra without proper idempotents. If B[a] is separable over B for every $a \in A$ then, for every intermediate ring D of A/B, D=B[d] for some element d of A.

Corollary 3. Let $A \supseteq B$ and suppose A has no proper idempotents. Then, B[a] is strongly separable over B for every $a \subseteq A$ if and only if A is a field which is algebraic and separable over B.

REFERENCES

- [1] M. AUSLANDER and D. BUCHSBAUM: On ramification theory in Noetherian rings, Amer. J. Math. 81 (1959), 749—765.
- [2] M. AUSLANDER and O. GOLDMAN: The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367—409.
- [3] S.Chase, D.K.Harrison and A.Rosenberg: Galois theory and cohomology of commutative rings, Mem. Amer. Math. Soc. No. 52 (1965).
- [4] G. J. JANUSZ: Separable algebras over commutative rings, Trans. Amer. Math. Soc. 122 (1966), 461-479.
- [5] T. NAGAHARA: A note on Galois theory of commutative rings, Proc. Amer. Math. Soc. 18 (1967), 334—340.

DEPARTMENT OF MATHEMATICS, OKAYAMA UNIVERSITY

(Received March 31, 1969)