ON GENERATING ELEMENTS OF SIMPLE RING EXTENSIONS

HISAO TOMINAGA

Throughout the present note, A will be a simple (artinian) ring with the identity element 1 which is represented as $\sum_{1}^{n}De_{ij}$ with a system of matrix units $E = \{e_{ij}\}$ such that the centralizer $V_A(E)$ of E in A is the division ring D. In subsequent use, a subring of A will mean one containing the identity element 1 of A. Further, we use the following conventions: B will mean a simple subring of A, and G the group of all ring automorphisms in A which leave every element of B invariant. The centers of A and B will be denoted by C and C respectively, and we use the notations $V = V_A(B)$, $H = V_A(V)$ and $C_0 = V \cap H$ (= center of V). If the fixring of G coincides with G and G is simple, G is said to be G alois (cf. [6]).

Concerning generating elements of a finite Galois extension A/B, we have obtained a number of interesting results ([2], [3] and [9]), and seen that the tools used in the respective cases $[B:Z]=\infty$ and $[B:Z]<\infty$ are strikingly distinct. In this note, we shall sharpen slightly the key propositions for these respective cases which were given in [2] and [3], and give as easy consequence of these sharpenings several results obtained previously in [2], [3], [4] and [9] with some refinement.

1.

In this section, the preliminary results will be stated without proof as lemmas.

Lemma 1 ([8; Lemma]). If $[A:C] < \infty$ then $[B:Z] < \infty$. The converse is true, provided A is left (or right) finite over B.

Lemma 2 ([1; Theorem VII. 11. 3] or [7]). Let A be a division ring, and $[A:C] < \infty$. If M is a maximal subfield of A and M=C[m] then there exists an element a such that $A = \sum_{i,j=0}^{t} m^{i} a m^{j} C$.

Lemma 3 ([6] and [2; Lemma 1.4]). Assume that A is finite Galois over B.

(a) If B' is a simple intermediate ring of A/B and $V_A(B')$ is simple then A is Galois over B'.

(b) If V is a division ring then every intermediate ring of A/B is simple, and conversely.

Lemma 4 ([2; Corollary 2.1]). Assume that A is finite Galois over B and $[B:Z]=\infty$. If X is a B-B-submodule of A then X=BxB with some x. In particular, every intermediate ring of A/B is singly generated over B.

Lemma 5 ([3; Lemma 7]). Let $n \ge 2$, and let x be a non-zero element of D. If a is an element of A not contained in C then there exists a unit r of A such that $\tilde{ar} = rar^{-1} = \sum x_{ij}e_{ij}$ where $x_{in} = x$ and $x_{in} = 0$ for every $i \ge 1$.

Lemma 6 ([5; Lemma 1]). Let n > 2, and let T be a left artinian subring of A. If T contains $a = \sum x_{i,j}e_{i,j} (x_{i,j} \in D)$ such as $x_{i,n} = 1$ and $x_{i,n} = 0$ for every i > 1 and $u(E, d) = de_{i,1} + \sum_{j=0}^{n} e_{i,j-1}$ with non-zero $d \in D$, then T is a simple ring containing E, d and $x_{i,j}$'s.

2.

We shall prove first the key proposition for the case $[B:Z] = \infty$.

Proposition 1. Assume that A is finite Galois over B and $[B:Z] = \infty$.

- (a) If A' is an intermediate ring of $A/B \cdot V$ then A' = B[a'] with some unit a'. In particular, A = B[a] with some unit a.
- (b) If V is a division ring, then for every intermediate ring A' of A/B there exists a unit a' of A' such that A' = B[a'].
- Proof. (a) As $B \cdot V = B \bigotimes_{\mathbb{Z}} V$ is simple and $V_A(B \cdot V) = C_0$, A' is a simple ring by Lemma 3. Accordingly, we have $A' = \sum_{1}^{n'} D' e'_{ij}$ where $E' = \{e'_{ij}\}$ is a system of matrix units such that $V_{A'}(E')$ is the division ring D'. Obviously, by Lemma 4, it suffices to prove the case n' > 1. Moreover, in virtue of Lemma 5, we may assume that B contains an element $b = \sum x'_{ij}e'_{ij} (x'_{ij} \in D')$ such as $x'_{in} = 1$ and $x'_{in} = 0$ for every i > 1. We consider here the simple ring $B_1 = B[E'] = \sum_{1}^{n'} D_1 e'_{ij}$, where $D_1 = V_{B_1}(E')$ is a division subring of D'. If we set $V = \sum_{1}^{n} U g_{pq}$ with a system of matrix units $\Gamma = \{g_{pq}\}$ such that $U = V_{r}(\Gamma)$ is a division ring, then we may assume further that E' contains Γ . It follows then $V_A(B_1) = V_{r}(E') = V_{r}(E')$ is a division ring, and therefore $V_A(E')$ is finite Galois over D_1 by Lemma 3 (a). Since D_1 is infinite over its center (Lemma 1), we can find a non-zero element d' such that $D' = D_1[d']$ (Lemma 4). Setting a' = 1 u(E', C')

d'), a' is a unit of A' and Lemma 6 proves A' = B[b, u(E', d')] = B[a'].

(b) As V is a division ring, A' is simple by Lemma 3 (b) and the proof proceeds in the same way as in (a).

3.

The next is stated in [9]. However, for the sake of completeness, we shall give here the proof.

Theorem 1. If A is a separable simple algebra of finite rank over a field Φ then $A = \Phi[u, u\bar{r}]$ with some units u and r.

Proof. Case I. n=1: As is well known, A contains a maximal subfield M which is separable over Φ . Since $M=\Phi[u]$ with some u, by Lemma 2 there exists a unit r such that $A=\sum_{i,j}u^iru^jC=\sum_{i}u^i(u\tilde{r})^jC=\Phi[u,u\tilde{r}]$.

Case II. n>1: As D is a separable division algebra over \emptyset , by Case I there exist non-zero elements x, $d\in D$ such that $D=\emptyset[x,x\tilde{d}]$. We set $t=\sum_{1}^{n}e_{in-i+1}(=t^{-1})$, $u^*=u(E,1)$ and $v^*=u^*\tilde{t}=\sum_{1}^{n}e_{i-1t}$. Then, one will easily see that $e_{ij}=u^{*i-1}v^{*n-1}u^{*n-1}v^{*j-1}$ $(i,j=1,2,\cdots,n)$. In case $D=\emptyset,1$ $-u^*$ is a unit and $\emptyset[1-u^*,(1-u^*)\tilde{t}]=\emptyset[u^*,v^*]=\emptyset[E]=A$. Thus, in what follows, we may restrict our attention to the case $D\neq\emptyset$. Under this situation, if $x\tilde{d}\cdot x=1$ then $\emptyset[x,x\tilde{d}]=\emptyset[x,x\tilde{1}]$ and $x\cdot x\neq 1$. Accordingly, we may assume further that $x\tilde{d}\cdot x\neq 1$. If $u=u^*+xe_{1n}$ and $v=u\tilde{d}\tilde{t}=v^*+x\tilde{d}\cdot e_{n1}$ then $u^{-1}=v^*+x^{-1}e_{n1}\in\emptyset[u]$ yields $(x^{-1}-x\tilde{d})e_{n1}=u^{-1}-v\in\emptyset[u,v]$, whence it follows $(1-x\tilde{d}\cdot x)e_{nn}=(u^{-1}-v)u\in\emptyset[u,v]$. Noting that $x=u^n$ and $x\tilde{d}=v^n$ are contained in $\emptyset[u,v]$, we obtain $e_{nn}\in\emptyset[u,v]$, which forces $e_{ij}=v^{n-i}e_{nn}u^{n-j}\in\emptyset[u,v]$. Consequently, we have $\emptyset[u,v]=\emptyset[x,x\tilde{d},E]=A$, completing the proof.

Corollary 1. If A is finite Galois over B and $[B:Z] < \infty$ then $A = (B \cap C)[u, u\tilde{r}]$ with some units u and r.

Proof. Since $[A:C] < \infty$ by Lemma 1 and C is finite Galois over $B \cap C$, A is a separable simple algebra of finite rank over $B \cap C$.

4.

The next is the key result for the case $[B:Z] < \infty$ (cf. [3; Proposition 1]).

Proposition 2. Assume that A is finite Galois over B and [B:Z]

 $<\infty$. Let A^* be a simple intermediate ring of A/B such that the center C^* of A^* is contained in C_0 .

- (a) If A^* is commutative then $A^* = Z[c_0]$ with some c_0 .
- (b) If a is an arbitrary element of A^* not contained in C^* then there exists a unit a' of A^* such that $A^* = Z[a, a']$.

Proof. Let $\psi = B \cap C$ and $A^* = \sum_{i=1}^{n} D^* e_{ij}^*$ where $E^* = \{e_{ij}^*\}$ is a system of matrix units such that $V_A * (E^*)$ is the division ring D^* . In the proof of [3; Proposition], we must complete only the case that $D^* \neq C^*$ and $n^* = 2$. In any rate, we have known that $A^* = Z[a, a'']$ with some a''. Noting that ψ is infinite, one will easily see that there exists an element $\alpha \in \psi$ such that $a' = a'' - \alpha$ is a unit of A^* . Then, we obtain $A^* = Z[a, a''] = Z[a, a']$.

5.

As the first consequence of Proposition 2, we obtain the following [4; Theorem 1] with an extremely short proof (cf. also [3; Theorem 1]).

Theorem 2. Let A be a separable simple algebra of finite rank over a field φ . If a in an arbitrary element of A not contained in C then $A = \varphi[a, a']$ with some unit a'.

Proof. As is well known, the centeral simple algebra A over C has a finite Galois extension C^* of C as a splitting field, where we may assume further C^* is Galois over Ψ . Then, $A^* = A \bigotimes_c C^* = (C^*)_m$ is finite Galois over Ψ , and so we can apply Proposition 2 to A^*/Ψ and A to see that there exists a unit a' such that $A = \Psi[a, a']$.

Next, combining Proposition 1 with Proposition 2 and Corollary 1, one will obtain at once the following sharpening of [3; Theorem 5] and [3; Corollary 2] itself.

Theorem 3. Assume that A is finite Galois over B.

- (a) If a is an arbitrary element of A not contained in C then there exists a unit a' such that A=B[a,a']. Accordingly, A/B is singly generated if and only if either A=C or $B\not\subset C$.
 - (b) $A = B[u, u\tilde{r}]$ with some units u and r.

Moreover, the validity of Proposition 1 enables us to see the following (cf. [3; Theorem 2]):

Theorem 4. Assume that A is finite Galois over B. If V is commutative then for every intermediate ring A' of A/B there exists a unit a' such that A'=B[a'].

REFERENCES

- [1] N. JACOBSON: Structure of rings, Amer. Math. Soc. Colloq. Publ. 37, 1956.
- [2] T.NAGAHARA and H. TOMINAGA: On Galois and locally Galois extensions of simple rings, Math. J. Okayama Univ. 10, 143—166 (1961).
- [3] T.NAGAHARA and H. TOMINAGA: Corrections and supplements to the previous paper "On Galois and locally Galois extensions of simple rings", Math. J. Okayama Univ. 11, 67—77 (1963).
- [4] T.NAGAHARA, K. KISHIMOTO and H. TOMINAGA: Supplementary remarks to the previous papers, Math. J. Okayama Univ. 11, 159—163 (1963).
- [5] T.NAGAHARA, A.NAKAJIMA and H.TOMINAGA: Algebraic extensions of simple rings I, Math. J. Okayama Univ. 13, 15—22 (1967).
- [6] T.NAKAYAMA: Galois theory of simple rings, Trans. Amer. Math. Soc. 73, 276—292 (1952).
- [7] T. ONODERA: On semilinear normal basis, J. Fac. Sci. Hokkaido Univ., Ser. I. 18, 23-33 (1964).
- [8] H. TOMINAGA: On a theorem of N. Jacobson, Proc. Japan Acad. 31, 653-654 (1955).
- [9] H. TOMINAGA and F. KASCH: On generating elements of simple rings, Proc. Japan Acad. 33, 187—189 (1957).

DEPARTMENT OF MATHEMATICS,
OKAYAMA UNIVERSITY

(Received February 20, 1969)