A NOTE ON UNIFORM INTEGRABILITY

SHOzZO KOSHI

1. Let £ be a measure space with a measure . It is known that in L, (2,
/) =the space of integrable functions on 22 with respect to #, the following
conditions for a subset U of L, are equivalent to each others, provided that
the measure / is finite on 2.

(1) U is uniformly integrable ;

(2) 1 is bounded (in the sense of L-norm) and for #(e;) | 0,

S f dp—0(as { — <o) uniformly on fell;

(3) U is relative weakly compact ;

(4) U is relative weakly sequential compact.

Here, weak topology on L, means the weak topology by L..; this topology
is denoted by o (L..).

In this note, we shall generalize the notion of uniform integrability in
the case where /¢ is not necessary finite. This situation is also applicable
to the cases of measurable function spaces and more general complete vec-
tor lattices. i

For simplicity, we shall discuss mainly the case of L, (2, »). The
equivalence of (2) and (3) is fully discussed by Nakano and Amemiya ([1],
[4]) in the case of complete vector lattice. (L, is an example of complete
vector lattice). In this case, the condition (2) is reformed in the statement
of vector lattice [1l is equi-continuous in Nakano’s terminology].

Even though (3) and (4) are equivalent in the case of L,spaces, in
general measurable function spaces this equivalence does not follow.

2. We shall consider the case where ¢ is not necessary finite. Let Q=
U.S. where S, is pairwise disjoint #-measurable set in £ and x is ofinite
measure on S, for each « and every finite measurable set of # is contained
in countable union of S..

For fe L, (1), we denote by [f] an operator defined as follows :

[flg =ﬂC:Jl (gNn|f| ) for g=0and g Li(n)

and

[fle=1[flg*—[f1g for arbitrary g& L(»).
It is easy to see that [f] is a linear operator on L, (#) with [f] = [|f£]|]
and idempotent. If X, is a characteristic function on a subset { 2 ; f ()
=0, x€ 0},

[ ] g=Xcr g for every g ¢ L, ().
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A subset UC Ly(y) is called uniformly integrable with respect to fe Li(p), if
A.=sup S [flg dr—0 as n— + oo,
el Jigiznin
Theorem 1 Let U be uniformly integrable with respect to f eL.(p),

and PO P,D PO with ,u(fu\Pi)=0, then supj [F]llgldpr—0as n—oo
i=1 oel Jr,

and [ fIU is bounded. (in the sense of Lynorm)
Proof. For every ¢=0, there exists an integer N > 0 such that

A, = supj‘II m[f]lgld/zge for n=N.
glzn

g1l

Since P,D---DP,.--with ;z((.%Pi)=O, we have
i=1
L N|f| dp—0 as n—oo  for a fixed number N.

Hence »L [Fllgldn = L) N|fl dp+ g z"m.[f] lgldp < 2¢

lglzN
for sufficient large » and for every g e ll.
It is easy to see that [ U is norm bounded.

Theorem 2 Let U be a subset of L, (i) such that supg (] lgldp—0
ol J Py,
Jor LD P, DD P, with p (NP, {x; f(x)5%=0})=0and [f] Nis
=1

norm bounded. Then \ is uniformly integrable with respect to f.
Proof. If U is not uniformly integrable with respect to f, then there exists
¢>0 such that

A,.=supg [fllgldp =e>0

el Jiolznin

for n=1, 2---
Since [f] U is norm bounded, there exists a number M and g, ¢ 1 with
Mz [fllgldez S=1,2,) ie.

loniZnlri
M 2| | dp =n{, 151dp
P'ﬂ PTZ

where P,={x; |g.(x)|=#n |Fx)|}. Henceg | f] du—0 as n—roo and

7

supS [Fllgldr= —;— for a suitable Q,C {x; f(x) % 0} decreasing
el JQ,

with p (;\ @,) = 0; it means that 11 does not satisfy the assumption of

Nl

Theorem 2.

Theorem 3 If [fil=1[f:, and U is uinformly integrable with
respect to fi, then U is uniformly integrable with respect to fu.
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Proof. Since [fi]=1[f:] is equivalent to {x: f (x) %= 0} ={x; fa(x)
# 0} except p-measure zero set, Theorem 3 is a direct consequence of
Theorem 1 and 2.

Theorem 4. If 1 is uniformiy integrable with respect to every fE
L(1n), then 1 is norm-bounded.
Proof. Suppose that U is not norm bounded. Then there exists a

sequence of g, ell (n=1, 2, ---) such that S lgn| dp=n. Since SN\ {x; g»

(x)5=0}s=) only for countable « for each #, there exists at most countable
S., for which S, M {x; g.(x) %0} 5 ¢ for some n (1=1,2, ---). Since
s is o-finite on S,, there exists a function fe L, (z2), whose support is exactly

C}S,,‘. Because 1D {g,} is uniformly integrable with respect to £, [ fJUD

i=1
{gn} is norm bounded ; this is a contradiction.
It is easy to see :

Theorem 5. If W1 is norm bounded and S lgldp—0 uniform on
P,

n

g€l for PLDP, DD P, D~ with u( F\ P.)=0, then U is uniformly in-

=1
tegrable with respect to all f e L,(p).
We shall say that W is uniformly integrable if U is uniformly integrable
with respect to all f €L..

Theorem 6. If U has the property : L lg| dp— O uniform on gell

for PLD P, D~ P,D-with p (QP") =0, and 2 is non-atomic with respect

to p, then U is norm bounded.
Proof. Suppose that 11 is not norm bounded. There exists a sequence

of elements g, = 1l with S |ga| dpp=2n. We can find a ;-measurable finite

set P, withL lguldp=n. Put Q,=P,\JU P,\J--*\U P, and Q0=C} Q.

% Ne=l

Then, Q,—Q, is decreasing with f\l(Qo—Q,,)=«,6. Hence, observing

S |g|dpu— 0 as n— oo, there exists Q@=@Q, with E |gnldp=n/2. Since
e
#(Q)<<-I- o0 and £ is non-atomic, we can decompose @ into @, , and Q,,, with

Q=Q1,1UQ1,2; Q].lmQu:‘i”; ,M(Ql,l): H(TQ) =,’£(Q1,2). We can select R, =

Q1,1 or @,,; such that SR |g.ldu (n=1,2, ) is not bounded. By the same
1
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way and by induction, we can find R,DR,D---DR,D---with ;,e(Rn)='a (;?,)

and for all m ER |gnldp(n=1,2, --)isnot bounded. But s (F\ Qn)=0,

m=1
and so this is a contradiction.
Therem 7. If nis non-atomic on [ 1L, (u), then 0 is uniform integr-
able with respect to fif and only if [ f1 U has the property of Theorem 6.
Normal hull of 11 is a subset of all f, to which there exists g with
|fI<|g| for some g1l

Theorem 8. If W is uniformly integrable with respect to all f eL(p),
then\J {x ; g(x) 550} is contained in at most countable union of S.. Hence,
gey

there exists fo € Li(¢) such that [ f,JU=1.
Proof. If 11 is uniformly integrable with respect to f, then the normal hull

Tof U is uniformly integrable with respect to f. Suppose that ‘“{1 {x;g @)
ge

=0} is not contained in any countable union of S.. Then, we can find an
element f,& L,(uz), whose supports are pairwise disjoint and ||f.|l=

Slfnldﬂ = ¢ > 0 for some number ¢ for every integer n. Considering

g.= ﬁ f.and f =§: gn we see fe L(u) and {g,} is not uniformly

integrable with respect to . Hence, 1 and 11 are not uniformly integrable
with respect to . This is a contradiction.

Theerem 9. U is relative weakly compact if and only if W is uniform-
ly integrable with respect to all fe L, ().
Proof. Let U be uniformly integrable. Then the normal hull 1 of U is also
uniformly integrable. We define then the semi-norm in L.. such that
lgll =sup|<s, g>|=sup| | 7.g dpl.
b8 Tell

) For every P,DP,.,D---with {/.((D%P,,)=0, we have |[X,, . gll,—0.

n=1

We have also HXPA. gflu——> 0 by Theorem 8 for any directed system P
with # (N P)=0.

7 is a linear topology defined by all semi-norm |
formly integrable subset of L,(s).
Any t-continuous linear functional on L.. is considered as an element of
L (1) by (*) and conversely any f¢ L, () is a c-continuous linear functional
on L.(#)i.e. L. [-]=L, Hence, every uniformly integrable subset 1l
of L, is equi-contiunous by =. By Alaoglu-Bourbaki’s theorem, U is a
relative weakly compact set.

*|lu where U is uni-
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Conversely, if 11 is not uniformly integrable, then we can find a sequence

of measurable sets P,D P,D--- with ,/.:(fn.\ P.)=0 and f, such that

nel

[ 1Al anze
Suppose that U is relative weakly compact. By Smulian’s theorem and
Eberlein’s theorem 11 is relative weakly sequentially compact. There exists
a subsequence {f, } of {£,} such that fa 2 f (weak). By Nikodym’s theorem,
the set functions /l,-(P,.)=S f, dr tends to O uniformly oni=1,2,. .
i

Pn
This is a contradiction.

Theorem 10. Let 12 be a finite measure on 2. A subset 1 of L,(p, ) is
uniformly integrable if and only if there exists a convex function $(t)=0

for t 20 with lim (b(Tt) = -+ oo such that s]u%) S S| fFd << oo,
e

t—soo
Even if this theorem is famous and easy, I can not find a detail proof of
this theorem. We shall skech a proof of this theorem.
Proof. Let U be uniformly integrable. For every integer { = 1, there
exists n; ;00 with supS | f] de g%. At first, for i=1, we choose
s Jnzng
a point (1, ¥2 n,) = (m,, ¥2m,) in the plane. Next for i = 2 we find

W2)Yn—v2n >( min W2)ni—v2m

V2). Hence, exists and we

ni—n, iz3 Hi—m
put m,=n, and i=1{, such that for #,, W2)n —A2m takes the mi-
T n;—m,
nimum value. For i=i, we find W2)n—(2)"m, = (y2)* and put
n;— Mo

ms=mn; and =7, such that for n;,=m,, »(‘L%)J“:f(‘/—z )2y takes the minimum
Hi— My

value. By induction, we find W2)n—( 2)om, takes the minimum
ni - 7125_1

value for m;=n,; and =1,
Now, we draw a polygon combining (0, 0), (m,, ¥ 2 m,), (s, (¥ 2)'2mms),
*=*, (ma, (¥ 2)'» m,), ---. This polygon defines a convex function ¢ (¢) for

t = 0 and lim iff—)= +oo. Let# () = 2)n for nio <t <n; then 1<

troo

(O Zr@). For fe, SQ'I“(Ijl)d,/zgi 1~ o. Hence we have

P 2y

sup S"( I£1) drne+ oo
e
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Conversely, if a convex function @ satisfies Iimﬁgi)— = - oo and
{—»oo

jsgpg ¢(]f1) dr= M <--o0, then for every n =1, there exists m such
u
that u(x) = m implies @(|u(x)|) = n|ulx)|.

M= gl . d(lul) dr=n S |(x) | d .
" m ulZm
ie. %’ ggl . u(x)|d for all w € 1. This means that U is uniformly
integrable.

We shall consider the case where #: is not finite on ¢. For this, we
need another definition of uniformly integrable subsets.

Theorem 11. A subset 1\ of L\(1) is uniformly integrable with respect
to f, if and only if there exists a sequence of a.(x) € L, (1) with 0 <

a, (x) tyoo and [a,)=[f] such that sup S lu(x)] dr—0 as n— oo,

ne lulzia,l
Proof. By the same argument of Theorem 1, if 1l satisfies the condi-
tions of the present theorem, 11 is uniformly integrable with respect to f.
Let U be uniformly integrable with respect to f. Suppose that there exists
8. (=1, 2, --+) with
mz|  (Alalasze>o,

Ianlgla‘ﬁl

because [ f]U1 is bounded by Theorem 2.
M gg a.(x) ap
I'sd

n

where P,={sE0; |g.%)|=a.(x)IN{x; f(x)5=0]}.
Since [a@,]=[f] and a.(x)] o, and

5 a(x) dpr — 0as n— oo, we have supS [flg d,ugi for some p-
Py eV J @, 2

measurable @, with ,u(F\Q,,)= 0. This is a contradiction.
n=1

Now, we have the following theorem.

Theorem 11. U is uniformly integrable if and only if there exists a
Sunction ¥ (t, x) of two variables x € Q and real t = 0 such that ¢ (t, x) is
a convex function of t for a fixed xE 1, a measurable function of x for a
fizxed t = 0, and a.(x)} oo, ¢(a.(x), x)=na.(x) with [a] = [a,] =-=[a.]
= [a]0=U and

sup jl(lf(x)l, x)dp <Aoo,
reit

Proof. Let 11 be uniformly integrable. Then, there exists 0<fe L (#)
with [f]U=1 and U is uniformly integrable with respect to f by Theorem
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8. By Theorem 3, we can assume that f is a step function whose values
may be countably many. For every integer /=1, there exists n, <<n;<--
n;<---with
supj lg| d,u._Z_ii.

lelsn,s 2

el

By the method discussed in the proof of Theorem 10, we find a conv-
ex function #(¢) (¢#==0) such that for infinitely many 7,

dn)=W2) n;and ¢ () = #(¢) ;
where ¢(@)=2) = for n._, <t < n,
We define

¢t x) = f(x) (/(ﬁ) for £(x)540

= £ for f(x)=0.
Then, ¢(¢, x) is a convex function of 220 for x& 0, and measurable functi-
on of ¢ for x& £,
¢ (n. f(x), x)=( 2 Yn, f(x) for infinitely many of 1.
Hence, putting a.(x)=n, f(x) for suitable n;=#, then
¢(a.(%), x)=na,(x) and a,(x)EL\() and [a.]=[f].
We have also,

[etg@nans5(L) <=

Conversely, if there exists ¢ (¢, ) with the conditions of Theorem for n=21,
there exists m such that
u(x) = an(x) implies ¢(|u(x)|) = n u(x) ;

M= g(/) (lu(@)), x)dr=n S y lu(x)|dsee  for all uU.

ie.
M

_—= S l2|dy for uell.
n lulza,,

Hence, we see that U is uniformly integrable by Theorem 10.

3. The same argument discussed in 2 for L,(y) is also applicable for
the case of complete vector lattice which is order dual of some complete
vector lattice, For example, L,(p) is order dual of L..(x).

A subset I of L, which is a complete vector lattice of order dual of a
complete vector lattice C is uniformly integrable with respect to fif

<s, [(lg|—nf)*1g>—0 uniformly on g€l for every 0=s&C.
Then, 11 is uniformly integrable (for all f& L) if and only if U is rela-
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tive weakly compact (i. e. relative compact by (C)). But, essentially the
characterization of relative weakly compact sets is obtained by Nakano [4].

If L is a Banach lattice and order dual of a complete vector lattice C
and C is conjugate space of L as Banach space, then U1 is relative weakly
compact if and only if 11 is relative weakly sequentially compact.

But the equivalence of relative weakly compact sets and relative
weakly sequentially compact sets is not true in general.

We shall show that in L..(#), there exists 11 which is uniformly integ-
rable (=relative weakly compact), but Ul is not relative weakly sequentia-
lly compact.

Let £ be a set of density of real number space and /= be discrete mea-
sure on 2 (i. e. every point measure is one).

We shall consider a countable set {f;}CL.(y) such that the totality
of sequence f{x)(i=1,2, =) x € £ is the totality of the sequence whose
coordinate is 1 or — 1. For every subsequence {f; J} C {f:}, we find

an element x such that {j; f.-j(x)= 1}and {j; fi, (x)=-—1) are infinitely
many. If g, is weakly convergent to some g, then g,(x)— g(x) for every
xE . Hence the sequence of elements f,-j is not weakly convergent.

The set f; is relative weakly compact, but not relative weakly seque-
ntially compact. Weak toplogy is here «(L, (/).
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