Exti(Z:[y]/Z» Z2), A BEING THE mod 2
STEENROD ALGEBRA

Dedicated to Professor Atuo Komatu on his 60th birthday
TETSUYA AIKAWA

§ 1. Introduction.

Let A be the mod 2 Steenrod algebra, Z be a ring of integers, Z,. =
ZlmZ, (m: a positive integer). Let M* be a polynomial algegra with one
generator y of degree 2%, (k: a non-negative integer) over Z.. Let x be
the generator of M°. Let M} be a A-submodule of M"* generated by »°
g=i, and M}, be a quotient module of M% by an A-submodule generated
by 3°, p<<q. Particularly we denote M*=M}%, M,=M% M, ,=M.,.

Let RP, CP', HP' be i-dimensional real {complex, quaternion) proje-
ctive space, respectively. Then reduced cohomology groups of them with
coefficient group Z. are

H*(RP=)=M", H*(CP=)= M', H¥(HP~)= M-

There is no space such that H*(X)=M?*, for k=3. (see [10] Chapter
1, Theorem 4.5; [3] Theorem 4. 6. 1.) But we can naturally make M* (and
M%) a left A-module algebraically such that the axiom [10] by Steenrod
hold on M¥*. This definition has no contradiction since in the case k=0
there is a space X (=RP™) such that H¥*(X)= M° and since we have
Proposition 2. 3 in this paper.

The determination of Ext.(M?Y, Z,), £=0,1,2, is used to the deter-
mination of 2-primary components of stable homotopy of S° to R P~/ PP,
cpP=/CP™', HP=/HP"’, respectively by [1] and [2].

After the author determined Ext%'(M°, Z.), t—s<27, the author fined
that M. Mahowald [6] had determined Ext5*(MY, Z,), t—s<29, by his own
method different to my method. Since his representation of generators is
different to mine and the relationship between generators of Ext.(M* Z,)
and those of Ext,(Z., Z,) is more clear at a glance by my method, we will
offer the table of Ext,(M" Z,) in the last of this parer, for reference. So
the main purpose of this paper is the determination of generators and
relations of Ext%*(M%, Z,) in general (without restriction on #—s).

We conjecture by our table of Ext (M’ Z,), t—s=<27, that Ext(Z.,
Z.)] Z.[he] is isomorphic to a direct summand of Ext M® Z.) by an
appropriate correspondence. But we have not finded the effective method
to prove this.
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The author is grateful to Professor H. Toda and Professor N. Shimada
for their kind advices.

§ 2. Exty(MF, Zo) .
If 2-adic expansion of a positive integer 7 is
(2.1)  i=201p et 2m, i >0eeen >in=20,
then we define 2-th set [i] and 2-th number 27i] of i in the following ;
Lid= (i +eersdn}s ELi]=m.
If 2-adic expansion of another positive integer § is
(2.2) j=2’1+ ...... - 2%n, ]'1>“"">fn.20:
then [{]=[j] means the condition that
MEN, B2 Fmnrs oo s Iz f o
or
MR fnemirZ f1 00 G2 fe
The following lemma on binomial coeficients is an alternative repre-

sentation of Lemma 2.6 Chapter 1 in [10] and plays an essential part of
proving many propositions and lemmas in this paper.

Lemma 2.1
iN_J[L [jic[]
(=0 Acd ~ moa2)
Remark. [j1C [{] means that the set [§] is contained in the set [7].
Proposition 2.2
If k=0, a<<2b, then as operations on M,

a
3

qu"asanb — [z]] (b '—;;— 1)Sq2k(u+b—t)sq2kt
a -—

=0

where [aé:l stands for the maximal integer whick does not exceed i only

in this proposttion.
Proof. By the following equality and congruence:

3 EH Okt
Sq**sq*?= 2@2 - gxf,t 1>Sq3k‘“”" ® Sqrt

(2"b~2"t—1)ﬁ(2"(b-—-t—1)—|—2"—1)=(2"(b—t-—1)>=(b—t—1)
2fa—2¢t )T\ 2%a—2t) T\2%(a—2t) /T \a—2t

(mod 2)
Proposition 2.3

Saly'={7"s =24 and [F1CL)
Ty 0, otherwise.
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Proof. By Cartan formula. This proposition is a generalization of
Lemma 2.4 Chapter 1 in [10].

Theorem 2.4

A =2Z,{y;i=j, [{1=[j], 2[i{1<8[j1}, where Z,{a:Cla)} means
a Zrmodule generated by a satisfying the condition C(a).

Proof. We denote by C the right hand side of the equality to prove.
By Proposition 2.2 and 2.3, it is sufficient to prove this Theorem in the
case k=0. Since A-x’C C easily follows from Proposition 2.3, we will
only prove A-x'DC,

If e is a positive integer such that

(2.3) e>j, [el=[4], Zle]1=<8[],
then we denote
B=Z.[x"e C; e>i}.
We will show by induction on e that if BC A-x’, then
x*=a-%%, for some aE A, ¥x'EB, a1,
If 2-adic expansion of ¢ is
e=2f1-]-seeees |- 2%, Q> eeeee >quo
and that of 7, j is the same as in (2.1) and (2.2), then by j<le, there
is an integer ¢ satisfying conditions (2.4) and, either (2.5), (2.6), (2.7)
or (2.8):
(2.4)  ji=ey, eeer y Jum1= Cap Ja<lew 0Sa=q;
(2.5) en="=Cui1--1, a=Zu<<b<g, e,>e,,+1, for some & ;
(2.6) eu=eynt+1l,asu<qg;
2.7 €i=€an1r1;
(2.8) a=q.
In all cases, [e]=[j] implies €,=ja—q+». We have €,>j,_q:s.
(If ev=Fn_q+s» then by e,>j.

S 2] > g s 2]
Therefore #[e]>#[7]. This is contrary to (2.3).)
In the case (2.5), set e/=2%"!, then (2.4) implies e—e'>7, &,>7n-q1»
implies [e—e'1=[7], and we have
fle—e'l=8[e]l<E[j].
Therefore by the inductive hypothesis,
x¢=8q"x"*, 2" “EB.
In the cases (2.6), (2.8), we have ¢,>0.
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(If otherwise, then we have not both ¢>7, and g[e]<#[/].)
The proof in the case is the same as in the case (2.5), after replacing b
with q.
In the case (2.7) or (2.8), if e,>j,--1, then the proof is similar to
that in the case (2.5), after replacing & with a.
In the case (2.5), set ¢'=2%"" then (2.4) implies e—e'>j, &, qi»
implies [e—e']=[j], and we have
4le—e'l=2[e]<3[7].
Therefore by the inductive hypothesis,
2=8q"2"", *"“&B.
In the case (2.7), if
a=Jot1; ju=funtl, asSu<n or a=e=gq,
then ¥[e]<#[j] implies [j]—[e]5~¢ and we take
c=min([j]—Le]),
where signature “—" means a subtraction of two tets [j] and [¢]. Take
=220 a1 2%,
Clearly [e¢/]JC[j], and a*=Sq“s’, #’EB.
In the case (2.7), let
ea=Jut1; ju=jun+1, aSu<b, Hi>jr1+1, or ju>jar+1
(If jo>Far+1, take b=a.)
If ¢,.:=j»—1, then we take
c=min ({fa oo s Jw Jo—1}—Tlel),
d=min {u; e.=2j,—1},
e'=2"F2i=arr 2
F1=j2h 2%,
i'>j, [i'1=17], &' 1=#[7]
implies by the inductive hypothesis
(2.9) #'=gz*eC, for some ge A, x"EB.
Clearly [e']Jc[j"], and
x°=8q" 2’
If e.,,<<j,—1, then we have (2.9). Clearly j,—1&[j'], and
£ =Sq" ",
In the case (2.8), if
ee=Jat1;ju=Furit1l,au<n or a=qg=n,
then j,=[j] implies
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¥ =Sq’%’, ¥’EB.
(We mrite j'=2’». In this case j=e— i)
In the case (2.8), if, for some b,
ea=Ja+1, fu=jun+1 aZu<b<n, j;:>jos1+1,
and we take j'=2%"%, then
—1€le—7']
implies
x=Sq”x 7, x* ", EB
[Q.E.D. of Theorem 2.4]
For the next theorem we give the following notation:

If i is such an integer as (2.1), and # is such an integer that i,>
U>ins1 OF im>u=20, we define (in the last case, we set v=m)

(i, u)=2;1+ ressse —l—2i‘u—|—2"_1.

Theorem 2.5
(1) If 2'—1<ig2' —1, then
Exty(M¥ ., Z)=Z e max[p]2u>j+k;
Pi J>u20, wé (1], p2(1, u)}
Ext M¥, Z))=Z{ h, u=>j -+ k3 ls,uy 7=>u=0, uE[1]}
(2) In the particular casz i=21—1,
ExtU( MY, Z,)=Z,{hs, u=j-k).

Remark. where Z,{a;C(a)} stand for a Z,free module generated
by @ satisfying the condition C(e); &, H:,. stands for the cohomology
classes of [ ] yus_, [ 1 y.w of degrees 2*—2* (i, w) in the cobar cons-
truction F(A*, M) of MK over A*, and y, stands for the element in
M dual to y* in ME,.

Proof. By Proposition 2.3, it is sufficient to prove the proposition
in the case k=0 and p=oo,

First we show that
N w45 2, T>u=0, wE 4],
generate M; as a left A-module. If 2 —1<<e<<2/*'—1, then
#le]=7=4[2'—1], [(J=2[2'—1],
so by Theorem 2.4,
¥=qg-5""", for some aE A.

If i<<e<<2’*'—1, and e cannot be expressed in the form of (i, ), we
denote
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u=max([e]— [1]).
Clearly u6[i], e>i,u, and e (i, u) implies {u—1, +++-- , 1, 0} — [e] 54
Therefore
Lel=[G, w)], £le]<¥([i, u)].
Then by Theorem 2.4,
2*=a-x%", for some acA.
Secondly we show that (2. 10) is a minimal generating set of M, as a
left A-module. If #>v>j, then
t(2¢—1]=u>v=4[2"—1], 2°—1>2°—1
implies by Theorem 2.4 that 2! and 2*"~' are linearly independent. If
F>u>v=20, u& 1], v& (1],
then
¥G, )] —80G, )] =#[2"—1] —8[2°—1] =v— >0,
( u)—(i, v)=(2"—1)—(2"—1)>0,
implies by Theorem 2.4 that x“* and 2“* are linearly independent. If
u>j>v=0, ve (7],
then
24 —1>2M"'—1>(i, v)
$2'—1]=u>7>£[(, v)]
implies by Theorem 2.4 That -1 and x%* are linearly independent.

Thus the proof is completed.
For the next alternative Proof of Theorem 2.5 (2), we give the fol-

lowing definition.

Definition 2.6
We define A-maps
fi: A — M, A=A|Z.,
S A — M
for an admissible monomial Sq'1Sq‘s-----Sq'» in the following ;

T W Y7L 6=24,i=2, n=1,
fdSan S )—{0, otherwise.

s~ =
We denote
f=fo f=fv L*=ker f, K=ker f.
Remark. Adem relations ensure that f; and f, are A-maps in the fol-
lowing; If 0<<:<<2j, then
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(We show only in the case k=0 by Proposition 2.2 and 2.3.)
fasa)=5(175 ) £Sasq)
j— . j—1 _
=(7Y) s6a=(71) =,

Sq' f (Sa’)=Sa‘w~'= (171) #+-2
[Alternative proof of (2) in Proposision 2.5]

Since f; is an A-map, and by Lemma 4.2, Chapter 1 in [10], and
Sq' is indecomposable if and only if i is a power of 2, if y'&A- M*, then
i=2%—1, for some u=k.

If y*1=g-y’, for some j and aE 4, then

FSa™ )=y = a7 = a- f(SATU) = fila+ STTUHV)
Therefore

Sq™ "+ q-Sq** =5, for some bEker f;

This is contrary to the fact that Sq™"™" is indecoposable.

§ 3. Relations in ExtA(Mik,Zz) .

We determine some typical relations in Ext,(M}, Z,) by using the
cobar construction F(A*, M¥*) of M over A* in this section.
We denote by af the image of «(@3 by the composition map

Exti(Mf, Z,) Q Exty™(Z,, Z,) —> Exti™ (M}, Z,)
Let A, be the generator in Ext}*"(Z,, Z,) corresponding to Sq* .
Theorem 3.1
If n=0, i is such as (2.1), then in Ext,(M% Z,),
B, =0, n+1>i,+k,
Basohtt=Hyrhi oy, n+1>1,1k,
Bpsobnsohtn=0, n+2>i,+k.

Remark. Similar relations holds in Ext(Z.. Z,), but the following rela-
tions are not true;

h_nhn+l = 03 Llnh?wz = O’

The remainder of this section is devoted to the proof of this theorem. The
direct proof is remained in the last of this section.

Lemma 3.2
a<2b, c=2d,
Sq*Sq” =Sq*Sq - veeeee (Adem relation)
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implies a, b=0 (mod 2%).
Proof. If a=a2"+a, 0<a,<<2" then

(2"'—22~ 1)50 (mod 2)

Therefore

(58 )= (e 0 2 )T (0 ) =0 (aea )

Proposition 3.3
r=2s,
{(a, b) ; a<<2b, Sq"Sq’=Sq"Sq*+ ++--++ (Adem relation)}

g n 73
—>{{c,d); c<<2d, Sq"Sq"=Sq* "Sq**-t----(Adem relation)}

This map is a bijection by defining
gla, b)=(2"a, 2°b)
Proof. The latter equality in the proof of Proposition 2.2 implies that g
is a map and the definition of g implies that g is a monomorphism. If
the latter Adem relation in this proposition holds, then by Lemma 3.2
c=2%"', d=2"d', ¢'<2d'.
Therefore by the latter equality in the proof of Proposition 2.2, g is an
epimorphism.
Proposition 3.4
Let B be a module over a field R, {b, u€ U} be a basis for B, b*
be the element in the dual R-module B* dual to b,.
(1) If B is an algebra with product ¢, and
(b @ b)) =X cupbn, i ER
then B* is a coalgebra with coproduct ¢* such that
o*(b*) =3 —1)°c ,b* Q b°, e=deg b, X deg b,
(2) If B is a coalgebra with coproduct  and
P(bn) =St @ by, ch°ER,
then B* is an algebra with product * such that
" R b°) =2 (—1) b,
Proof. standard.

Lemma 3.5

If Sa's=Sq®", then (Sa’)* has not £ as a summand.

The proof is left to my paper to appear. This lemma is used only to
prove Proposition 3.6 in the case of deg ([)=2", ¢==0, and this is not
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necessary to prove Theorem 3.1.

Proposition 3.6
Say*=2 &
tmplies
(Sq™ =2,
where J runs over the same set in the two summations above and if 1 = (14,
------ , im), then we denote

2% [=(2%,, ==+ L 2% ).
Proof. By induction on deg(I).
PH(SE)=¢H(Sa))=Sa")* @ (Sa ),

where the last summation runs over all pairs I, I, such that

By inductive hypothesis
D E) = (M EN
=3 ((sa™)"”" @ ((Sa M
=5 (8¢ @S I+ (S @ 1+1® ((Sa)*),

1, 1y#1
On the other hand, by Proposition 3.4 (1),
SH(Sa M) =32(Sa" @ (Sa” .
Uuing Lemma 3.5, we have the conclusion.
For the next proposition we denote Sq'=Sq(iy, s, ==** , 1s), for con-
venience’ sake, if I=({, gz, **+** , In) is complicated.
Proposition 3.8
(1) Sq(z’“da """ ) 272+l’ 2")*’: 5311; jgo
(2) Sq(27r»(2_)+2m+q)’ ceeer, 2n(2j—q _I_zm)’ 2n+j—q-—l, TR 2n+l’ zn)*
= £ E, 0=Sm=j, 0<g <.

(3)  Sq(2X(RMTI+27), eeoes, 22T 2), 22N 1), 2r eI
------ e e L, O

4) Sq(2rHIr™, eeeees , QuHIHE IR Liies | on1 onyk
=g £ m==2, §20.

&) Sq(2" (2™ +1), -+ , Qudmal(gmL ) 27HIT eenes |2 gy

n+j+1 _,n

= giz EJ+!+ Ej’:m»ﬁl) jgfn"'lz().
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(6)  Sq(2**(2™+1), eeves , 271(2m 4 1), 27(2™ 1), 27 e
2")* EQ"HH fj+1+ f:+m+1, m=>j=0.
(7) Sq(zn rj+m+2n+1 ______ 2n+1+2 +2n+]—m+2’ 2n+}——m+1’ ______ , 2n+1’
2y =g gt 8 B 2 2,
(8) Sq(2n+1+m+2n+J ,,,,,, 2n+m+2n 27x+m—l ,,,,,, , 2n+j+.‘l’ 2n+}+2)*
T s:l‘.* S, M2+ 2.

Proof. 1t is sufficient by Proposition 3.6 to prove this proposition in

the case #=0.
Proof of (5); If

qn(Sq’) — Sq(2‘“", ...... , 21+2, 21+1) ® Sq(2’, ...... , 2, 1)
deeeeen ,
then I is either
L=(25+™ veue. ,2,1)
or
=274 27, veees , 291 29-m1 od-m L., , 2, 1)
Applying Proposition 3.4 (2),
o e 101=5q(25™ oo , 21H1)*¥Gq (2, weeees ,2, 1)*

=(Sq"*+(Sq")*
=& juner+(SqH*,
Thus the proof of (5) is completed.

(4) is a special case of (2).
Proof of (7): If

1!,-(Sql)=sq(2~’+m" ...... , 2771 Q) Sq(2, ++veen 22, 1) eeees
then I is either

L=(2"7™ eeeus , 204 20 , 2, 1)
or

Iz';(z-“'"‘-l—zj’ ...... , 9+t 2/-m+3 21—m+1’ ...... .2, 1)
Applying Proposition 3.4 (2) and the formula (4),

2,’-&-2

EL T E, 1 =5q(20H™, cenene , 2942)*Gq(27 veeen- , 2, 1)*
=(Sq"y*+(Sq)*
= E001 Epem+(Sq"*
Thus the proof is completed.
The proofs of other formulas are similar.

Remark. The following formula is expected to be true:
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(SAP =2 ())&, deg (J)=7,

where if J=(j), *+=***, .), then we denote

b(J)= (JIJ_:_! ...... +7a)!

In particular

(Sq" = ¢, deg (I)=2"—1.
For the proof of Theorem 3.1, we use only the following special cases
of the formulas above :

gat+l

Sq(2*, 2"k =gl &
Sq(2 1+ 2y = g g
We denote the A*-comodule map of M{* by
4. M¥* — A*Q Mi*
There are some properties of this map.

Proposition 3.9

d2,=3 Q@ 2

implies
]

4y;=238"Q yn
Proof. If Sa’s“=#’, j=u=i, in M, then by Proposition 2.3, Sq’y"
=y’ in M If Sq'y*=y’, j=u=i, then by Proposition 2.3, J=2".T
for some I, and Sq’z*=2x’. Therefore by Proposition 3.6, we have the
proposition.

Lemma 3.10
{(I,q); Sd"y"=y"}
(1, 7); STy'=y" ")
This map g is a bijection by defining
g(Lg)=@" I, 2q+2"~1)
Proof. By Proposition 2.3, g is a monomorphism. If
Sq’y'=y
then by Theorem 2.4, [j1<[2"m+2"—1], thatis, [j]1=[2"—1].
Therefore j=2"¢+2"—1 for some ¢ and Sq’ is such that

2" m a1
b

2"'m
.

Sq’y™=y
By Proposition 2.3, f=2"-I, for some I. Thus g is an epimorphism
and a bijection.
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Proposition 3.11
dyn=2E"Qy;
implies
4 =DE Q@ n,
Proof. By Lemma 3.10.
Proposition 3.12
420 =1Q X_

1
o
4 xa.g”_lzl ® x3.2”_1-1- ‘Ef ® xzn-z-]_l

3
4 x5.gn_1=1 X Xy T H ® sz T £l

72+ 1

® Zygn_, T ‘gﬂ &® Xp+1_,
3 T i
4 y?-a"—-1=1 ® J'-r-z"—1+ ﬁ ® an;.;_l-i- (fi : 'Hg ) ® Xnta_,

The formulas replaced x, with y; and &' with ' above are true.

Proof. 1t is sufficient by Proposition 3.9 to prove the formulas in
the case £k=0. We will prove only the second, for example. The proof of
the second is reduced by Proposition 3.11 to that of

45:=1Q %+ Qx,

which is clearly true.

[The proof of Theorem 3.1]

Let ¢ be the coboundary map of the cobar construction F(A*, M¥).
Then it is sufficient to calculate

Y ([ ]xm"—l)
0 ( [Ein] x5~:4"—1 + [ Es];-z" - Egal] xs-z”—l + [E%ng:;"] x2n+1_1)

(8" 1w, 0+ (&

+1

12, o+ 1% 001,)

§ 4. Minimal sets of generators.
For the next proposition we denote by K, L°, K, L° a Z,-module ge-
nerated by the following admissible monomials, respectively:
K: Sq"1Sq*----- Sq", n=2
L": Sq¢*, Sq™Sq™------8q™, n=2
K: Sq“'Sq”, a>b=0
I': 8¢, Sq"Sq*, a>b>0.
Since K= ker f, L*=ker fi, and f and f, are A-maps, K and L*
are left A-modules.
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We finally prove in Proposition 5.3 that
K=K+A-K (direct sum)

Proposition 4.1
K=K+A+-K (notdirect sum)

Proof. Tt is sufficient to prove that
Sq“Sq’e A- K, if a=2b, b>0 and unless
a=2%, b=2", for any d', D"

Let 2-adic expansions of ¢ and b are
a=2" 4 ereee +270 g >eeenee >a,=0,
p=2"4 ernee 12" p>eeeens >5,=0.

The set of all cases not satisfying
a=2%, b=2%, for any a' and b’

are classified into following four cases (with no intersection to each
other):

(4.1) r=22, a,=b.+2,

(4.2) r=2, a,=b+1, g=2,

(4.3) . <br, q=22,

(4.4) r=1, a;.>b, g=2.

Proof of the case (4.1): Let
a=a' 2" b=b'2""+-2", a'>b'>0.

Then

g +1

Sq(2", a—27, b' 2 =(Sqa"Sq” +Sq**")Sq”
=5q"Sq’-+ ::T;ZSq(a, b—2t, 25 +Sqla+2%, b'2™).
The last summand is reduced to the case (4.3).
Proof of the case (4.2): Let
a=a'2"" 2% p=p'2""'+2", @'=b">0.
Then
Sq(2™*, a'2"+ 27, b'2"* ") =Sq(a, 27, b'2")
=S98’ + 7= Sqfa, b—2', 2°).
Proof of the case (4.3): Let
a=a'2""'+2", b=b'2", a'Zb'>0.
Then we prove it by induction on n. If =0, then
Sq°Sq*=S5q'Sq*"'Sq’. Therefore Sq'Sq’EA- K. If #>0, then



164 TeTsuva AIKAWA

(4.5)  Sq(2", @'2™, b)=Sq"Sq’+ 3723 Sale—2", 2¢, b)
=85q"Sq’-+ 3320 Sa(a—2¢, b+2%)
+ 20050 23520 Sa(e—28, b+ 20 —25, 29)
Sq(a—2', b+2") is not admissible only in the case a'=d", t=n—1, but if
n=2, then
Sq(e—2""", b-+2""")=Sq(a’2"+*+27, g'2"+2")
=001 5q(2" g+ 27 —2t, gl +21),
Transform the summands of #—2>f=0 in the form as (4.5), and

we know that they are contained in A+ K by inductive hypothesis. the
summand of ¢t=n—2 is

Sq(2*'c+2"2 2" %), c=4a'+1.
Apply the same method above to this summand, and we know that there
remains only one summand

Sq(2"*d 4274, 2" d), d=4c-1,
which is unknown to be contained in A- K, if n=4.

But by applying this method repeatedly the problem is reduced to

either Sq(4e+1, 2¢+1) or Sq(8e+2, 4e+2)
according that # is odd or even. We have

Sq(de+1,2¢+-1)=0
Sq(8e-+2, 4¢+2)=Sq(8¢e+3, 4e+1)
=5q(1, 8¢+2, 4e-+1)
Then in the cases (4.1), (4.2), and (4.3), by inductive hypothesis,
Sq*2q°= A+ K.
Proof of the case (4.4): Let b=2". Using Proposition 3.2 we can
decompose Sq° in the form of
Sq%= TlusncuSa, chE A.

Therefore Sq°Sqg’= A- K.
Thus the proposition has been proved.
In this proof, we use the following formulas.

Lemma 4.2
Sq(2", 2" e +2%) =211 Sq(2* a2 — 24, 2F)
Sq(2", 2" 'a) =32 Sq(2* e+ 2"— 2, 24)+Sq(2"* e +-2%)
Sq(2"+, 2"+*q+-2") =8q(2"**a -+ 2", 2%)
Sq(a2t 427, a2"+ 27 =3I Sq(2" e + 27 —2F, 2P Hig - 2Y) |
We define an A-map
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f: A —> N
N=A. M°=Z,{%’; j=0, j%#2"—1, for any n}
to be the restriction of f: A —> M". then

— T
(4.6) 00— K—>A*"—> N—0
is an exact sequence of left A-modules.

Lemma 4.3
N=A-N-- Zz{x"‘“““n", n=0}. (direct sum)
Proof. If
a=2""g' -2+ 2"—1, m=n-+2, a'=0,
or m=n+1,a>0,

a—sm—1

then
2m—]

Sq
If m>n, set

m! =214 2m—1, a/=2"*"'+2"—1,
then

m'>n!, BlmN=m-+1>n+1=£[n"].
Therefore 2™ and x are linearly independent by Theorem 2.4, Thus
the proof is completed.

=z 2" 'EN.

Proposition 4.4
L'=L°+A-L" (not direct sum).
Proof. By Proposition 4.1,
L= K+ Z,{Sq'}
=K+A-K+Z,{Sq'}
=L+ A- L'+ Z,{Sq”’Sq", j=>0} + Z,{Sq'}
=L%+A-L" (not direct sum).

§ 5. Exact sequences for Ext.

The author imagines that somebody has ever proved the following
proposition.

Proposition 5.1

Let R be a commutative ring with unit and B be an algebra over R.

(1) Then an short exact sequence of left B-modules
t 7
0—L—>N—-M—0
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and aleft B-module G induce an exact sequence of right
Ext, (G, G)-modules, r=0,

FS Ig
...... — Ext{(M, G) —> Exti(N, G) —> Exti(L, G)
> Exti (M, G) —> everes

(2) F. I, and 8, are compatible with Massey products ;
in detail, if meEExty( M, G), I€Ext (L, G), nEExtyN, G),
a, bEExty (G, G), then
F<m, a, b>C<<F(m), a, b=, if ma=0=ab,
I<n,a b>C<I(n),a b>, ifna=0=uab,
0<l, a, b>C —<<d(!), a, b>, if la=0=ab.
These properties holds for iterated Massey products. For example,
F<<m, a, b>, a’, b'’>C <<<F(m), a, b>, a’, b'>,

if ma=0=ab, <m, a, b>a'30, and a'd'=0,
where F, I and 0 stand for F,, I, and 0, for an appropriate s.
We apply this proposition to the following short exact sequence of
left A-modules:
7,

0—> L' — A —> M*—> 0

Then the following exact sequence is induced :
s
------ — Ext"(LF, Z,) — Exti*(M", Z,)
I

(51) fe IXT) ¢ STk
—> Ext5'(4, Z,) —> Extt(L-, Z,) —> e

{
Ext""(Zs, Zs)
By comparing the dimensions of generators,
Fo(bn)=h,, n>k.

Proposition 5.2
Exty(M", Z,)=Z{hn; a=b-+1, a>0, b=0}.
L'=A.L+I° (direct sum)

Remark. By Theorem 3.1, we have
koo =0, a>0.

Proof.
Sq*s’1=0, a=b.
Sq*“x?~'=Sq” 'S¢ ', a2,

implies
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hohae0, b0, a=0, bska-+1,
hohaF=hobn, a=2b-+2, b>0,
Since
Fy(lhyir) = Iohtye1 =0, 5>0
F(hohe) = hoha=hoh,= Fy(hutn), a—2=b>0
I(ho) = o,

(_where h; is the cohomology class of [ ]& in the cobar construction
F(A* L").), we have

Z ol bubty 1, 50 Bohia -+ habtn, a—220>01)

C ker F,=im 0,=coker I,.
coker I, is a Zymodule generated by g,.. Wwhich is the cohomology class
of [ 1(Sq®"Sq¥)* in the cobar construction F(A*, L*), for a, b such that
a>b>0 and Sq*"Sq” @& A-L". (Therefore g..70, if exists.) By comparing
the dimensions,

coker Iy=Z.{gaw a>b>0},

0 gun)=haho+ Iyha, a—220>0

ali(ga-l-l,a)=bahu+l’ a>0,
and two sets of generators in the left hand side and right hand side corres-
pond bijectively to each other. Thus the proof is completed.

Proposition 5.3

K=A-K+K (direct sum).
Proof. Let S=2Z,{Sq'}. Then the short exact sequence of left A-modules:

0—K—>L"—>S—0
induces the long exact sequence :

I
------ —> Ext§{(L", Z,) —> Exti{(K, Zy)

ds Foy1
—> ExtiY(S, Z,) —> ExtUHLY, Z,) —> eeeeee

Exti 1 N(Zo Zy)

By Proposition 5.2 and 4.4, ExtY(K, Z,) is a Z.-free module generated
by ge» which is the cohomology class in the cobar construction F(A4*, K)
for a, b, such that ¢>b=0 and ngaSq”DGEZ-K. In Ext, (L’ Z.), hohy5~0,
hoh, =0, u>0,

By comparing the dimensions of generators, g,. #>v=0, are gene-
rators in Ext (K, Z,) and

Fo(l) = Il(’n Fl(ho) = ]l;ho)
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I(gu.0) =guw u=>v>0,
0o gu0) =l u=0 Q.E.D.
Corollary 5.4
A= A%+ Z,{Sq’"'Sq““b ; a>0=0,a+1=0b>0}. (direct sum)
Proof. Apply Proposition 5.3 to the exact sequence (4.6) and we have

I(gur)=gan a>b=0, and g., a>>b=0, are generators of Ekt%(4% Z,).
Let N* be a Z,module generated by

x"; n=0 and n=-—1 (mod 2*) or n=2*—1
Lemma 5.5
N *=A-N*+Z, {8, 0< i<k : 4% 7, j=k+2). (direct sum)

Proof. By Theorem 2.4. We denote by &, and b, , the cohomology
classes of [ Jx,; , and [ Jx, e, in F(A*, N**), respectively. deg &,
=2/—1, deg by, =2'—2""—1.

Proposition 5.6
EXt&(Lk’ Zﬂ)=Zz{hw ugk y Eu,vr u>v>k ’ b;;,j, jzk ’]“2} .
deg %,=2% deg by ,=2'—2%", deg gu.,=2"+2"
Proof. There is a morphism of short exact sequences of left A-modules :

0— L' — A—> M —>0

b1 ]

0 — K—>L—> N*—> 0

This induces a morphism of long exact sequences for Ext :
Exti+1't(Zg) ZQ)
I

F

s i _ s
------ — Exty" (M, Z,) — Exti'(4, Z,) — Exti (L', Z,)

Py 9 Ts
Ry 14
------ — Ext%-YN*, Z,) —> Ext% (L%, Z,) —> Ext}'(K, Z,)
0s
—> Ext5 Y (M, Z;) —> oo
Py
s

5 Exti:l.t—l(Nk, Zz) _—sesane

We denote Fi(k)=h; k=j=20, Fiby ) =br; Then hj=F (k;)=q.Fik,)
240(/1;).
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0, u>v>k

hohy u—22v, u>k=v
Bulto -+ Bohy, EZu=v--2
boltyr, k=v=u—1=0.

ao(gu,u) =

Therefore ker @,=Z,{guw» #u=>v>>k}. Thus the proof is completed.

Theorem 5.7

If k>0, then
Exty(M*, Zs)=Z{huho k<us~v+1; by y, j=k+2.
deg (i hy)=2"—25+2°, deg by ;=2'—3-2°7"

Proof. By comparing the dimensions in the exact sequence (5.1),
Fol)=hu u>k; I(h)=h, 0=u=k,
0 Gurrn) = hubtusr, w=>k; Tolbi)=by,y» j=k+2.
8 Gu,w) = huhot Bohuy u—220>k,

and F\(huho)=huhy=F\(hoh.,)  implies huhhohu.

(also we can show this directly by the method similar to the proof of Pro-
position 5.2) Thus the proof is completed.

Proposition 5.8

In Ext (L% Zy), gashaF0, gashar=0, guoshto-,=0,
Ganhar1=garr,ales Garhver=Gor1,0ltar a>b>k:
Gorhot achot go,:ha=0, a—42b—22c>k.
In Ext, (L% Z,), a=0,

2 3 2
ga+3.a valo=La+3.0+ a1 —g-m+3.¢+lha+:‘-

Theorem 5.9

(1) If @ and 3 are non-zero elements of Ext(Z, Z., and a3s=0,
then a30. In particular h,3#0, u>k, in Ext,(M* Z,),
if hap7-0.

() If @, B, and 7. are in Ext(Z. Z,), then we denote an iterated
Massey product by

M) = oeeeee ey By 710 Bar 7oy oot Dy Bus fude

If M(@) and M() are defined and M(a)P0, then M(®)B0 in
Ext. (M*, Z,).

Proof. By Proposition 5.1.
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Corollary 5.10
V) kultohy, u>k, us~v+1, vsFw+1, uFw+1;

q—1_4

bl T u>k
are non-zero in Ext,(M* Z,).
(2) Co Baco=colty, dus P'hy, P'h, P"go, Pid,
are non-zero in Ext (M’ Z,).
Remark. In theorem 5.8 and Corollary 5.9, if tere is an element
in Ext,(M* Z.) which is mapped to « by F,, for an appropriate #, then

we denote this element by «. The representation of generators of Ext,
(Zy Z,) is due to [9] and [7].

§ 6. Tables.

We offer the tables of Ext§' (L’ Z.), t —s=<29, and Ext5'(M°, Z,),
t—s<27, in this section.

We first determine the former by determining the partial minimel
resolution of L° over A. Secondly we determine the latter by the former
and the table of Ext.(Z,, Z,) in [9], [7] and the exact sepuence (5.1) in
the case k=0, We only remark the fact that I, is trivial for all generators
in Exti(Z, Z.), except for Ai*', when Fy(#*")=/hh}, s=0, in that range
of s, t.

Since 0y =<gy, his B>, =g by h>>,

F(“z):‘ <F(g2,1)s s h§> =<l ks hyy > =<l hy, hi> =M
F(a)=<<F(gu.1)» Ity B2> = <bihy+ hibyy hoy 2>
= h<Ity, ho, B3>+ <<hy» By Bi>hy= hico+ciha.

By exactness h.co%c.hi. By constructing a minimal resolution #&.c,=
cfu(5£0) and by Theorem 5.8 Icoh5=0. By F(a,h,)= kol + colshy, hacolt,
#£0h41h1 = fucoh.

As above ¢, 540, but by constructing a minimal resolution ¢/,=0.

In Table 6.1 and 6.2, “bar” means “multiplied by Ao & or &,

We imagine that bideg (hid,)=(6, 23), bideg (;{)=(7, 23), ds(:k’d,)=
o Pudy, 7y(P)y=Z,+ Z in Table 8.3, and (sh.h3)hi5~0 in Table 8.2 in [6]
are misprints and we think that they must be corrected in the following :
bideg (Th?dﬂ)’:('iy 23)’ bideg (#)=(6, 23), dz(ni)zupxdow W*(P/c)=Z§+Zmy
and (shot3)H5=0, (; fo)I5~0.

In Table 8.3, (GP:Ec=(Picoki, (Pihc)h.=(Pd)h, (hih)h=
(«€o)ko, in Table 8.4, (4Pih)h=\Pico, ((P:hDhy=3Pice, (1 Pico)lii=(Picoki.
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t—s 0 1 2 3 4 Table 6+1

1 he ° PR Exta (L% Z2)

82,1 \

[To 8 > <3 BN B e »)

10 | gsa \

11 o\

12 83,2 ———0—|

17 8s1hs

18 g“'l\ 0’1\

19

20 g&z‘g

THER LAY

22 \ Cl'z\ ar=<gs,1, hi, hi>
23 :3\\ B

24 gae\ :\‘ ° \o

25 a \\ ay=<gi,, ho, hi>

26 \ azhz=a1h;
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