ON ADDITIVE FUNCTIONALS OF MEASURABLE
FUNCTION SPACES

SH0zo KOSHI

1. Introduction

Let © be a measure space with finite measure p. Recently, N. Fried-
man and M. Katz (1) discussed the representation of the additive functionals
on function space L,(?) (p=>0) and showed that every additive functional
@ on L, satisfying the continuity condition can be represented by the
kernel function K(#%, w) as follows:

o(f)= SK(f(a)), w)d for f€L,.

In this paper, we discuss the representation theorems of additive func-
tionals of more general measurable function space L, and the structure of
K(h, w) will be deeply related to the function space L, provided that the
measure space { is non-atomic with respect to . In fact, in the case

L,=L,(#)(p>0), we have found that @(f)= SK (f(w), w)dulw) is an

additve functional of L,(x) iff |K(k, w)|<a(w)+A|h|? for a.e. wE L
and every real number /, where A is a positive number and 0<a(w)E
Ly(s).

The proofs of theorems in this paper owe to the idea of the Shimogaki’s
paper (2), even if his method is related to the theory of vector lattice. In
this paper, we discuss only by measure theoritic method.

2. Function spaces L,

Let £ be a non-atomic measure space with finite measure ¢ and let
p(h, ) be a function of two variables #E(— oo, ) and w1, satisfying
the following conditions :

(p.1)  Hoo=zp(h, w)=p(—h, 0)=0, p(0, w)=0 for a.e. wvEQ.
(p.2) p(h, ) is a measusable function of » for a fixed ke (— oo, o),
(p.3) p(h, o) is a left-hand continuous function of #=0 for a. e. nE L.
(p.4) plh, 0)=Zplhy, o)  for |I|=|h].

We shall define a measurable function space L, as follows:

L,={ f; p-measurable and p(f) =Sp(f((u), w)dpw) <+ oo},

We see easily :
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(1) 1Al=If:| implies p( fi))=p(f2);

(2) if L,ef, |fI=|g| and g is measurable, then gL,;

(83) L, isaconvex set and f, g&L, implies f+g&L,;

(4) L, is alattice by the usual lattice operation ;

(6) O0=f.1f and f, f€L,(i=1,2, ) imply P(f)=sgp p(f)s

(6) if fi(i=1,2, :--) are measurable and mutually orthogonal, then
o ( =005

In the following, if necessary, a function f&L, is identified with a func-
tion geL, which is equal to f except measure zero set. We shall state
here the generalized Lebesque theorem which is need in the proof of
Theorem 7.

Let 0=</fiEL, be a directed system with sup p(f,)<<+ oo, then sup
A
fi=feL, exists and P(f)=Silp o(fr).

3. Additive functionals
A functional @ on L, is called an additive functional on L, if
i) |@(f)l<+oo forall fEL,;
il) @(f+g)=4(f)+e(g) for f,geL, with [f|N|g|=0.
By definition of additive functionals, we find the following properties of #:

1) #(0)=0
@) o(lf)=o(f*)+e(f7) for fEL,, where |fl=f"+f", f*=FU0,
F~=(—=ro.

If & satisfies
@) #(—=f)=—2(f),
then ¢ is called an odd additive functional.

Since L, is not a linear space in general, it is not necessary that
fEL, implies afeL, for all real number «.
Now, we shall consider the continuity conditions of additive functionals.
(CY) For mutually orthogonal functions foL(n=1,2---) wtih i feL,,

=]

it yields (//(if;) =3V (f;) (i. e. absolutely convergent).
i=] i

t=1
(ClI) 0=aita and afsL, implies $laf)— 4 (af).

For an additive functional @ on L, we can define a new additive func-
tional such that
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[#](f)=sup IIf/’(g)l-

=gl s 171
Clearly |#| satisfies the following conditions :
(i) [|2)1(0)=0
(ii) |el(H)=0 for all f=L.,.
(it)) |2|(f+g)=121(N)+|2|(g) for |flNlg|=0.
(iv) |2[(H)=12]UF]).
(v) IfI=lgl implies |2|(H=|¢|(g).
It may happen that |#|(f)=-tc for some f&L, If & satisfies that
|#|(f)<<eoo for all f=L, then ¢ iscalled a type of bounded variation.

Theorem 1. If an additive functional @ satisfies (Cl), then & isa
type of bounded variation.
Proof. Suppose that |#|(f)=- oo for some f&L, Since the measure
space { is non-atomic, we find a sequence of measurable sets £22¢,De,D
------ such that u(e,)—0 and [#|(f-Xe,)=-+oo for n=1,2, -, where Xe,
is a characteristic function on a measurable set e,.

Since @ satisfies (CI) and s(e,)—0, we find that @(gXe,)—0 for all
gel,.

By induction, if we define a function f,eL, with | £ |<IF], fu=Fae
Xe;, and |#(f,)|>n, then we can find a number .., such that g.=f.—
fuXe;,, and |¢(g.)|>n/2, since #(gXe,)—0 for all gL, by (CI).

Hence we find a function fu.:=fauXe;  , with |4( far)|>n+1 and
| s:|<| f| because of |¢|{(fXe,)=-+co.
By the considerations above, for all natural numbers =1, we find a

function g.=f,—f.Xe; . with [g.|<|f| and |#(g.)|>n/2. Clearly the

141

+1

sequence of functions {g,} is mutually orthogonal. Since |X.g.|<|f],
n=1 ’

we have i g.€L, But (/f(i}g,.)zZ‘,f/) (g») is not convergent. This is a
nm=]

n=1 n=1
contradiction.
Theorem 2. If & satispies (Cl), then |@| is also an additive func-
tional satisfying (CI).
Proof. Let {f;} be a sequence of orthogonal functions with > f;=f&L,.
i=1

For every €=, there exists |g.|=<|f] with ||2|(f)—|®(g.)||=e. Let
e;={x; filx)5=0}. By (CI), we have (//(ge)=i‘,(ll(gg76ei). Hence, |®(g:)|
i=]

=3 Ugxe)| S 310 (H=ZI0](H) ie |ZI01AH—141(f)I<e. Since
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¢ is arbitrary, we see I(ﬁl(f):gld’l(ft)-

Theorem 3. If & satisfies (CII), then |®| is an additive functional
satisfying (CII).
Proof. By theorem 1, we have |#|(f)<<-oo for all feL, Let0=a}a
and afe L, For any positive number ¢>0, there exists fe such that
|[fel=laf] and | |@](af)= ()] |<e. Since T1, |e(Sf)—0(f)| <e
for large i.
o|2|(af)—1¢|(aif)

<|¢|(af)— Ifffl(%‘fz)
<|¢|(af) ~¢(%fe)

= I'/)I(af)~¢(ﬁ)+¢(ﬂ)~f/f(%ﬁ)

< 2.
Hence, we have

[#](af)=1im|®| (e f).
We shall consider another condition of continuity.
(CIII) OZfitf, or O=f | f with fEL, imply ¢(f.) —¢(f).
Clearly, (CIIII) implies (CI) and (CII).
Theorem 4. If @ satisfies (C1) and (CII), then |¢| satisfies (CIII).

Proof. Let 0<f,tf€ L, For any 1>¢>0, we shall consider the
function

(fi—1—e) f)U0=¢g.
For the set e;={x; g,(x)>0}, we have
eCe,,.,,C - and ‘iiirieg=e= {z; f(x)=0}.
Since (1—e)f-Xe, < fiXe;1f, we have
|2 (A—e)f-Xe)Z|0|(fiXe)<|#|(F)Z || (f).
and so,
[21(A—e)f)= sup |2](f)<12|(f).
Since ¢ is arbitrary positive number, we see
sup |21(f)=121(f).
In the proof just above, we use the monotone property :
| fI=|gl| implies |@|(f)<|®|(g).
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Hence, for arbitrary monotone additive functional @, (i.e. |f|=|g| im-
plies ¢(f)=<#(g)), we have

Theorem 5. If @& is monotone and @& satisfies (CI) and (CII), then
@ satisfies (CIII).
Remark. There exists an additive functional which satisfies (CI) and (CII)
and is not monotone, but does not satisfy (CIII).
We shall show such example.
Let p(ht)=h for all —oo<<h<<oo, 0<t<1 and let g be usual Le-
besque measure on (0, 1) then L,=L,(0, 1).
For f€L,(0, 1), we put ex={x; f(x)=4x}, then ey,=exMNey is a mea-
sure O set for 22¢i'. Hence, ex which has positive measure, is at most
countable. We denote e, by the union of such measurable sets. We shall
consider an additive functional # defined by #(f)=Jo,n-., fdr.
Then, ¥ satisfies (CI) and (CII), but not (CIII).

Theorem 6. Let @ be an additive functional on L, which satisfies
(Cl). Then there exist positive numbers ¢, 6>>0 such that p(f)<e implies
le(f)l=o.

Proof. By Theorem 2, |#| satisfies (CI) if & satisfies (CI).
Since |2|(f)=|¢(f)| for every fe& L,, we shall prove that there exist &,
>0 such that p(f)=<¢ implies |@|(f)<4. If there exists no such posi-
tive number, then we can find an positive measurable function 0 f, €L,
such that

1

o (ﬁl) g 271

(AU URSp(A)p(fr)+p(f2)<1 and the sequence of func-
tions g.=AfA\Uf\J:--\US, is a monotone increasing system with “p(g,)<1.
Hence, there exists f= ij,. = O 2.€L,.

n=1 n=1

Since |2|(f)=|?|(fa)=n for all n=1,2, ---, we have |#|(f)= + oo.

and |?|(f,)=n for every n=1,2, -,

4. Representation of additive functionals

Let @ be an additive functional on L,. We shall assume here that ¢
satisfies (CIII). Let Xe be a characteristic function on e {(#-measurable
subset of ). For every positive number A=0, @(hXe)= . (e), (provided
that #XeeL,) is a measure of bounded variation on the measure space
e, (There exists a maximal measurable set e, so that @(kXe,) <<+ o).
rth(e) is absolutely continuous with respect to . Hence, by Radon-Niko-
dym’s theorem, we find an integrable function K(%, ») such that
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mle)= LK (h, w)du

for all measurable subset ¢ of e,.
For w€2—e, we define K(i, w)=co. We see also that p(k, w)=c a.e.

wEL—e, Let {/} be a system of whole positive rational numbers. For
every h>0, we can choose h; with #;1 %  Since S[K(h,-, w)|dn <

|@|(hXe)<|®|(hXe) for all measurable set ¢Ce,, applying Radon-Nyko-
dym’s theorem to |#|(#Xe), we see that | K(hy, w)| is bounded by inte-
grable function.

By virtue of Lebesque majorant theorem and (CIII), we have

() lim,.. K(hi, w)=K(h, @) a.e. vE L.

For every negative 1 <<0, we find also K(h, w) such that #;| % implies
K, w)— K(h, 0) a.e. wEL.

We define K(h, w) as (x).

The function K(h, ») of two variables %, « is measurable with respect to
w for fixed A, and left-hand continuous with respect to % for a fixed w
(a.e. @ of 2), if h>0 and K(k, ») is finite. By (CIII) and additivity of
&, using Lebesque majorant theorem, we have

o(f)= SQK( Flo), {U)d,f4=}ir£gx( £, w)d )

for 0= f:t fEL,, where f; is a step function for i=1, 2, ---. For L,3 f <0,
where f;|f(f: is a step function for i=1, 2, ---), we have

o(f)= SQK(f(w), o) dp=lim SK(fi(w), W,

For arbitrary f& L,, we decompose f into f= f*—f~ with f*, f~L,
fFfNf - =0.

w(f)=¢(f+)+r/f(~f—>=jn K(f *(w) w)dpe -l~SQK(~f”((u), Wdy.

Hence we have the following theorem :

Theorem 7. Let @ be an additive functional on L, and satisfy
(CII). Then we find a kernel function K(h, ) which satisfies :
(1) measurable with respect to w=L for a fixed h.
(2) 0=hith or 00\ h, then K(hy w)—= K (ko) for a.e. €L (provid-
ed that K(h, ) is finite) such that

(//(_]")=S‘2 K(f(w), w)dp: for fe L,
where |K(h, 0)|<-+oo if p(h w)<<+ oo,
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Remark. 1f @ is odd, then the kernel function K(&, ) is an odd
function with respect to 4 (i.e. K(h w)=—K(—h, »)) for a.e. «€E L.

Theorem 8. There exists a positive number A>0 and 0=s(w)E
Li(1t) such that
® | K&, w)| = s(w)+ Ap(h, w).

Proof. We define a functional 7 on L, as follows:

T = K@), o)l = Ap(f (o), N di

where A>d/e(e, ¢ are the positive numbers determined by Theorem 6.)
We shall show that

T(f(w), w)=0 a.e. wEL implies p(f)<e, where T(h, w)=|K(k w)]
—Ap(h, w).

If not, there exists f(w)EL, such that T(f{w), w)=0 for a.e. wE L
and Sp (f(w), w)dp>c.
Since ¢ is non-atomic, we can find a measurable set ¢ with
S o f(w), w)dpr=p(f-Xey=e. Clearly T(f-Xe(w), w)=0 a.e. wEL2. By
theorem 6,
520107 X0 2| | K(f Xe(w), o) dp
= ST(X <Xe(w), wyd -+ ASP( fXe(w), w)dp
=ST(f-Xe(w), w)d -+ Ap(f-Xe(w))

;Ap(f-?ée)>%- e=a.

This is a contradiction.

The system of measurable functions f(w)E L, with T(f(w), ©)=0 a. e.
w€E€ 0 is a directed system. In fact, T(fi(w), w)=0 and T(fi(w), w)=0
a.e. wE L, then

T(,flu_fz(w), (U) — {T(fl ((U), w)z 0 for w with fl((o) gfg((u) ;

T ( fw), 0)=0 for w with filw)=filw).
By generalized Lebesque theorem, we find a measurable function
s(w)=ess-sup flw)E LY1).
T(w), ) 20
Hence, we have
| K( f(w), )| Ss(w)+ A p( f(w), w) for a.e. wEQ.

Considering f(w)=#h-X,(w) for arbitrary measurable set eC £, we have
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| K(h, )| Zs(w)+A-p(h, w) for a.e. wEL.
We see easily,

Theorem 9. If K(h, o) satisfies the conditions (1), (2) of Theorem
7 and (¥) of Theorem 8, then

(ﬁ(f):jQK(f(w), w)dypy for fe L,.

s an additive functional which satisfies (CIII).
By the method used in the proof of Theorem 8, we find that :

Theorem 10. If @ satisfies (CI), then we find positive numbers A,
B such that

|[@(AIZB+Ap(f) for fEL,

5. Supplementary results

In some cases, we must consider linear spaces. If we condider fp: the
totality of #-measurable functions with p(af)<<-+co for some a=¢(,
then f,, is a linear space. _

In the following, we shall consider an additive functional @ oxn L,

At first, we have

Theorem 11. L,,=E,,(z'. e. L, is a linear space) if and only if there
exist positive numbers A and 0<s(w)E Li(p) such that

P(2h, w)Es{w)+Ap(h, ) a.e. wE L.
The proof is the same as the proof of Theorem 8. This theorem is also
obtained by Shimogaki.

Theorem 12. If an eddttive functional on Ep satisfies (CII), then
there exists a function K(h,w) of two variables which satisfies the
conditions (1), (2) of Theorem 7, such that

2(5)=| K (rla), o)

and for every n==+1, £2, .- , there exists a positive number A,>0 and
s(w)EL,(¢) such that

| K(nh, o) | < s{w)+ Awp (b, »)
forall h and a.e. wEQ.
The proof of this theorem is as same as the proof of Theorem 7 and Theo-
rem 8, and so it is omitted.
The continuity icondition of additive functionals on L,(p>0) considered

by Friedman and Katz is equivalent to the so-called order-continuous condi-
tion :
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(CIV) filw)— flw)a.e. wE L2 and \:Jl | fi|EL, implies ¢{f)—=2(f).

The condition (CIV) implies (CI), (CII) and (CIII).

Let @ be an additive functional on L, satisfying (CIV). Then the
kernel function K(%, ) which is defined in Theorem 7 is continuous with
respect to . fora.e. wE L.
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