SOME RESULTS ON NORMAL BASES
Hisao TOMINAGA

Throughout the present paper, A will represent a ring wAith 1, B a
subring of A containing 1, and G a subgroup of the group G of B-ring
automorphisms of A. Further, the centralizer V,.(B) of B in A will be
denoted by V, and for any subset S of A the right multiplication and
the left multiplication by S (in A) respectively by S; and S;. We set
9 =Hom(A, A), which will be considered on the right side of A. If zA4 is
completely faithful in the sense of [1], or equivalently, if B is a direct
summand of A, then Vu(Vy(B.))=B; (cf. [1]). In particular, if zA is
free then B is a direct summand of ;4 and V,(Vy(B;))=B;. Further,
one may remark that if B is a direct summand of ;A and V,(B;)= GAx
then J(G)={xEA; xo=x for every ¢ G} coincides with B. Those re-
marks will be used freely in the sequel.

If A is finitely generated projective (resp. finitely generated free)
and Hom (zA,, »Bs) contains a left free Ap-basis 2 of Hom (A4, xB) then
A/B is called a Frobenius (resp. free Frobenius) extension. Now, assume
that A/B is a Frobenius extension and % & Hom (3A; »Bs) a left free
Ag-basis of Hom (A4, zB). Then, k is also a left free A,-basis of Hom
(As, Bx) (cf. the proof of [13; Th. 1]). Moreover, in order that B be a
direct summand of zA (or of Az), it is necessary and sufficient that - be
an epimorphism. In case B is a direct summand of zA, A is semi-primary
if and only if so is B ([9; Prop. 7.3]). Finally, let A be an Artinian
simple ring, and G an N-group of A with B=J(G). Then A/B is a free
Frobenius extension with Vy (B,)=GAy (I5; 3. Beispiele] and [13; Prop.
1]} and A is GBg-homomorphic to GB. ([7; Th. 1]).

In the present paper, we shall treat with a kind of free Frobenius
extensions of semi-primary rings and the main theme of our discussion will
concern the normal basis theorems. One of them is an extension of the last
statement (Th, 3.7), and the original of the other will be found in [8] and
[9] (cf. Ths. 2.1 and 2.2). Our theorems obtainted in §§2—4 will contain
several results in [7] and [14].

1. A remark on Frobenius extensions

Assume that A/B is a Frobenius extension and Z&€ Hom (A4, B,) a
left free A,-basis of Hom (,A, zB). Then, as was shown in the proof of
[13:Th. 1], & xrbyiz)* =2 yihx, defines an additive group isomorphism
of Vu(B;) onto Vy (Bz). We shall expose here the reciprocity between the
conditions Vy (B.)= GAr and Vyu (Bz)= GA,.
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Proposition 1.1. Let A/B be a Frobenius extension, and h€ Hom
(sAs, B5) a left free Ag-basis of Hom (A, zB). If & is a B-ring auto-
morphism of A then ch=uvzh with a unit v in V (cf. [6;p.93]), and
o*=c"op=0""0""v; where D=v37. In particular, 1¥=1.

Proof. We set o*=¢"'g. Since xge=c(x7)z for every x in A, we
obtain ¢7'gx,=(%x0)0"'g =0¢"'%:g, namely, g =u, with some » in V. Hence,
¥ =c"up. If 6= xixhy;z then o*=3) 9y, k2, so that o*h=") yuh(xih)L.
Noting that 1=3 (x,k)y,, we readily obtain A=1;-k=3 y hlxh)r=c"h=
o 'ugh, and so vph=csh=urh. Hence, we obtain #=v.

The next is [13; Cor. 1].

Corollary. In order that A/B be a Frobenius extension, it is neces-
sary and sufficient that there exist some h € Hom (zAg pBs) and %, -,
Zns Yy vy Y € A such that 20 xiphye=22 yuhxu=1.

Proof. It remains only to prove the sufficiency. If f is in Hom(zA4,
sB) then f=2X] xiphyf=3 (x:-.f)h. Moreover, if azh=0 (a€EA) then
a=a(>] yuhx) =2 yiazhzi) =0,

Corollary. Let V be the set of all v effecied by units v contained
in V. If ffl/B is a Frobenius extension and Vy (B;)= GAx then V4 (Bz)
=GVA,=GA;.

If A/B is G-Galois (cf. for instance [9]) then h=3,cs o is a left free
basis of Hom (A, zB) (and so A/B is a Frobenius extension) and Gh=4.
The next is also an easy consequence of Prop. 1.1.

Corollary. Let A/B be a Frobenius extension, and V. (B,)= GAz.
If Hom (3Apz, sBs) contains a left free Agz-basis & of Hom (A, zB) such
that GhC Cyh (C=V (A)) then Vy(Bz)=GAr. In particular, if V=C
then Vy(Bz)= GA,.

2. Normal basis thorem

Let A be a semi-primary ring, namely, the residue class ring of A4
modulo the (Jacobson) radical R(A) be Artinian. Assume that A/B is a
free Frobenius extension and Vy (B;)= GAx Then, the direct sum A® of
s copies of A is GArx-isomorphic to GAp where s=[A: B]. Assume
further that G contains a right free Az-basis H of GA; such that GBj
=HBjy. Then, to be easily seen, (GBz)® is GBr-isomorphic to GAg, and
so A® is GBg-isomorphic to (GBp)*. Since GAy is semi-primary, GBj is
also semi-primary by [9; Prop. 7.3]. Hence, as is well known, A is GBg-
isomorphic to GB, which proves the following that is fundamental in our
subsequent study.

Theorem 2.1. Let A/ B be a free Frobenius extension, and Vy,(B,)=
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@ocr cAr with a subset H of G. If A is semi-primary and GBR—HBR
then A is GBg-isomorphic to GBg.

Corollary. Let A/B be a free Frobenius extension, and Vu(Br)=
@t 6 Ar with some o= G. If A is semi-primary and G is abelian then
A is GBy-isomorphic to GBx.

Proof. Let ¢=3 oy (3y€A) be an arbitrary element of G. Then,
for any € G there holds 3 —oyir=:6=0:=2, re,{ ¥:-)r» Whence it follows
y:=y,~. We see therefore every y; is in J(G)=B, namely, GBr,=@®! s.Bx.
Hence, A is GBg-isomorphic to GBp by Th. 2.1.

Next, we shall present the following whose proof is quite similar to
that of [8; Th. 2.4] (cf. also [8; Example 2.2]).

Theorem 2.2. Let A/B be a Frobenius extension such that B is a
direct summand of Ap and Vy(B)=@ioiAr and GBr=@®iaBr with
some o= G. If A is semi-primary and Ay can be generated by a subset
of s elements then A is GBpr-isomorphic to GBp.

Proof. By the validity of Th. 2.1, it suffices to prove that A; is free.
There exists a right B-epimorphism f of B® onto A and a splitting
exact sequence

J
0—>Ker f —B®—A—>0.
Obviously, the derived sequence
181
0 _)Ker f ®BA-_>B(S)®BA —_>A(®BA -_—> 0

is an exact sequence of right A4-modules. As is well known, Vyu(B;)=
@5 6. Ax is right A-isomorphic to AQ,A (cf. [13; Lemma 1]). Hence,
BORz AR (A/R(A)) and ARAR(A/R(A)) are isomorphic and have
the same finite number of irreducible components. Therefore, fQ1X1 has
to be an isomorphism, and f&1 is an isomorphism by [8; Lemma 1.7].
Hence, Ker fQzA=0. Since B is a direct summand of ;A too, we obtain
Ker f=0.

If A/B is G-Galois and A is GBg-isomorphic to GBj then it is
rather familiar that HY(G, A)=0 for /1. By the way, one may remark
here that if G is of finite order and there exists an element ¢ A such
that T.(a)=2lecc @r=—=1 then H'(G, A)=0. In fact, if for every ¢€G
there corresponds an element x,=A and there holds x.-F%,-=2%,, (s, <€
G), then for x=3_.¢; x.-a- we have x,=x—x0.

Theorem 2.3. Lei A be semi-primary, and G={oy, -+, o5} a finite
group of ring automorphisms of A suchthat B= J(G) is a direct summand
of Ay Assume that A|B is G-Galois and A, can be generated by a subset
of s elements. If a is aleft G-normal basis element (abbr. G-n.b.e.) of
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A/B, namely, if {aa, -+, aos} is a left free B-basis of A, then the matrix
(acio;) is a unit of (A);, and conversely. In particular, if G is abelian
then every right G-n.b.e. is a left G-n.b.e.

Proof. By Th. 2.2, A is GBg-isomorohic to GBg, so that symmet-
rically there exists a left G-n.b.e. x of A/B. Since there exist some f,=
Y25 op in Hom (34, ;B)=Ax> i such that 33 oo ¥ 0= %1 f3=0;
(3, =1, -+, 5), the matrix (¥¢yr;) is a unit of (A),. Conversely, let a be
an arbitrary element of A such that (¢oi;) is a unit of (A).. If we set
ac,=3_, by x0; (b;;EB) then (b;))=(ac:;)+(xa:05)"" is a unit of (B),, which
means that « is a left Gn. b.e.

Finally, assume that A be an Artinian simple ring, and G={a, -,
a;} an F-group of A with B=J(G). Then, B is an Artinian simple ring
and [A: B)<ls. If [A: B] coincides with s, A/B is defined to be strictly
Galois with respect to G (cf. [10]). To be easily seen, A/B is strictly
Golois with respect to G if and only if G-Galois. We obtain at once the
following that contains [7; Th. 4].

Corollary. Let G={oyp > o5} be an F-group of an Artinian simple
ring A, and B=J(G). In order that a bealeft G-n.b.e. of A/B, itis
necessary and sufficient that the matriz (ac.o;) be a unit of (A)s

3. Galois extensions of perfect rings

Following [2], a ring A is called /left (resp. right) perfect if every
left (resp. right) unital A-module possesses a projective cover. As was
shown in [2], A is left perfect if and only if any of the following equiva-
lent conditions is satisfied: (1) A is semi-primary and R(A) is left 7-
nilpotent, and (2) the descending chain condition is satisfied for right
principal ideals of A. Now, it will be easy to see that if A is left perfect
then every right regular element (i. e. an element that is not a left zero-
divisor) of A is a unit. Finally, A is called a Jocal ring if the set of all
non-units of A forms an ideal. The following will be found in [2] and

(31.

Proposition 3.1. Lef A be a left perfect ring.

(@) If M isaleft unital A-module then R(A)» M= M.

(b) Every projective left unital A-module is a direct sum of directly
indecomposable direct summands of A, and the numbers of isomorphic
components are uniquely determined.

(¢c) If A is primary then A is a complete matrix ving over a local
ring, and conversely.

(@) (A): is left perfect. If e is a non-zero idempotent of A then eAe
ts left perfect.
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Now, by the validity of Prop. 3.1 (a) and (b), we can prove the fol-
lowing, whose proof proceeds in the same way as in [12].

Proposition 3.2. Let A be a right perfect ring, and let N and P be
vight unital A-modules.

(a) If P is projective and N is A-homorphic to P™ with positive
integers nw_>p then N is A-homomorphic to P.

(b) If N is A-isomorphic to A™ with a positive integer n and an
infinite cardinal number  then N is A-isomorphic to A“.

(c) If N® is A-isomorphic to A with positive integers n, a, and
a=nq-+r (0r<<u), then N is A-isomorphic to AYPN, for an A-homo-
morphic image N, of A such that N§° is A-isomorphic to A ™.

Proposition 3.3. Let B be a direct summand of pA.

(@) If A isleft perfect then sois B. In particular, A is left per-
fect if and only if sois (A).

(b) If A is finitely generated projective and B is a right perfect
ring then A is right perfect. Particularly, in case A[B is a Frobenius
extension, A is a ([eft and right) perfect ring when and only when so is
B.

Proof. (a) If 1t is a right ideal of B then tAN\B=1. Hence. the
descending chain condition is valid for right principal ideals of B. The
latter will be obvious by Prop. 3.1 (d).

(b) In virtue of Prop. 3.1 (d), Vu(B;) is right perfect. Since A is a
direct summand of the right Ajy-module Vy(B;) (cf, [9; Lemma 6.5&]),
Ay is itself right perfect by (a).

Proposition 3.4. Let A be left perfect, and M, finitely generaled
free. If N is a finitely generated free submodule of M, with [M: Alx
=[N:Al, then M=N.

Proof. Let {m;, ---, m;} and {n,, :--, n;} be right free A-bases of M
and N, respectively. If n;,=3] m.a;(a;,A) then the matrix (a;) is
obviously a right regular element of the left perfect ring (A); (Prop. 3.1
(d)). Hence, (a:) is a unit of (4),, and {, ---, n;} is a right free A-basis
of M.

As an easy consequence of Props. 3.3 (b) and 3.4, we obtain the next:

Corollary. Let G={sy, a5}, B a right perfect ring, and [A:B];
=s. If (acio;) is a unit of (A), then a is aleft G-n. b.e. of A/B.
Corresponding to Th. 2.1. we obtain the following (cf. [7; Th.2]):

Theorem 3.5. Let A/B be a free Frobenius extension, and Vy (B,)=
@oen cAr with a subset H of G. If A isleft perfect then the following
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conditions are equivalent: (1) A is GBy-isomorphic to GBy. and (2) GB,
=HBx.

Proof. By Th. 2.1, it suffices to prove (1) = (2). By Prop. 3.3 (a),
B is left perfect. Since [GBy: Brle=[A:Bl,=[A:Bl,=[HA;: Axlz=
[HByr: Brlgr, (2)is a consequence of Prop. 3.4.

The next is a generalization of [7; Th. 3].

Theorem 3.6, Let A/B be G-Galois, and U a G-invariant right
perfect subring of A such that Ay possesses a free basis {y,; € 4}.

(@) If A is infinite then there exists a subset {x\; € 4} such that
(%20 A€ A, 6= G} is a free basis of Ag.

(b) Let G be of order s, ana Z2A=t<<oo. If t=sq+r (0r<s) then
A contains a subset X={%, ---, x,} and a GUg-homomorphic image M of
GUr such that XG is right U-free, M® is GUg-isomorphic to (GUR)™
and that A=(XG)UDM.

Proof. Since GUyp=@.,cc Urs is right perfect (Prop. 3.3 (b)) and
A% is GUgisomorphic to (GUz)*™, (a) and (b) are direct consequences
of Prop. 3.2 (b) and (c), respectively.

We shall conclude this section with the following that contains [7;
Th. 1]:

Theorem 3.7. Let A/B be a free Frobenius extension, and V., (B;)
=GAr If U is a G-invariant vight Avtinian subring of A such that
Ay possesses a generating system {x, -, %} with t< [A: B], then A is
GUr-homomorphic to GUyg. In particular, if A is right Artinian then A
ts GBg-homomorphic to GBrp.

Proof. If s=[A:B] then A® is GAg-isomorphic to GAj;. Since
GAr is right finite over Up, GUpz is right Artinian. Noting that GA,=
ArG=3%,UxG, we see that GA; is GUg-homomorphic to (GUR)®,
and so A is GUj-homomorphic to (GU:)®. Hence, by Prop. 3.2 (a),
A is GUi-homomorphic to GUy.

4. A special type of Galois extensions of left perfect primary
rings

The present section is devoted exclusively to the treaty of a special
type of Galois extensions of left perfect primary rings.

Proposition 4.1. Let A be a G-Galois extension of a left perfect
primary ving B. If G' is a normal subgroup of G, G=G/G' and B'=
J(G"), then B'|B is free G-Galois and B' is left perfect.

Proof. Let B=3] By, where {e;} is a system of matrix units and
B,=Vy({ey]}) a local ring (Prop. 3. (c)). If A,=V.({ey}) then A,/B, is
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G-Galois by [9; Th. 5.8]. Hence, By [4; Th. 2], A./B, is free G-Galois,
which means that A/B is free G-Galois. Accordingly, B/B is G-Galois
(cf. for instance [9]), and then free by the above argument. Finally, B’
is left perfect by Prop. 3.3 (b).

If B is aleft perfect primary ring then, as is well known, the center
Z of B is a perfect local ring and the characteristic of B is either 0 or

a power of a prime. Now, we shall present a slight generalization of [14;
Th. 2].

Theorem 4.2. Let A/B be G-Galois, and G's={1} a normal sub-
group of G with B'=J(G"). If B is aleft perfect primary ring and G=
G/ G’ then the following conditions are equivalent: (1) a is a right G-n.
b.e. of A/B whenever T¢(a)=ee ac' is a right G-n. b.e. of B'/B,
and (2) the characteristic of B and the order of G' are powers of a
prime p.

Proof. By Prop. 4.1, A/B is free G-Galois and A is left perfect.
Hence, there exists a right G-n. b.e. u (Th. 2.1), and T4 (u) is a right
G-n. b.e. (Props. 3.4 and 4.1). As in the proof of [11; Th.], the mapping
@12 o%og —> 2] 0 %x iS a ring homomorphism of GBx (isomorphic to the
group ring GB) onto GB;, and one will easily see that T (ua)=(Te (#))
(wg) for every a= GBy. As GBg is left perfect (Prop. 3.3 (b)). ux is
again a right G-n. b. e. when and only when « is a unit of GBy. Similarly,
Te(ua) is again a right G-n.b.e. when and only when ae is a unit of
GBz. Our equivalence is therefore evident by Th. of [11].

Corollary. Let A/B be G-Galois. If B is a left perfect primary
proper subring of A then the following conditions are equivalent: (1) a
is a right G-n.b.e. of AlB whenever Te(a) is a unit of B, and (2) the
characteristic of B and the order of G are powers of a prime p. In
particular, if B is a perfect primary ving of characteristic p° and G is
of order P° then every left G-n.b.e. is a right G-n. b. e.
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