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Throughout the present paper, A will be a division ring, and ® the
group of all automorphisms of A. For any element ¢ of A, we denote by
@, (resp. a,) the left (resp. right) multiplication determined by ¢, and for
any non-zero element ¢ of A, we denote by (&) the inner automorphism
a,-a;* of A. Moreover, for any subset E of A and for any subset & of &,
we shall use the following conventions: E, (resp. E,)=the set of left (resp.
right) multiplications determined by elements of E; {(E)=the set of inner
automorphisms determined by non-zero elements of E; V,(E) = the cen-
tralizer of E in A; ®&(E) = the set of E-ring automorphisms of A; I(8)=
the subring of A generated by all the non-zero elements inducing inner
automorphisms belonging to &; J(&) = the set of &-invariant elements of
A; V@)=V (J(®)). Let  be a subgroup of ®. If {I(D)>CH then I(D)
is a division ring, and © will be called an N-group (cf. [1, Def. VL 8. 2]).
Moreover, if &(J(D)) = D then © will be called a T-group. Clearly a T-
group is an N-group. In general, for any subset E of A, ®(E) is a T-group,
and so, an N-group. If 9 is an N-group of finite reduced order (cf. [1, Def.
VI. 10. 1]) then © is a T-group as is well known in finite Galois theory.

In this paper, the main theme of our discussion will concern the rela-
tion of N-groups to T-groups, which contains a characterization of T-
groups. Moreover, for N-groups, we shall present a generalization of the
notion of reduced orders, which plays impiortant roles in our study. This
will be given later under the calling of reduced indices.

For a subset E of A and for a subset & of &, we denote by S| E the
restriction of & to E; if, for a subgroup © of ® and for ¢, €8, ¢|E=
(<|E) (: ES> A A) for some 4 in O, then we write ¢|E~<|E (mod D).
Evidently, the relation ~ is an equivalence relation in &| E, and the cardinal
number of the equivalence classess w.r.t. ~ is denoted as (&|E: 9). For
any subgroups ©;, 9, of & such that $,C 9., we denote by (D,: D)) the
index of 9, in .. For a division ring D and for a left (resp. right) D-module
M, we denote by [M: D], (resp. [M: DJ],) the left (resp. right) dimension
of M. Incase[M: D],=[M: D], they are denoted by [M: D]. As to other
notations and terminologies used in this paper, we follow [4].

Throughout the rest of this paper, O, £, ,, etc. will be subgroups
of @. Now we shall begin our study with the following lemma which is
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a direct consequence of [7, Lemmas 1.3—1.5] and [1, Density theorem
for irreducible modules, p.31].

Lemma 1. Let D be a division subring of A. Then
(a) if D' is a division subring of D then
[D: D']l: = [(B(D)|D)A,: A.l.
= (DN D: VLD VD) : VD],
(b) if 9 is a group such that J(9) C D then
[D: ](@)]lz [('E.) I D)Ar: Ar]r’

provided we do not distinguish between two infinite dimensions.

Corollary 1. If ©,C 9, and (D,: £1)<<oo then [J(D): J(D)]<(D: D).

Proof. Weset B,=J(9.)(¢=1, 2), and £, = D16:\J - \U D16, Where
n=(9,: 9,). Then, by Lemma 1 (b), we have [B;: By];= [(£;| B)A,: A,],<<
n=(9,: $,). For a finite subset E of B, which generates B, over B, we
set B'=J(G(E 9:)MN\D,). Then B’ is a division subring of A containing B,.
Since G(E )N D, is a normal subgroup of £, which is of finite index in
., ©.|B’ is a finite group of automorphisms in B’ such that the set of
(9:]| B')-invariant elements of B’ is B,. If we take B'instead of A, then by
Lemma 1, we obtain «o>>[B': B,],=2[Vs(By): Vu(B)1=[Ve(Bs): Val(B)],
and whence [ B;: B.],=[(&(B., B")| B)A,: A,],=(8 (B, B |Byi: {Vu(By)>)-
[Vs(Bs): Vu(B)]=[B.: B.],, where &(B;, B") is the group of all B,ring
automorphisms in B’

Lemma 2. Let S be a subset of A, S=8&(S), and ©C . If Nisa
normal subgroup of © then (H|S: N)=(D: SN).

Proof. Let o, == 9. Since ENo=EsN, we have &Ng|S=SeN|S =
(#|S)%. Hence, if S = &Nz then (¢| )T = SN |S =GN -|S = (| SHN.
This implies ¢|S~z|S (mod N), Next, suppose o|S~:|S(mod N). Then
o|S = (z]| S)s for some =N, and this is equal to =5|S. Hence there exists
an element ¢ £ ©&(S) = & such that ¢ = e(z6) = (-6 :-7!) - and e(z6-") = SN,
Thus we obtain €Nle = &N -, We have therefore proved that (9 : &RN) =
(DS: 9.

Definition. For N-groups $,, 9. such that , C 9, we denote by
(. | £1)- (resp. (D || £1). ) the product (9,: DKLIDI)[I(D2): I(D)]~ (resp.
(922 SLKI(DD) (D)) I(H,)],), which is called the right (resp. left) reduced
index of ©, in .. In case (D:] ©)r=(D. | D). they are denoted by
0: 1 S0).

Clearly (£, || {1}) is the reduced order of £, which has been intro-
duced in [1]. If I(9,) is finite over its center then [I(,): I(®)],=
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[I(D.): ()] (cf. [1, Prop. VIL 1. 3]), and whence, in this case, we have
(r@n " @1)7": (@2 " '@1);-

For reducd indices, we shall prove the following

Lemma 3. Let ©.,, . O: be N-groups such that ©,C9,C9s. Then
(a) (‘g’a | 0. = (P: 1 D)0 | D).
(b) If ('?:‘2 " @1)r=(©3 " 'bl)r<°° then ‘bz:'@a-
Proof. (a) Since <I(D:)) is a normal subgroup of 9; and
LI(D))>ND,=<{I(P-)>, we have
(D3 | 9= (D51 OLION)LI(D9): 1(DD]-
= (D51 DoL(DD) (DLI(D9)> 1 DLL(D0)D) [J(D9): 1(D)]-
= ('@3: DLI(Ds))) (D2: DL LIL(D)):
[I(@s): I(‘b'.‘)]r[[(@z)l I('@l)]r
= ('@a " @2)r(®: “ '@1)r
(b) From 9,C 9.LI(9:))C ., we have
(21| H0)r = LI | D).
= (©:<I(©3)> @1<I(&3)>) [I("‘Da): I(@l)]r
= (9,2 DI [I(Dy): I(9D)], [1(D2): I(D)],
= (D, | ©)-[I(Ds): T(D2)], < oo
This means [I(Ds): I1(9:)]. =1, and whence I(9:) =I1(9,). Then
(9.: O.KI(D0) = (o, " @1)7’/[1(@2): I1(9)]-
= (D | 0./ [1(D2): 1(D)],
= (Ds: @1<I(®3)>) < oo,
Hence 9, = 9s.
Now, we shall prove the following

Theorem 1. Let B, B, be division subrings of A such that B,C By,
and let ., D, be N-groups such that ©,C ;. Then

(a) [B:: Bi], = (@(B,) “ @(Bz))r (If ](®(Bl)) =B, then the
equality holds.),

(b) @100, =U®): JO))  Uf 8U(D)) =91 then the
equality holds.),
provided we do not distingnish between two infinite cardinal numbers.

Proof. (a, =) Weset Vi =V (B, (: =1, 2). Then

[B:: Bl = (S(B) | By : VD) [V Valr (Lemma 1 (a))

= (&XB)): B(B) V) V1:Vals (Lemma 2)
= (®(Bl) " &(B.)): .

(b, >) In case (9; | 1), = oo, our assertion is trivial. Hence we
may suppose that (. || .), <. Weset D, = J(£) (i=1, 2), and E=
](©1<I('@2)>) Then

[E: DI < (D22 H:.T(B:)) (Coro. 1)
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and
[D:: E] = [(O<KI(D:> | D) A,: Ad: (Lemma 1 (b))
= [((I(®2)> I D.\)Ar: Ar]r
= [(I(D.):| DDA, A],
<LI(2): 1], (Note D, V.(K©).
Therefore

(Dy:D:).=[D:: E]J,LE: D,],
< (D) : I(D) (D22 ©:KT(D)D) = (£ ]| D1)»e

(The equalities of a, b) By the above inequalities, we have
[B:: B, = (S(B) | §(By)), (a, 2)
= [J(&(By): J(&(B))] (b, 2).

Clearly J(®(B.)) D B,. Hence, if J(®&(B,)) = B, then the equalities hold
for all. Simialrly, if &(J(91) = D\ then (D; || D1),=[J(9)): J(9)].. This
completes the proof.

As a simple corollary of Th. 2 (b), we obtain the following

Corollary 2. Let ©, be a T-group. If 9.is an N-group containing O
such that 1(£.) is finite over its center, then (D, | ©:) = [J(D1): J(D2],
provided we do not distinguish between two infinite cardinal numbers.

Theorem 2. Let D, be a T-group. If O, is an N-group containing 9,
such that the right (or left) reduced index of ©,in 9. is finite, then $,is
a T-group.

Proof. By Th. 1, we have oo > (D D), = [J(9): J(9)].,=
(S(J(D) | BTN = (B(J(£2)) | D). Clearly G(J(£:))D9.. Hence, by
Lemma 3(b), we obtain 9, =&(J ().

Remark 1. Let B, be a division subring of A such that 4/B, is Galois
(i.e., J(&(B))=B,). If B, is a subring of A containing B, which is left
(or right) finite over B,, then B, is a division ring, and by Th. 1,

"00>[B;: Bi]i=(8(B) | B(Bw), =[J(B(B,): J@&BN].=[J(G&(B)): B.]..
Clearly J(®(B,))DB;. Hence J(&(B,))=B,, thatis, A/B,is Galois. This
is the result of [6, Th. 1].

By Th. 2 and Remark 1, we obtain the following

Theorem 3. Let ©, be a T-group, and D, an N-group containing O,
isuch that the right (or left) reduced index of ©, in 9, is finite. Then there
exists @ 1—1 dual correspondence between intermediate N-groups of 9./
and intermediate rings of J(D0)/J(£.), in the following sense:

' = 6G(B) «— B' = J (D).
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Remark 2. In case O, ={1}, the result of Th., 3 is the Fundamental
Theorem of finite Galois theory of division rings ([1]).

Finally, we shall present an example which implies that in Th. 2,
the assuption (9, || 1), << o= plays important roles.

Example. As in [5, Example 4 (a)], we consider a dlvision ring
K = lim (Tt @' M) @¢ My Qe -+ @ M

, where {M,} is a (countably) infinite number of normal extensions over
the rational number field @ of which the degrees are prime to each other,
and K, =2Ye7a'M, is a central division algebra over @ such that ¢"=ce&
Q, M{a)=M,, and n is odd. Clearly K/Q is locally finite, A-Galois, and
the Golois group is locally compact in finite topology ([3 and 7]). If "=
¢<<0 then (—a)" = —c¢>0. Hence we may suppose ¢” =c¢>0. Then, for
every natural number m, we have

(e+1)" = EOSiSm(:") ad & Q.

Hence, for every non-zero integer x, we obtain (¢ + 1)* & @, so that {a +
1| Ko 1. If we set M=1im M Qg -+ Q¢ M, then K = K, X M. Since

[M,: @]'s are prime to each other, we can easily find some automorphism
o of M/Q of which the order is infinite. We set :=<a+1)® ¢, and H will
be the cyclic group generated by =. If ¢ is an element of the closure of ©
in finite topology, then there exists some integer ¢ such that 6| K, =<'| K,
and so, ¢| K,=<a+1)'| K,. Moreover, for any intermediate subring K. of
K/ K, which is finite over @, we have /| K,=:"|K, and so, ¢|K,=
{a+1>Y| K,. Since {a-+1>"| K,*1 for every non-zero integer x, we obtain
t=t'. This implies that § = -*€ , Hence ® is closed. Clearly <1 (D)) =
{1}, and so, © is an N-group. For an open subgroup &(K,) of &(Q), we
have D YG(K,) = {1}. Since (D || {1}) = o, it follows from [3, Coro. 5]
that © is not a T-group. Clearly 9 contains only one 7T-group {1}.
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Added in proof : Our lemma 1 is still true for the replacement of
a division subring D of A by a subring D of A. Hence in Th. 1(a), a
division subring B, of A may be replaced by a subring B, of A.



