ON N-GROUPS OF AUTOMORPHISMS IN DIVISION RINGS

TAKASI NAGAHARA

Throughout the present paper, A will be a division ring, and \mathfrak{G} the group of all automorphisms of A. For any element a of A, we denote by a_i (resp. a_r) the left (resp. right) multiplication determined by a_r , and for any non-zero element a of A, we denote by $\langle a \rangle$ the inner automorphism $a_l \cdot a_r^{-1}$ of A. Moreover, for any subset E of A and for any subset \mathfrak{S} of \mathfrak{S} , we shall use the following conventions: E_i (resp. E_r)=the set of left (resp. right) multiplications determined by elements of E; $\langle E \rangle$ = the set of inner automorphisms determined by non-zero elements of E; $V_{A}(E)$ = the centralizer of E in A; $\mathfrak{G}(E)$ = the set of E-ring automorphisms of A; $I(\mathfrak{S})$ = the subring of A generated by all the non-zero elements inducing inner automorphisms belonging to \mathfrak{S} ; $J(\mathfrak{S}) =$ the set of \mathfrak{S} -invariant elements of $A: V(\mathfrak{S}) = V_{\mathcal{A}}(I(\mathfrak{S}))$. Let \mathfrak{H} be a subgroup of \mathfrak{G} . If $\langle I(\mathfrak{H}) \rangle \subset \mathfrak{H}$ then $I(\mathfrak{H})$ is a division ring, and δ will be called an N-group (cf. [1, Def. VI. 8. 2]). Moreover, if $\mathfrak{G}(J(\mathfrak{H})) = \mathfrak{H}$ then \mathfrak{H} will be called a *T-group*. Clearly a *T-group*. group is an N-group. In general, for any subset E of A, $\mathfrak{G}(E)$ is a T-group, and so, an N-group. If $\mathfrak D$ is an N-group of finite reduced order (cf. [1, Def. VI. 10. 1]) then δ is a T-group as is well known in finite Galois theory.

In this paper, the main theme of our discussion will concern the relation of N-groups to T-groups, which contains a characterization of T-groups. Moreover, for N-groups, we shall present a generalization of the notion of reduced orders, which plays impiortant rôles in our study. This will be given later under the calling of reduced indices.

For a subset E of A and for a subset \mathfrak{S} of \mathfrak{S} , we denote by $\mathfrak{S}|E$ the restriction of \mathfrak{S} to E; if, for a subgroup \mathfrak{S} of \mathfrak{S} and for σ , $\tau \in \mathfrak{S}$, $\sigma | E = (\tau | E) \hat{\sigma}$ (: $E \xrightarrow{\tau} A \xrightarrow{\delta} A$) for some $\hat{\sigma}$ in \mathfrak{S} , then we write $\sigma | E \sim \tau | E$ (mod \mathfrak{S}). Evidently, the relation \sim is an equivalence relation in $\mathfrak{S}|E$, and the cardinal number of the equivalence classess w.r.t. \sim is denoted as $(\mathfrak{S}|E:\mathfrak{S})$. For any subgroups \mathfrak{S}_1 , \mathfrak{S}_2 of \mathfrak{S} such that $\mathfrak{S}_1 \subset \mathfrak{S}_2$, we denote by $(\mathfrak{S}_2:\mathfrak{S}_1)$ the index of \mathfrak{S}_1 in \mathfrak{S}_2 . For a division ring D and for a left (resp. right) D-module M, we denote by $[M:D]_t$ (resp. $[M:D]_r$) the left (resp. right) dimension of M. In case $[M:D]_t = [M:D]_r$ they are denoted by [M:D]. As to other notations and terminologies used in this paper, we follow [4].

Throughout the rest of this paper, \mathfrak{D}_1 , \mathfrak{D}_2 , etc. will be subgroups of \mathfrak{B} . Now we shall begin our study with the following lemma which is

a direct consequence of [7, Lemmas 1.3—1.5] and [1, Density theorem for irreducible modules, p. 31].

Lemma 1. Let D be a division subring of A. Then

- (a) if D' is a division subring of D then $[D: D']_{i} \geq [(\mathfrak{G}(D')|D)A_{r}: A_{r}]_{r}$ $= (\mathfrak{G}(D')|D: \langle V_{A}(D')\rangle)[V_{A}(D'): V_{A}(D)]_{r},$
- (b) if \mathfrak{D} is a group such that $J(\mathfrak{D}) \subset D$ then $[D: J(\mathfrak{D})]_l = [(\mathfrak{D}|D)A_r: A_r]_r$,

provided we do not distinguish between two infinite dimensions.

Corollary 1. If $\mathfrak{F}_1 \subset \mathfrak{F}_2$ and $(\mathfrak{F}_2: \mathfrak{F}_1) < \infty$ then $[J(\mathfrak{F}_1): J(\mathfrak{F}_2)] \leq (\mathfrak{F}_2: \mathfrak{F}_1)$. Proof. We set $B_i = J(\mathfrak{F}_i)$ (i = 1, 2), and $\mathfrak{F}_2 = \mathfrak{F}_1 \sigma_1 \cup \cdots \cup \mathfrak{F}_1 \sigma_n$, where $n = (\mathfrak{F}_2: \mathfrak{F}_1)$. Then, by Lemma 1 (b), we have $[B_1: B_2]_i = [(\mathfrak{F}_2 | B_1) A_r : A_r]_r \leq n = (\mathfrak{F}_2: \mathfrak{F}_1)$. For a finite subset E of B_1 which generates B_1 over B_2 , we set $B' = J(\mathfrak{G}(E \mathfrak{F}_2) \cap \mathfrak{F}_2)$. Then B' is a division subring of A containing B_1 . Since $\mathfrak{G}(E \mathfrak{F}_2) \cap \mathfrak{F}_2$ is a normal subgroup of \mathfrak{F}_2 which is of finite index in \mathfrak{F}_2 , $\mathfrak{F}_2 | B'$ is a finite group of automorphisms in B' such that the set of $(\mathfrak{F}_2 | B')$ -invariant elements of B' is B_2 . If we take B' instead of A, then by Lemma 1, we obtain $\infty > [B': B_2]_i > [V_{B'}(B_2): V_{B'}(B')] > [V_{B'}(B_2): V_{B'}(B_1)]$, and whence $[B_1: B_2]_i = [(\mathfrak{G}(B_2, B') | B_1) A_r : A_r]_r = (\mathfrak{G}(B_2, B') | B_1: \langle V_{B'}(B_2) \rangle) \cdot [V_{B'}(B_2): V_{B'}(B_1)] = [B_1: B_2]_r$, where $\mathfrak{G}(B_2, B')$ is the group of all B_2 -ring automorphisms in B'.

Lemma 2. Let S be a subset of A, $\mathfrak{S} = \mathfrak{G}(S)$, and $\mathfrak{S} \subset \mathfrak{P}$. If \mathfrak{N} is a normal subgroup of \mathfrak{P} then $(\mathfrak{P}|S:\mathfrak{N})=(\mathfrak{P}:\mathfrak{S}\mathfrak{N})$.

Proof. Let σ , $\tau \in \mathfrak{D}$. Since $\mathfrak{M}\sigma = \mathfrak{S}\sigma\mathfrak{N}$, we have $\mathfrak{S}\mathfrak{M}\sigma|S = \mathfrak{S}\sigma\mathfrak{N}|S = (\sigma|S)\mathfrak{N}$. Hence, if $\mathfrak{S}\mathfrak{M}\sigma = \mathfrak{S}\mathfrak{M}\tau$ then $(\sigma|S)\mathfrak{N} = \mathfrak{S}\mathfrak{M}\sigma|S = \mathfrak{S}\mathfrak{M}\tau|S = (\tau|S)\mathfrak{N}$. This implies $\sigma|S \sim \tau|S \pmod{\mathfrak{N}}$, Next, suppose $\sigma|S \sim \tau|S \pmod{\mathfrak{N}}$. Then $\sigma|S = (\tau|S)\delta$ for some $\delta \in \mathfrak{N}$, and this is equal to $\tau\delta|S$. Hence there exists an element $\varepsilon \in \mathfrak{S}(S) = \mathfrak{S}$ such that $\sigma = \varepsilon(\tau\delta) = \varepsilon(\tau\delta\tau^{-1})\tau$ and $\varepsilon(\tau\delta\tau^{-1}) \in \mathfrak{S}\mathfrak{N}$. Thus we obtain $\mathfrak{S}\mathfrak{N}\sigma = \mathfrak{S}\mathfrak{N}\tau$. We have therefore proved that $(\mathfrak{D}:\mathfrak{S}\mathfrak{N}) = (\mathfrak{D}|S:\mathfrak{N})$.

Definition. For N-groups \mathfrak{D}_1 , \mathfrak{D}_2 such that $\mathfrak{D}_1 \subset \mathfrak{D}_2$, we denote by $(\mathfrak{D}_2 \parallel \mathfrak{D}_1)_r$ (resp. $(\mathfrak{D}_2 \parallel \mathfrak{D}_1)_t$) the product $(\mathfrak{D}_2 \colon \mathfrak{D}_1 \langle I(\mathfrak{D}_2) \rangle)[I(\mathfrak{D}_2) \colon I(\mathfrak{D}_1)]_r$ (resp. $(\mathfrak{D}_2 \colon \mathfrak{D}_1 \langle I(\mathfrak{D}_2) \rangle)[I(\mathfrak{D}_2) \colon I(\mathfrak{D}_1)]_t$), which is called the *right* (resp. *left*) *reduced* index of \mathfrak{D}_1 in \mathfrak{D}_2 . In case $(\mathfrak{D}_2 \parallel \mathfrak{D}_1)_r = (\mathfrak{D}_2 \parallel \mathfrak{D}_1)_t$ they are denoted by $(\mathfrak{D}_2 \parallel \mathfrak{D}_1)$.

Clearly $(\mathfrak{H}_2 \parallel \{1\})$ is the reduced order of \mathfrak{H}_2 , which has been introduced in [1]. If $I(\mathfrak{H}_2)$ is finite over its center then $[I(\mathfrak{H}_2): I(\mathfrak{H}_1)]_r =$

 $[I(\mathfrak{H}_2): I(\mathfrak{H}_1)]_l$ (cf. [1, Prop. VII. 1. 3]), and whence, in this case, we have $(\mathfrak{H}_2 \parallel \mathfrak{H}_1)_r = (\mathfrak{H}_2 \parallel \mathfrak{H}_1)_l$.

For reducd indices, we shall prove the following

Lemma 3. Let \mathfrak{H}_1 , \mathfrak{H}_2 , \mathfrak{H}_3 be N-groups such that $\mathfrak{H}_1 \subset \mathfrak{H}_2 \subset \mathfrak{H}_3$. Then

- (a) $(\mathfrak{H}_3 \parallel \mathfrak{H}_1)_r = (\mathfrak{H}_3 \parallel \mathfrak{H}_2)_r (\mathfrak{H}_2 \parallel \mathfrak{H}_1)_r$.
- (b) If $(\mathfrak{H}_2 \parallel \mathfrak{H}_1)_r = (\mathfrak{H}_3 \parallel \mathfrak{H}_1)_r < \infty$ then $\mathfrak{H}_2 = \mathfrak{H}_3$.

Proof. (a) Since $\langle I(\mathfrak{H}_3) \rangle$ is a normal subgroup of \mathfrak{H}_3 and $\langle I(\mathfrak{H}_3) \rangle \cap \mathfrak{H}_2 = \langle I(\mathfrak{H}_2) \rangle$, we have

$$\begin{split} (\mathfrak{S}_{3} \parallel \mathfrak{D}_{1})_{r} &= (\mathfrak{D}_{3} \colon \mathfrak{D}_{1} \langle I(\mathfrak{D}_{3}) \rangle) [I(\mathfrak{D}_{3}) \colon I(\mathfrak{D}_{1})]_{r} \\ &= (\mathfrak{D}_{3} \colon \mathfrak{D}_{2} \langle I(\mathfrak{D}_{3}) \rangle) (\mathfrak{D}_{2} \langle I(\mathfrak{D}_{3}) \rangle \colon \mathfrak{D}_{1} \langle I(\mathfrak{D}_{3}) \rangle) [J(\mathfrak{D}_{3}) \colon I(\mathfrak{D}_{1})]_{r} \\ &= (\mathfrak{D}_{3} \colon \mathfrak{D}_{2} \langle I(\mathfrak{D}_{3}) \rangle) (\mathfrak{D}_{2} \colon \mathfrak{D}_{1} \langle I(\mathfrak{D}_{2}) \rangle) \cdot \\ &= [I(\mathfrak{D}_{3}) \colon I(\mathfrak{D}_{2})]_{r} [I(\mathfrak{D}_{2}) \colon I(\mathfrak{D}_{1})]_{r} \\ &= (\mathfrak{D}_{3} \parallel \mathfrak{D}_{2})_{r} (\mathfrak{D}_{2} \parallel \mathfrak{D}_{1})_{r} \end{split}$$

(b) From $\mathfrak{D}_2 \subset \mathfrak{D}_2 \langle I(\mathfrak{D}_3) \rangle \subset \mathfrak{D}_2$, we have

$$\begin{split} (\mathfrak{H}_{2} \parallel \mathfrak{H}_{1})_{r} &= (\mathfrak{H}_{2} \langle I(\mathfrak{H}_{3}) \rangle \parallel \mathfrak{H}_{1})_{r} \\ &= (\mathfrak{H}_{2} \langle I(\mathfrak{H}_{3}) \rangle \colon \mathfrak{H}_{1} \langle I(\mathfrak{H}_{3}) \rangle) \left[I(\mathfrak{H}_{3}) \colon I(\mathfrak{H}_{1}) \right]_{r} \\ &= (\mathfrak{H}_{2} \colon \mathfrak{H}_{1} \langle I(\mathfrak{H}_{2}) \rangle) \left[I(\mathfrak{H}_{3}) \colon I(\mathfrak{H}_{2}) \right]_{r} \left[I(\mathfrak{H}_{2}) \colon I(\mathfrak{H}_{1}) \right]_{r} \\ &= (\mathfrak{H}_{2} \parallel \mathfrak{H}_{1})_{r} \left[I(\mathfrak{H}_{3}) \colon I(\mathfrak{H}_{2}) \right]_{r} < \infty. \end{split}$$

This means $[I(\mathfrak{P}_3): I(\mathfrak{P}_2)]_r = 1$, and whence $I(\mathfrak{P}_3) = I(\mathfrak{P}_2)$. Then

$$\begin{split} (\mathfrak{P}_2: \ \mathfrak{P}_1 \langle I(\mathfrak{P}_2) \rangle) &= (\mathfrak{P}_2 \parallel \mathfrak{P}_1)_r / [I(\mathfrak{P}_2): I(\mathfrak{P}_1)]_r \\ &= (\mathfrak{P}_3 \parallel \mathfrak{P}_1)_r / [I(\mathfrak{P}_3): I(\mathfrak{P}_1)]_r \\ &= (\mathfrak{P}_3: \mathfrak{P}_1 \langle I(\mathfrak{P}_3) \rangle) < \infty. \end{split}$$

Hence $\mathfrak{H}_2 = \mathfrak{H}_3$.

Now, we shall prove the following

Theorem 1. Let B_1 , B_2 be division subrings of A such that $B_1 \subset B_2$, and let \mathfrak{P}_1 , \mathfrak{P}_2 be N-groups such that $\mathfrak{P}_1 \subset \mathfrak{P}_2$. Then

- (a) $[B_2: B_1]_t \geqslant (\Im(B_1) \| \Im(B_2))_r$ (If $J(\Im(B_1)) = B_1$ then the equality holds.),
- (b) $(\mathfrak{D}_2 \parallel \mathfrak{D}_1)_r \geqslant [J(\mathfrak{D}_1): J(\mathfrak{D}_2)]_1$ (If $\mathfrak{G}(J(\mathfrak{D}_1)) = \mathfrak{D}_1$ then the equality holds.),

provided we do not distingnish between two infinite cardinal numbers.

Proof. (a,
$$\geqslant$$
) We set $V_i = V_A(B_i)$ ($i = 1, 2$). Then
$$[B_2: B_1]_i \geqslant (\Im(B_1) | B_2: \langle V_1 \rangle) [V_1: V_2]_r \qquad \text{(Lemma 1 (a))}$$

$$= (\Im(B_1): \Im(B_2) \langle V_1 \rangle) [V_1: V_2]_r \qquad \text{(Lemma 2)}$$

$$= (\Im(B_1) | \Im(B_2)|_r.$$

(b, \geqslant) In case $(\mathfrak{F}_2 \parallel \mathfrak{F}_1)_r = \infty$, our assertion is trivial. Hence we may suppose that $(\mathfrak{F}_2 \parallel \mathfrak{F}_1)_r < \infty$. We set $D_i = J(\mathfrak{F}_i)$ (i = 1, 2), and $E = J(\mathfrak{F}_1 \langle I(\mathfrak{F}_2) \rangle)$. Then

$$[E: D_2] \leqslant (\mathfrak{H}_2: \mathfrak{H}_1 \langle I(\mathfrak{H}_2) \rangle)$$
 (Coro. 1)

and

$$[D_1: E]_l = [(\mathfrak{D}_1 \langle I(\mathfrak{D}_2) \rangle | D_1) A_r : A_r]_r \qquad (Lemma 1 (b))$$

$$= [(\langle I(\mathfrak{D}_2) \rangle | D_1) A_r : A_r]_r$$

$$= [(I(\mathfrak{D}_2)_l | D_1) A_r : A_r]_r$$

$$\leq [I(\mathfrak{D}_2) : I(\mathfrak{D}_1)]_r \qquad (Note D_1 \subset V_A(I(\mathfrak{D}_1))).$$

Therefore

$$\begin{split} [D_1:D_2]_{\iota} &= [D_1:E]_{\iota}[E:D_2]_{\iota} \\ &\leqslant [I(\mathfrak{D}_2):I(\mathfrak{D}_1)]_{r}(\mathfrak{D}_2:\mathfrak{D}_1\langle I(\mathfrak{D}_2)\rangle) = (\mathfrak{D}_2 \parallel \mathfrak{D}_1)_{r}. \end{split}$$
 (The equalities of a, b) By the above inequalities, we have
$$[B_2:B_1]_{\iota} \geqslant (\mathfrak{G}(B_1) \parallel \mathfrak{G}(B_2))_{r} \qquad (a, \geqslant) \\ \geqslant [J(\mathfrak{G}(B_2)):J(\mathfrak{G}(B_1))]_{\iota} \qquad (b, \geqslant). \end{split}$$

Clearly $J(\mathfrak{G}(B_2)) \supset B_2$. Hence, if $J(\mathfrak{G}(B_1)) = B_1$ then the equalities hold for all. Similarly, if $\mathfrak{G}(J(\mathfrak{P}_1)) = \mathfrak{P}_1$ then $(\mathfrak{P}_2 \parallel \mathfrak{P}_1)_r = [J(\mathfrak{P}_1): J(\mathfrak{P}_2)]_i$. This completes the proof.

As a simple corollary of Th. 2 (b), we obtain the following

Corollary 2. Let \mathfrak{D}_1 be a T-group. If \mathfrak{D}_2 is an N-group containing \mathfrak{D}_1 such that $I(\mathfrak{D}_2)$ is finite over its center, then $(\mathfrak{D}_2 \parallel \mathfrak{D}_1) = [J(\mathfrak{D}_1): J(\mathfrak{D}_2)]$, provided we do not distinguish between two infinite cardinal numbers.

Theorem 2. Let \mathfrak{D}_1 be a T-group. If \mathfrak{D}_2 is an N-group containing \mathfrak{D}_1 such that the right (or left) reduced index of \mathfrak{D}_1 in \mathfrak{D}_2 is finite, then \mathfrak{D}_2 is a T-group.

Proof. By Th. 1, we have $\infty > (\mathfrak{H}_2 \parallel \mathfrak{H}_1)_r = [J(\mathfrak{H}_1): J(\mathfrak{H}_2)]_t = (\mathfrak{G}(J(\mathfrak{H}_2)) \parallel \mathfrak{G}(J(\mathfrak{H}_1)))_r = (\mathfrak{G}(J(\mathfrak{H}_2)) \parallel \mathfrak{H}_1)_r$. Clearly $\mathfrak{G}(J(\mathfrak{H}_2)) \supset \mathfrak{H}_2$. Hence, by Lemma 3(b), we obtain $\mathfrak{H}_2 = \mathfrak{G}(J(\mathfrak{H}_2))$.

Remark 1. Let B_1 be a division subring of A such that A/B_1 is Galois (i. e., $J(\mathfrak{G}(B_1)) = B_1$). If B_2 is a subring of A containing B_1 which is left (or right) finite over B_1 , then B_2 is a division ring, and by Th. 1, $\infty > [B_2 : B_1]_i = (\mathfrak{G}(B_1) \parallel \mathfrak{G}(B_2))_r = [J(\mathfrak{G}(B_2)) : J(\mathfrak{G}(B_1))]_i = [J(\mathfrak{G}(B_2)) : B_1]_i$. Clearly $J(\mathfrak{G}(B_2)) \supset B_2$. Hence $J(\mathfrak{G}(B_2)) = B_2$, that is, A/B_2 is Galois. This is the result of [6, Th. 1].

By Th. 2 and Remark 1, we obtain the following

Theorem 3. Let \mathfrak{D}_1 be a T-group, and \mathfrak{D}_2 an N-group containing \mathfrak{D}_1 such that the right (or left) reduced index of \mathfrak{D}_1 in \mathfrak{D}_2 is finite. Then there exists a 1-1 dual correspondence between intermediate N-groups of $\mathfrak{D}_2/\mathfrak{D}_1$ and intermediate rings of $J(\mathfrak{D}_1)/J(\mathfrak{D}_2)$, in the following sense:

$$\mathfrak{H}' = \mathfrak{G}(B') \longleftrightarrow B' = I(\mathfrak{H}').$$

Remark 2. In case $\mathfrak{H}_1 = \{1\}$, the result of Th. 3 is the Fundamental Theorem of finite Galois theory of division rings ([1]).

Finally, we shall present an example which implies that in Th. 2, the assuption $(\mathfrak{S}_2 \parallel \mathfrak{S}_1)_r < \infty$ plays important roles.

Example. As in [5, Example 4 (a)], we consider a division ring

$$K = \lim_{\stackrel{\longrightarrow}{s}} (\sum_{\oplus_1} a^i M_0) \bigotimes_Q M_1 \bigotimes_Q \cdots \bigotimes_Q M_s$$

, where $\{M_s\}$ is a (countably) infinite number of normal extensions over the rational number field Q of which the degrees are prime to each other, and $K_0 = \sum_{\oplus_i} a^i M_0$ is a central division algebra over Q such that $a^n = c \in Q$, $M_0 \langle a \rangle = M_0$, and n is odd. Clearly K/Q is locally finite, h-Galois, and the Golois group is locally compact in finite topology ([3 and 7]). If $a^n = c < 0$ then $(-a)^n = -c > 0$. Hence we may suppose $a^n = c > 0$. Then, for every natural number m, we have

$$(a+1)^m = \sum_{0 \le i \le m} \binom{m}{i} a^i \notin Q.$$

Hence, for every non-zero integer x, we obtain $(a+1)^x \not\in Q$, so that $\langle a+1\rangle^x | K_0 \rightleftharpoons 1$. If we set $M=\lim_{\longrightarrow} M_1 \bigotimes_Q \cdots \bigotimes_Q M_r$ then $K=K_0 \bigotimes_Q M$. Since $[M_i:Q]$'s are prime to each other, we can easily find some automorphism σ of M/Q of which the order is infinite. We set $\tau=\langle a+1\rangle \bigotimes_{\sigma}$, and $\mathfrak P$ will be the cyclic group generated by τ . If $\mathfrak P$ is an element of the closure of $\mathfrak P$ in finite topology, then there exists some integer t such that $\mathfrak P$ $|K_0=\tau^t|K_0$, and so, $\mathfrak P$ $|K_0=\langle a+1\rangle^t|K_0$. Moreover, for any intermediate subring K_i of K/K_0 which is finite over Q, we have $\mathfrak P$ $|K_0=\tau^t|K_0$ and so, $\mathfrak P$ $|K_0=\langle a+1\rangle^t|K_0$. Since $\langle a+1\rangle^x|K_0\rightleftharpoons 1$ for every non-zero integer x, we obtain t=t'. This implies that $\mathfrak P$ $|K_0=\tau^t|K_0$ is closed. Clearly $\langle I(\mathfrak P)\rangle=\{1\}$, and so, $\mathfrak P$ is an N-group. For an open subgroup $\mathfrak P$ (K_0) of $\mathfrak P$ (Q), we have $\mathfrak P$ (K_0) (K_0) (K_0) (K_0) (K_0) of (K_0)

REFERENCES

- [1] N. JACOBSON: Structure of rings, Providence (1956).
- [2] G. Köthe: Schiefkörper unendlichen Ranges über dem Zentrum, Math. Ann., 105 (1931), 14—39.
- [3] T. NAGAHARA: On Galois conditions and Galois groups of simple rings, Trans. Amer. Math. Soc., 116 (1965), 417—434.
- [4] T. NAGAHARA: Quasi-Galois extensions of simple rings, Math. J. Okayama Univ., 12 (1966), 107—146.
- [5] T. NAGAHARA and H. TOMINAGA: On Galois theory of division rings, Math. J. Okayama Univ., 6 (1956), 1—21.
- [6] T. NAGAHARA and H. TOMINAGA: Some remarks on Galois extensions of division rings.

Math. J. Okayama Univ., 9 (1959), 5—8.
[7] T. NAGAHARA and H. TOMINAGA: On Galois theory of simple rings, Math. J. Okayama Univ., 11 (1963), 79—117.

DEPARTMENT of MATHEMATICS, OKAYAMA UNIVERSITY

(Received September 21, 1967)

Added in proof: Our lemma 1 is still true for the replacement of a division subring D of A by a subring D of A. Hence in Th. 1 (a), a division subring B_2 of A may be replaced by a subring B_2 of A.