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Introduction. In his paper [4], H. Tominaga has given a necessary
and sufficient condition that every ideal in a (non-commutative) ring be
represented as the intersection of a finite number of s-right and s- left
primary ideals". It is the purpose of this paper to present a condition that
every ideal in a ring be represented as a finite intersection of s-right
primary ideals. After several definitions (§ 1), we shall prove in §2 the
uniqueness theorem for s-right primary representations: in any two s-right
primary short representations of an ideal, the number of s-right primary
components are the same and their radicals coincide in some order. In §3,
we shall give a necessary and sufficient condition that every ideal have
a representation as a finite intersection of s-right primary ideals, which is
analogous to that in [4]. In case the maximum condition is satisfied for
ideals, the first half of our condition can be excluded (§4).

1. Definitions. Let R be a (non-commutative) ring. The term ‘“ideal”
in R will always mean “two-sided ideal”.

Definition 1. A and B are ideals in R, the ideal consisting of all ele-
ments x of R such that xRB C A is called the right ideal quotient of A by
B and is denoted by AB~'. Similary, B4 consists of all ¥ in R such that
BRx C A.

The following properties of quotients are verified :
(1) (AB™HC* = A(CRB)™,
2) (NA)B™? = NAB™,

(3) ACIB.)™ = NAB;", where A, B, C, A. and B, are ideals in R.

Definition 2. An element @ is right non-prime to an ideal A if there
exists an element & not in A such that 6Re C A. An ideal B is right non-
prime to A if AB™'D A.

For positive integers # we define inductively AB ™= (AB~"-Y)B-!, If
AB*=AB **? for some positive integer k then we say that AB~*is the
right limit ideal of A by B. The left limit ideal B-*A can be defined in
the same way. Anideal P in R is prime if ABC P implies that either AC P
or BC P, where A and B are ideals in R. It has been shown by McCoy
[2] that an ideal P is prime if and only if aRb C P(a, b = R) implies that

1) “s-right primary” means “strongly right primary”.
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either @ or b belongs to P. The radical of an ideal A is understood in the
sense of McCoy [2] and denoted by r(A). It has been shown by McCoy
[2] that »(A) is the intersection of all minimal prime divisors of A.

Definition 3. An ideal @ is said to be right primary if aRb C @ and
a & Q imply b= 7(Q), and a right primary ideal @ is defined to be s-right
primary if r(Q) is nilpotent modulo Q.

One will easily see that an ideal @ is s-right primary if and only if it
is s-right primary in Tominaga’s sense, and so the radical of an s-right
primary ideal is prime by Theorem 1 of [4].

Definition 4. If a prime ideal P is the radical of an s-right primary
ideal @, we say that @ belongs to P and also that @ is P-s-right primary.
A prime ideal P is called a prime ideal associated with an ideal A if there
exists an s-right primary ideal @ belonging to P such that @ = B'A for
some ideal B not contained in A.

2. Uniqueuess theorem for s-right primary representations.

A representation A=Q,MQ\-MQ, of an ideal A as the intersection
of s-right primary ideals @,, @, -+, @, will be called irredundant if no
one of the @, contains the intersection of the remaining ones.

Theorem 1. Let A=Q,NQ-MN-NK, be an irredundant representa-
tion of ACR, where Q, is Pis-right primary 1<<i<<n). Then an ele-
ment x is vight non-prime to A if and only if x E P; for some j, namely,
X P1UP2U "'UPn-

Proof. 1If x is right non-prime to A then bRx & A for some b not in
A. But this implies 6RxC @, (1<<i<<n), while b Q, for some j. Since Q;
is Pys-right primary, we obtain x € P,, Conversely, suppose that x is in
P,. Since the representation A =Q,N Q.MM Q, is irredundant, we can
choose an element b which is contained in @.MN\ -/ Q. but not in @,
Noting that (R P,)*C @, for some k, we have then b(R P,)*C A. Accordingly,
there exists the least positive integer %, such that 6 (RP)4C A. If k=1
then bRP,C A. Hence bRxC A. Thus, « is right non-prime to 4. If £, >1
then the product &(RP,)1' contains an element b, not in A, Since s, RxC
A, xis right non-prime to A.

Lemma 1. If Q,, Q. *, Q. are P-s-right primary ideals then Q=
QiNQ:N\ MK, is also a P-s-right primary ideal.

Proof. Let k, be the nilpotency index of P modulo Q,(1<<i<<n).
Then, Ph*"*» C Q. If P, is any prime divisor of @, we have P17 "% C
P,, whence it follows PC P,. Hence, P is a unique minimal prime divisor
of Q and therefore P=r(Q). Moreover, if aRbC Q and a & Q then aRbC
Q.(1<<i<n), while a £ Q, for some j. Since @, is P-s-right primary, this
implies that b P=r(Q,). Hence, @ is P-s-right primary.
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By the same argument as in Theorem 14 of [3] we have

Lemma 2. If A=Q NQ:N\--NQ, is an irredundant representation
of A, where Q. is Py-s-right-primary 1<<i<n) and P;5= P, for some j5=k,
then A is not s-right primary.

Definition 5. An irredundant representation A=Q, N\ Q.M ---Q,, will
be called a short representation if none of the intersections of two or more
of the ideals @,, @, ***, @. are s-right primary.

In view of Lemmas 1 and 2, an irredundant representation A=, M
Q:N\+-MN\Q, is a short representation if and only if any two of the radicals
of @, @, -+, @, are distinct.

Let M be a non-empty m-system in R. For any ideal A in R the right
upper and lower isolated M-components of A (in the sense of [3]) will be
denoted by U(A, M) and L(A, M), respectively. If P is a prime ideal
(= R) and M= C(P) is its complement in R then U(A, M) will be denoted
by U(A, P).

Theorem 2. Let A=Q:MNQ:MN"MQ, be an irredundant representa-
tion of A, where Q, is Pys-right primary 1<<i<<n). If M(CTR)is a non-
empty m-system which does not meet P, -, P, but meets P,,,, **, P, then
U(A, M)=L(A, M)=QNQNNQ,. If M meets every P, then
UAM)=L(A, M)=R.

Proof. By the same argument as in Theorem 15 of [3], we can easily
see that if M does not meet P;, ---, P, but meets P,,, -, P, then U(A, M)
= QN QN+ M, and that if M meets every P, then U(A, M)=R.

We assume first that M does not meet P,, --+, P, but meets P,.,, -,
P,. Let b be an element of L(A, M). Then we have 6Rm C A for some
meEM and thus bRmC Q,(1<<i<<r). However, m is not in any P,(1<<i<<7).
Hence b= Q,(1<<i<<r) and thus L(4, M)CT QNN - MNQ,. We shall
prove now the converse inclusion. If r = n then this is trivial by AC
L(A, M). Incase r<n, since M meets P, for >, it follows that M meets
Q; for j>r. Hence there exist m,, m,, *--, m,-, such that mEQ, .., M1
i<n—r). Now, since every m;, is in M, there exist x,, 43, -+, %, .,_; such
that m = m %%y X, -1 m,.—, is contained in M. Since it is clear that me
Q1N @res N M Q,, gRmC A for every element g€ @M QN N Q..
Thus ¢ is in L(A4, M).

If M meets every P; then the last part of the above proof shows that
there is an element me M such that me @, N\Q.N\--MQ.= A. Hence rRm
C A for every rER, thatis, R=L(A. M).

Theorem 3. Let A=Q,\N\Q.N MK, be an irredundant representa-
tion of A, where Q, is Pys-right primary (1<<i<<n). Then the minimal
prime divisors of A are exactly those primes which are minimal in the set
{Ph Pﬂ; Tty Pn}-
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Proof. This is immediate.

Theorem 4. Let A= @Q:MN\Q-MN+*NQ, be a short representation of
ACR, where Q, is Py-s-right primary (1<<i<n). A prime divisor P(¥R)
of A isone of P, if and only if every element of P is right non-prime to
U(A, P). The ring R is itself one of the P, if and only if every element of
R is right non-prime to A.

Proof. Let P(5~R) be a prime divisor of A. If P coincides with one
of P;, then by Theorem 2 U(A4, P) =Q:MNQ,MN--MK;_is a short represen-
tation of U(A, P), where P,, P, -, P, are those primes among { P:}
which are contained in P(and so P is maximal among them). Hence, by
Theorem 1, every element of P is right non-prime to U(A, P). Conversely,
assume that every element of P is right non-prime to U(A, P). By Theorem
3, P contains at least one of P;. Suppose that P contains P,, -+, P, but
does not contain P,,;, ***, P,. Then, again by Theorem 2, U(A, P)=
QN QN - M A, is a short representation of U(A4, P). Hence, PC P,\J
P\ J---\U P, by Theorem 1, and then by Theorem 5 of [1] there exists some
i such that PC P,, namely, P =P,. The latter assertion is also an easy
consequence of Theorem 5 of [1) and Theorem 1.

As an immediate consequence of Theorem 4, we obtain the following:

Theorem 5. Let A= QN QN NQn=0Q"NQN N Q' be two
short representations of A, where Q. is Pys-right primary and Q'; is P's
s-right primary. Then, m =n and it is possible to number the components
in such a way that P,=P', (1<i<<m =n).

Let A=0Q:NQ:N\ N, be a short representation of A, where Q, is
P;-s-right primary (1<<i<{#n). These uniquely determined prime ideals P,
P,, -, P, will be called the prime ideals belonging to A (cf. Theorem 5).
A subset {P(], Py, -, P, } of these prime ideals is called an isolated set of
prime ideals belonging to A if every P, contained in one of the primes
Py, P.z, *++, P,_is necessarily a member of the subset.

Now, by Theorem 2, one will readily obtain the following:

Theorem 6. Let A= Q,NQ.N - MNQ. be a short representation of
A, where Q, is Prs-right primary (1<i<<n). If {P{l, Py, v, P‘r} is an
isolated set of prime ideals belonging to A then Q.M @Qy,M + MNQ,
depends only on {P‘1’ Py, -, P,r} and not on the particular short re-
presentation considered.

3. A necessary and sufficient condition that every ideal be re-
presented as a finite intersection of s-right primary ideals.

Theorem 7. Let A=Q N Q:M - MN\Q, be a short representalion of
ACR, where Q. is Pyrs-right primary (1<5i<<n). If P is a minimal prime
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divisor of A then P is right non-prime to A.

Proof. By Theorem 3, we can assume that P is contained in P, --,
P.(r=1) but not contained in P,,, ***, P,. Then R=Q,P *=Q,P~%*®
for a sufficiently large positive integer k2(1<<i<C7). On the other hand, if
r+1<j<un then Q,=Q,P*=Q;P~™*? for every positive integer 2. Thus
AP*=AP *P=Q, N QraMN--MQ,. Since A=Q,NQ.N--NQ.,isa
short representation, we have AP *DA, and therefore AP™'D A.

Lemma 3. If Q is a P-s-right primary ideal then B™'Q is P-s-right
primary for any ideal BZQ.

Proof. Since BR(B'Q)C Q and BZ @, we have QCB'QC P, and
thus #(B~'Q) = P. Suppose that ¢RbC B™'Q and b & P. Then we have
BRaRbC Q. Hence, by the definition of s-right primary, BRaC @, that
is, a€B~'Q.

By the same arguments as in Theorems 4 and 6 of [4], we have the
following two theorems.

Theorem 8. Let A= Q:MNQ:MN - M Q. be a short representation of
A. Then, for any ideal B theve exists the vight limit ideal of A by B,
and the number of ideals which are obtained starting from A by repeating
successively the procedure to make right limit ideals is finite and is
uniquely determined by A.

Theorem 9. Let A= Q:MN\Q:MN\ - MNQ., be a short represeniation of
ACR, where Q;is Pr-s-vight primary (1<<i<<n). Then, a prime divisor
Pof A is a prime ideal associated with A if and only if P coincides with
one of P,, and every primary component Q1<<i<n) has the following
property : B 'A is not Py-s-right primary for any ideal B such that BC Q,
and BZ A.

Corollary 1. Let A=Q N QMM Q. be a short representation of
ACR. If P is a minimal prime divisor of A then P is a prime ideal
associated with A.

Now, we can summarize the above-mentioned results as follows:

Theorem 10. In order that every ideal in R be represented as the
intersection of a finite nnmber of s-right primary ideals, the following
conditions ave necessary :

(A) For any ideals A, B in R there exists the right limit ideal of A
by B and there exist a finite number n(A) of ideals which are obtained
starting from 4 by repeating successively the procedure to make right
Iimit ideals, where the number n(A) is uniquely determined by A.

(B) Every ideal ACR has a minimal prime divisor which is right
non-prime to A.

(C) Every minimal prime divisor of an arbitrary not s-right primary
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ideal A is a prime ideal associated with A.

(D) If Pis an arbitrary prime ideal associted with an ideal A then
there exists an s-right primary ideal Q2 A belonging to P such that B™*A
is not P-s-right primary for any subideal B of @ not contained in A.

Next, we shall show that these conditions are sufficient, too.

Lemma 4. Assume the conditions (A) and (B) in Theorem 10. If A
is an ideal of R then r(A) is nilpotent modulo A.

Proof. Let P be a minimal prime divisor of A(CR) which is right
non-prime to A. Then ACAPC Ar(A)™%. If Ar(A)'is not R itself then
we have Ar(A)'C Ar(A) '7(Ar(A)"")'C Ar(A)~>. Continuing in this way,
we obtain the right limit ideal Ar(A)™* of A by r(A). We have then
Ar(A)*=R, whence it follows r(4)** C A.

By the same argument as in Lemma 4 of [4], we have the following:

Lemma 5. Assume the conditions (A), (B) and (C) in Theorem 10.
Then the number of prime ideals associated with an ideal which is not
s-right primary is finite.

We assume here the conditions (A), (B), (C) and (D) in Theorem 10.
Let P, P. ---, P, be all the prime ideals associated with an ideal A which
is not s-right primary. and let @,, @., **-, @, be s-right primary divisor of
A belonging to P,, P, -+, P, with the property cited in (D), respectively
(Lemma 5). We set B=Q,NQ.MN -* N Q.. By the condition (C), every
minimal prime divisor of A is a prime ideal associated with A, and so
BC r(A). Since r(A) is nilpotent modulo A by Lemma 4, we obtain
B'ADA. We suppose now that BDA. If B™'A is not sright primary
then by the condition (C) we have an s-right primary ideal C;'B™'A for
some C,ZB'A. So we set C=BRC, If B'A is sright primary, we set
C=B. Thus, in either case, we have an s-right primary ideal Q =C7'A4,
where CZ A and CC B. Since r(Q) is a prime ideal associated with A, (@)
= P, for some 7. On the other hand, since CCBCQ,, the ideal @Q=C™'A
is not P;-s-right primary by the condition (D). This contradiction means
A=B. Hence, we have the following theorem.

Theorem 11. In order that every ideal in R be represented as the
intersection of a finite number of s-right primary ideals, it is necessary
and sufficient that the conditions (A), (B), (C) and (D) be satisfied.

4. Rings with maximum condition for ideals.

Throughout the present section, R be a ring with maximum condition
for ideals. Then, needless to say, for any ideals A, B of R there exists the
right limit ideal of A by B.

Lemma 6. Every ideal A C R has a minimal prime divisor which is
right non-prime to A.
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Proof. One may assume that A is not prime. By Theorem 10 of [3],
we have P,RP,R -+ RP,C A, where P, ---, P, are minimal prime divisors
of A and s>>1. Hence we can assume that P,RP,R---RP,C A and P,RP,R---
RP,_ZA. If b is an arbitrary element of P,RP.R---R P,_, not contained in
A then bRP,C A, and so P; is right non-prime to A.

From the proof of Lemma 6, the following will be obvious.

Corollary 1. If A is an ideal of R then r(A) is nilpotent modulo A.
In particular, every primary ideal of R is s-right primary.

Lemma 7. Assume the condition (C). If an ideal A is not right pri-
mary then the number of prime ideals associated with A is finite.

Proof. Let { P,} be the set of all prime ideals associated with A4, and
let Q,=B;'A (B.,Z A) be a P, right primary ideal. The set { P.} is not
empty by the condition (C). Let {P,, P, -+, P.} be a subset in { P.} such
that P& P; for every i>j. We define now the ideals B’,, B’s, «=-, By in
the following way: B', is the right limit ideal of A by P, and B, is the
right limit ideal of B';_; by P; (i=2, -+, k). Then, by the analogous argu-
ment as in Lemma 4 of [4], we have an ascending chain AC B',C B,C -+
C B'.. From this fact, the lemma will be easily seen.

Now, by the validity of Lemmas 6, 7 and Corollary 1 to Lemma 6,
the proof of the following theorem proceeds just like that of Theorem 11
did.

Theorem 12. Let R be a ring with maximum condition for ideals.
In order that every ideal in R can be represented as the intersection of
a finite number of right primary ideals, it is necessary and sufficient
that the conditions (C) and (D) be satisfied.
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