# PRIMARY IDEAL REPRESENTATIONS IN NON-COMMUTATIVE RINGS

#### HIDETOSHI MARUBAYASHI

Introduction. In his paper [4], H. Tominaga has given a necessary and sufficient condition that every ideal in a (non-commutative) ring be represented as the intersection of a finite number of s-right and s- left primary ideals<sup>1</sup>. It is the purpose of this paper to present a condition that every ideal in a ring be represented as a finite intersection of s-right primary ideals. After several definitions (§ 1), we shall prove in § 2 the uniqueness theorem for s-right primary representations: in any two s-right primary short representations of an ideal, the number of s-right primary components are the same and their radicals coincide in some order. In §3, we shall give a necessary and sufficient condition that every ideal have a representation as a finite intersection of s-right primary ideals, which is analogous to that in [4]. In case the maximum condition is satisfied for ideals, the first half of our condition can be excluded (§ 4).

1. Definitions. Let R be a (non-commutative) ring. The term "ideal" in R will always mean "two-sided ideal".

**Definition 1.** A and B are ideals in R, the ideal consisting of all elements x of R such that  $xRB \subseteq A$  is called the right ideal quotient of A by B and is denoted by  $AB^{-1}$ . Similarly,  $B^{-1}A$  consists of all x in R such that  $BRx \subseteq A$ .

The following properties of quotients are verified:

- (1)  $(AB^{-1})C^{-1} = A(CRB)^{-1}$ ,
- (2)  $(\bigcap_{\alpha} A_{\alpha})B^{-1} = \bigcap_{\alpha} A_{\alpha}B^{-1}$ , (3)  $A(\sum_{\alpha} B_{\alpha})^{-1} = \bigcap_{\alpha} AB_{\alpha}^{-1}$ , where  $A, B, C, A_{\alpha}$  and  $B_{\alpha}$  are ideals in R.

Definition 2. An element a is right non-prime to an ideal A if there exists an element b not in A such that  $bRa \subseteq A$ . An ideal B is right nonprime to A if  $AB^{-1} \supset A$ .

For positive integers n we define inductively  $AB^{-n} = (AB^{-(n-1)})B^{-1}$ . If  $AB^{-k} = AB^{-(k+1)}$  for some positive integer k then we say that  $AB^{-k}$  is the right limit ideal of A by B. The left limit ideal  $B^{-k}A$  can be defined in the same way. An ideal P in R is prime if  $AB \subseteq P$  implies that either  $A \subseteq P$ or  $B \subseteq P$ , where A and B are ideals in R. It has been shown by McCoy [2] that an ideal P is prime if and only if  $aRb \subseteq P(a, b \in R)$  implies that

<sup>1) &</sup>quot;s-right primary" means "strongly right primary".

either a or b belongs to P. The radical of an ideal A is understood in the sense of McCoy [2] and denoted by r(A). It has been shown by McCoy [2] that r(A) is the intersection of all minimal prime divisors of A.

**Definition 3.** An ideal Q is said to be *right primary* if  $aRb \subseteq Q$  and  $a \notin Q$  imply  $b \in r(Q)$ , and a right primary ideal Q is defined to be s-right primary if r(Q) is nilpotent modulo Q.

One will easily see that an ideal Q is s-right primary if and only if it is s-right primary in Tominaga's sense, and so the radical of an s-right primary ideal is prime by Theorem 1 of [4].

**Definition 4.** If a prime ideal P is the radical of an s-right primary ideal Q, we say that Q belongs to P and also that Q is P-s-right primary. A prime ideal P is called a prime ideal associated with an ideal A if there exists an s-right primary ideal Q belonging to P such that  $Q = B^{-1}A$  for some ideal P not contained in P.

## 2. Uniqueuess theorem for s-right primary representations.

A representation  $A = Q_1 \cap Q_2 \cap \cdots \cap Q_n$  of an ideal A as the intersection of s-right primary ideals  $Q_1, Q_2, \cdots, Q_n$  will be called *irredundant* if no one of the  $Q_i$  contains the intersection of the remaining ones.

**Theorem 1.** Let  $A = Q_1 \cap Q_2 \cap \cdots \cap Q_n$  be an irredundant representation of  $A \subseteq R$ , where  $Q_i$  is  $P_i$ -s-right primary  $(1 \le i \le n)$ . Then an element x is right non-prime to A if and only if  $x \in P_j$  for some j, namely,  $x \in P_1 \cup P_2 \cup \cdots \cup P_n$ .

*Proof.* If x is right non-prime to A then  $bRx \subseteq A$  for some b not in A. But this implies  $bRx \subseteq Q_i (1 \le i \le n)$ , while  $b \not\in Q_j$  for some j. Since  $Q_j$  is  $P_j$ -s-right primary, we obtain  $x \in P_j$ . Conversely, suppose that x is in  $P_1$ . Since the representation  $A = Q_1 \cap Q_2 \cap \cdots \cap Q_n$  is irredundant, we can choose an element b which is contained in  $Q_1 \cap \cdots \cap Q_n$  but not in  $Q_1$ . Noting that  $(RP_1)^k \subseteq Q_1$  for some k, we have then  $b(RP_1)^k \subseteq A$ . Accordingly, there exists the least positive integer  $k_1$  such that  $b(RP_1)^{k_1} \subseteq A$ . If  $k_1 = 1$  then  $bRP_1 \subseteq A$ . Hence  $bRx \subseteq A$ . Thus, x is right non-prime to A. If  $k_1 > 1$  then the product  $b(RP_1)^{k_1-1}$  contains an element  $b_1$  not in A. Since  $b_1Rx \subseteq A$ , x is right non-prime to A.

**Lemma 1.** If  $Q_1, Q_2, \dots, Q_n$  are P-s-right primary ideals then  $Q = Q_1 \cap Q_2 \cap \dots \cap Q_n$  is also a P-s-right primary ideal.

*Proof.* Let  $k_i$  be the nilpotency index of P modulo  $Q_i (1 \le i \le n)$ . Then,  $P^{k_1 + \dots + k_n} \subseteq Q$ . If  $P_i$  is any prime divisor of Q, we have  $P^{k_1 + \dots + k_n} \subseteq P_i$ , whence it follows  $P \subseteq P_i$ . Hence, P is a unique minimal prime divisor of Q and therefore P = r(Q). Moreover, if  $aRb \subseteq Q$  and  $a \not\in Q$  then  $aRb \subseteq Q_i (1 \le i \le n)$ , while  $a \not\in Q_j$  for some j. Since  $Q_j$  is P-s-right primary, this implies that  $b \in P = r(Q_j)$ . Hence, Q is P-s-right primary.

By the same argument as in Theorem 14 of [3] we have

Lemma 2. If  $A = Q_1 \cap Q_2 \cap \cdots \cap Q_n$  is an irredundant representation of A, where  $Q_i$  is  $P_i$ -s-right-primary  $(1 \le i \le n)$  and  $P_j \ne P_k$  for some  $j \ne k$ , then A is not s-right primary.

**Definition 5.** An irredundant representation  $A = Q_1 \cap Q_2 \cap \cdots Q_n$  will be called a *short* representation if none of the intersections of two or more of the ideals  $Q_1, Q_2, \cdots, Q_n$  are s-right primary.

In view of Lemmas 1 and 2, an irredundant representation  $A = Q_1 \cap Q_2 \cap \cdots \cap Q_n$  is a short representation if and only if any two of the radicals of  $Q_1, Q_2, \cdots, Q_n$  are distinct.

Let M be a non-empty m-system in R. For any ideal A in R the right upper and lower isolated M-components of A (in the sense of [3]) will be denoted by U(A, M) and L(A, M), respectively. If P is a prime ideal  $(\neq R)$  and M = C(P) is its complement in R then U(A, M) will be denoted by U(A, P).

**Theorem 2.** Let  $A = Q_1 \cap Q_2 \cap \cdots \cap Q_n$  be an irredundant representation of A, where  $Q_i$  is  $P_i$ -s-right primary  $(1 \le i \le n)$ . If  $M(\subseteq R)$  is a non-empty m-system which does not meet  $P_1, \cdots, P_r$  but meets  $P_{r+1}, \cdots, P_n$ , then  $U(A, M) = L(A, M) = Q_1 \cap Q_2 \cap \cdots \cap Q_r$ . If M meets every  $P_i$  then U(A, M) = L(A, M) = R.

*Proof.* By the same argument as in Theorem 15 of [3], we can easily see that if M does not meet  $P_1, \dots, P_r$  but meets  $P_{r+1}, \dots, P_n$  then  $U(A, M) = Q_1 \cap Q_2 \cap \dots \cap Q_r$  and that if M meets every  $P_i$  then U(A, M) = R.

We assume first that M does not meet  $P_1, \dots, P_r$  but meets  $P_{r+1}, \dots, P_n$ . Let b be an element of L(A, M). Then we have  $bRm \subseteq A$  for some  $m \in M$  and thus  $bRm \subseteq Q_i (1 \le i \le r)$ . However, m is not in any  $P_i (1 \le i \le r)$ . Hence  $b \in Q_i (1 \le i \le r)$  and thus  $L(A, M) \subseteq Q_1 \cap Q_2 \cap \dots \cap Q_r$ . We shall prove now the converse inclusion. If r = n then this is trivial by  $A \subseteq L(A, M)$ . In case r < n, since M meets  $P_j$  for j > r, it follows that M meets  $Q_j$  for j > r. Hence there exist  $m_1, m_2, \dots, m_{n-r}$  such that  $m_1 \in Q_{r+1} \cap M(1 \le i \le n-r)$ . Now, since every  $m_i$  is in M, there exist  $x_1, x_2, \dots, x_{r-r-1}$  such that  $m = m_1 x_1 m_2 x_2 \dots x_{n-r-1} m_{n-r}$  is contained in M. Since it is clear that  $m \in Q_{r+1} \cap Q_{r+2} \cap \dots \cap Q_n$ ,  $qRm \subseteq A$  for every element  $q \in Q_1 \cap Q_2 \cap \dots \cap Q_r$ . Thus q is in L(A, M).

If M meets every  $P_i$  then the last part of the above proof shows that there is an element  $m \in M$  such that  $m \in Q_1 \cap Q_2 \cap \cdots \cap Q_n = A$ . Hence  $rRm \subseteq A$  for every  $r \in R$ , that is, R = L(A, M).

**Theorem 3.** Let  $A = Q_1 \cap Q_2 \cap \cdots \cap Q_n$  be an irredundant representation of A, where  $Q_i$  is  $P_i$ -s-right primary  $(1 \le i \le n)$ . Then the minimal prime divisors of A are exactly those primes which are minimal in the set  $\{P_1, P_2, \dots, P_n\}$ .

*Proof.* This is immediate.

**Theorem 4.** Let  $A = Q_1 \cap Q_2 \cap \cdots \cap Q_n$  be a short representation of  $A \subset R$ , where  $Q_i$  is  $P_i$ -s-right primary  $(1 \le i \le n)$ . A prime divisor  $P(\ne R)$  of A is one of  $P_i$  if and only if every element of P is right non-prime to U(A, P). The ring R is itself one of the  $P_i$  if and only if every element of R is right non-prime to A.

*Proof.* Let  $P(\neq R)$  be a prime divisor of A. If P coincides with one of  $P_i$ , then by Theorem 2  $U(A, P) = Q_{i_1} \cap Q_{i_2} \cap \cdots \cap Q_{i_r}$  is a short representation of U(A, P), where  $P_{i_1}, P_{i_2}, \cdots, P_{i_r}$  are those primes among  $\{P_i\}$  which are contained in P (and so P is maximal among them). Hence, by Theorem 1, every element of P is right non-prime to U(A, P). Conversely, assume that every element of P is right non-prime to U(A, P). By Theorem 3, P contains at least one of  $P_i$ . Suppose that P contains  $P_1, \cdots, P_r$  but does not contain  $P_{r+1}, \cdots, P_n$ . Then, again by Theorem 2,  $U(A, P) = Q_1 \cap Q_2 \cap \cdots \cap Q_r$  is a short representation of U(A, P). Hence,  $P \subseteq P_1 \cup P_2 \cup \cdots \cup P_r$  by Theorem 1, and then by Theorem 5 of [1] there exists some i such that  $P \subseteq P_i$ , namely,  $P = P_i$ . The latter assertion is also an easy consequence of Theorem 5 of [1] and Theorem 1.

As an immediate consequence of Theorem 4, we obtain the following:

**Theorem 5.** Let  $A = Q_1 \cap Q_2 \cap \cdots \cap Q_n = Q'_1 \cap Q'_2 \cap \cdots \cap Q'_m$  be two short representations of A, where  $Q_i$  is  $P_i$ -s-right primary and  $Q'_j$  is  $P'_j$ -s-right primary. Then, m = n and it is possible to number the components in such a way that  $P_i = P'_i$  ( $1 \le i \le m = n$ ).

Let  $A = Q_1 \cap Q_2 \cap \cdots \cap Q_n$  be a short representation of A, where  $Q_i$  is  $P_i$ -s-right primary  $(1 \le i \le n)$ . These uniquely determined prime ideals  $P_1$ ,  $P_2, \cdots, P_n$  will be called the *prime ideals belonging to* A (cf. Theorem 5). A subset  $\{P_{i_1}, P_{i_2}, \cdots, P_{i_r}\}$  of these prime ideals is called an *isolated set* of prime ideals belonging to A if every  $P_j$  contained in one of the primes  $P_{i_r}, P_{i_r}, \cdots, P_{i_r}$  is necessarily a member of the subset.

Now, by Theorem 2, one will readily obtain the following:

**Theorem 6.** Let  $A = Q_1 \cap Q_2 \cap \cdots \cap Q_n$ , be a short representation of A, where  $Q_i$  is  $P_i$ -s-right primary  $(1 \le i \le n)$ . If  $\{P_{i_1}, P_{i_2}, \cdots, P_{i_r}\}$  is an isolated set of prime ideals belonging to A then  $Q_{i_1} \cap Q_{i_2} \cap \cdots \cap Q_{i_r}$  depends only on  $\{P_{i_1}, P_{i_2}, \cdots, P_{i_r}\}$  and not on the particular short representation considered.

3. A necessary and sufficient condition that every ideal be represented as a finite intersection of s-right primary ideals.

**Theorem 7.** Let  $A = Q_1 \cap Q_2 \cap \cdots \cap Q_n$  be a short representation of  $A \subset R$ , where  $Q_i$  is  $P_i$ -s-right primary  $(1 \le i \le n)$ . If P is a minimal prime

divisor of A then P is right non-prime to A.

*Proof.* By Theorem 3, we can assume that P is contained in  $P_1, \dots, P_r(r \ge 1)$  but not contained in  $P_{r+1}, \dots, P_n$ . Then  $R = Q_i P^{-k} = Q_i P^{-(k+1)}$  for a sufficiently large positive integer  $k \ (1 \le i \le r)$ . On the other hand, if  $r+1 \le j \le n$  then  $Q_j = Q_j P^{-k} = Q_j P^{-(k+1)}$  for every positive integer k. Thus  $AP^{-k} = AP^{-(k+1)} = Q_{r+1} \cap Q_{r+2} \cap \dots \cap Q_n$ . Since  $A = Q_1 \cap Q_2 \cap \dots \cap Q_n$  is a short representation, we have  $AP^{-k} \supset A$ , and therefore  $AP^{-1} \supset A$ .

**Lemma 3.** If Q is a P-s-right primary ideal then  $B^{-1}Q$  is P-s-right primary for any ideal  $B \nsubseteq Q$ .

*Proof.* Since  $BR(B^{-1}Q) \subseteq Q$  and  $B \not\subseteq Q$ , we have  $Q \subseteq B^{-1}Q \subseteq P$ , and thus  $r(B^{-1}Q) = P$ . Suppose that  $aRb \subseteq B^{-1}Q$  and  $b \not\in P$ . Then we have  $BRaRb \subseteq Q$ . Hence, by the definition of s-right primary,  $BRa \subseteq Q$ , that is,  $a \in B^{-1}Q$ .

By the same arguments as in Theorems 4 and 6 of [4], we have the following two theorems.

**Theorem 8.** Let  $A = Q_1 \cap Q_2 \cap \cdots \cap Q_n$  be a short representation of A. Then, for any ideal B there exists the right limit ideal of A by B, and the number of ideals which are obtained starting from A by repeating successively the procedure to make right limit ideals is finite and is uniquely determined by A.

**Theorem 9.** Let  $A = Q_1 \cap Q_2 \cap \cdots \cap Q_n$  be a short representation of  $A \subset R$ , where  $Q_i$  is  $P_i$ -s-right primary  $(1 \le i \le n)$ . Then, a prime divisor P of A is a prime ideal associated with A if and only if P coincides with one of  $P_i$ , and every primary component  $Q_i(1 \le i \le n)$  has the following property:  $B^{-1}A$  is not  $P_i$ -s-right primary for any ideal B such that  $B \subset Q_i$  and  $B \not\subseteq A$ .

**Corollary 1.** Let  $A = Q_1 \cap Q_2 \cap \cdots \cap Q_n$  be a short representation of  $A \subset R$ . If P is a minimal prime divisor of A then P is a prime ideal associated with A.

Now, we can summarize the above-mentioned results as follows:

Theorem 10. In order that every ideal in R be represented as the intersection of a finite number of s-right primary ideals, the following conditions are necessary:

- (A) For any ideals A, B in R there exists the right limit ideal of A by B and there exist a finite number n(A) of ideals which are obtained starting from A by repeating successively the procedure to make right limit ideals, where the number n(A) is uniquely determined by A.
- (B) Every ideal  $A \subseteq R$  has a minimal prime divisor which is right non-prime to A.
  - (C) Every minimal prime divisor of an arbitrary not s-right primary

ideal A is a prime ideal associated with A.

(D) If P is an arbitrary prime ideal associted with an ideal A then there exists an s-right primary ideal  $Q \supseteq A$  belonging to P such that  $B^{-1}A$  is not P-s-right primary for any subideal B of Q not contained in A.

Next, we shall show that these conditions are sufficient, too.

**Lemma 4.** Assume the conditions (A) and (B) in Theorem 10. If A is an ideal of R then r(A) is nilpotent modulo A.

*Proof.* Let P be a minimal prime divisor of  $A(\subseteq R)$  which is right non-prime to A. Then  $A \subseteq AP^{-1} \subseteq Ar(A)^{-1}$ . If  $Ar(A)^{-1}$  is not R itself then we have  $Ar(A)^{-1} \subset Ar(A)^{-1}r(Ar(A)^{-1})^{-1} \subseteq Ar(A)^{-2}$ . Continuing in this way, we obtain the right limit ideal  $Ar(A)^{-k}$  of A by r(A). We have then  $Ar(A)^{-k} = R$ , whence it follows  $r(A)^{2k+1} \subseteq A$ .

By the same argument as in Lemma 4 of [4], we have the following:

Lemma 5. Assume the conditions (A), (B) and (C) in Theorem 10. Then the number of prime ideals associated with an ideal which is not s-right primary is finite.

We assume here the conditions (A), (B), (C) and (D) in Theorem 10. Let  $P_1, P_2, \dots, P_n$  be all the prime ideals associated with an ideal A which is not s-right primary, and let  $Q_1, Q_2, \dots, Q_n$  be s-right primary divisor of A belonging to  $P_1, P_2, \dots, P_n$  with the property cited in (D), respectively (Lemma 5). We set  $B = Q_1 \cap Q_2 \cap \dots \cap Q_n$ . By the condition (C), every minimal prime divisor of A is a prime ideal associated with A, and so  $B \subseteq r(A)$ . Since r(A) is nilpotent modulo A by Lemma 4, we obtain  $B^{-1}A \supset A$ . We suppose now that  $B \supset A$ . If  $B^{-1}A$  is not s-right primary then by the condition (C) we have an s-right primary ideal  $C_o^{-1}B^{-1}A$  for some  $C_o \not\subseteq B^{-1}A$ . So we set  $C = BRC_o$ . If  $B^{-1}A$  is s-right primary, we set C = B. Thus, in either case, we have an s-right primary ideal  $Q = C^{-1}A$ , where  $C \not\subseteq A$  and  $C \subseteq B$ . Since r(Q) is a prime ideal associated with A,  $r(Q) = P_i$  for some i. On the other hand, since  $C \subseteq B \subseteq Q_i$ , the ideal  $Q = C^{-1}A$  is not  $P_i$ -s-right primary by the condition (D). This contradiction means A = B. Hence, we have the following theorem.

Theorem 11. In order that every ideal in R be represented as the intersection of a finite number of s-right primary ideals, it is necessary and sufficient that the conditions (A), (B), (C) and (D) be satisfied.

## 4. Rings with maximum condition for ideals.

Throughout the present section, R be a ring with maximum condition for ideals. Then, needless to say, for any ideals A, B of R there exists the right limit ideal of A by B.

**Lemma 6.** Every ideal  $A \subseteq R$  has a minimal prime divisor which is right non-prime to A.

*Proof.* One may assume that A is not prime. By Theorem 10 of [3], we have  $P_1RP_2R \cdots RP_s \subseteq A$ , where  $P_1, \cdots, P_s$  are minimal prime divisors of A and s > 1. Hence we can assume that  $P_1RP_2R \cdots RP_s \subseteq A$  and  $P_1RP_2R \cdots RP_{s-1} \subseteq A$ . If b is an arbitrary element of  $P_1RP_2R \cdots RP_{s-1}$  not contained in A then  $bRP_s \subseteq A$ , and so  $P_s$  is right non-prime to A.

From the proof of Lemma 6, the following will be obvious.

Corollary 1. If A is an ideal of R then r(A) is nilpotent modulo A. In particular, every primary ideal of R is s-right primary.

Lemma 7. Assume the condition (C). If an ideal A is not right primary then the number of prime ideals associated with A is finite.

*Proof.* Let  $\{P_a\}$  be the set of all prime ideals associated with A, and let  $Q_a = B_a^{-1}A$  ( $B_a \not\subseteq A$ ) be a  $P_a$ -right primary ideal. The set  $\{P_a\}$  is not empty by the condition (C). Let  $\{P_1, P_2, \dots, P_k\}$  be a subset in  $\{P_a\}$  such that  $P_i \not\subseteq P_j$  for every i > j. We define now the ideals  $B'_1, B'_2, \dots, B'_k$  in the following way:  $B'_1$  is the right limit ideal of A by  $P_1$  and  $B'_4$  is the right limit ideal of  $B'_{i-1}$  by  $P_i$  ( $i=2,\dots,k$ ). Then, by the analogous argument as in Lemma 4 of [4], we have an ascending chain  $A \subseteq B'_1 \subseteq B'_2 \subseteq \dots \subseteq B'_k$ . From this fact, the lemma will be easily seen.

Now, by the validity of Lemmas 6, 7 and Corollary 1 to Lemma 6, the proof of the following theorem proceeds just like that of Theorem 11 did.

**Theorem 12.** Let R be a ring with maximum condition for ideals. In order that every ideal in R can be represented as the intersection of a finite number of right primary ideals, it is necessary and sufficient that the conditions (C) and (D) be satisfied.

### REFERENCES

- [1] L. C. A. VAN LEEUWEN: On the zeroid radical of a ring, Nedl. Akad. Wetensch. Proc., A 62- Indag. Math., 21 (1959), 428-433.
- [2] N. H. McCoy: Prime ideals in general rings, Amer. J. Math., 71 (1949), 823-833.
- [3] D. C. Murdoch: Contributions to noncommutative ideal theory, Canadian J. Math., 4 (1952), 43-57.
- [4] H, TOMINAGA: On primary ideal decompositions in noncommutative rings, Math. J. Okayama Univ., 3 (1953), 39—46.

DEPARTMENT of MATHEMATICS, YAMAGUCHI UNIVERSITY

(Received December 10, 1966)