ERRATA:

ON GALOIS THEORY OF SIMPLE RINGS

(This Journal, Vol. 11, pp. 79-117)

Takasi NAGAHARA and Hisao TOMINAGA

Page 102, line 18. For " $(H'/H' \cap R)$ " read " $(H'/H' \cap R')$ ".

Page 106, line 6. The proof contains a gap. This gap is filled in

"On quasi-Galois extensions of division rings", J. Fac. Sci. Hokkaido Univ., Ser. I, 17 (1963), 73—

78.

Page 108, line 6. For " $g = \sum_{m_2+1}^{m_1} g_{p'q'}^{(1)}$ " read " $g = \sum_{m_2+1}^{m_1} g_{p'p'}^{(1)}$ ".

Page 113, line 29. For " $D(T_i, T/S)$ " read " $D(T_i, R/S)$ ".

Page 114, lines 19—21. For "By Theorem 4. 6, $\cdots V_R(T_1 \cap T_2) = V_R(T_1) + V_R(T_2)$ " read "Now, let S_i (i=1, 2) be simple intermediate rings of T_i/S_i such that $[S_i: S_i] = \infty$

termediate rings of T_i/S such that $[S_i:S]_i < \infty$ and $V_R(S_i) = V_R(T_i)$, and let N be a shade of $S_1[S_2]$ (Theorem 2.4). Then, by Theorem 4.6, $\partial' \mid N = \partial_a \mid N$ and $\partial'' \mid N = \partial_b \mid N$ with some $a \in V_R(S_1) = V_R(T_1)$ and $b \in V_R(S_2) = V_R(T_2)$. We ob-

tain therefore c=a+b+z for some $z \in V_R(N) \subseteq V_R(S_1[S_2]) = V_R(T_1) \cap V_R(T_2)$, which proves that

 $V_R(T_1 \cap T_2) = V_R(T_1) + V_R(T_2)$