ON GALOIS EXTENSIONS OVER A FIELD AND ABELIAN GALOIS GROUPS

Dedicated to Professor Mikao Moriya on his 60th birth day

HISAO TOMINAGA

Throughout the present paper, we use the following conventions: $A \ni 1$ is always a simple ring (with minimum condition), B a unital simple subring of A, and G means the group of all B-(ring) automorphisms of A. We set $C=V_A(A)$, $Z=V_B(B)$, $V=V_A(B)$ and $H=V_A^2(B)=V_A(V)$. Finally, as to other notations and terminologies used in this paper, we follow [5] and [9].

In [8], we have proved the following proposition that plays often important roles in Galois theory of simple rings (cf. [2], [5] and [6]).

Proposition 1. If $[A:C] < \infty$ then $[B:Z] < \infty$. Conversely, if $[A:B]_l < \infty$ and $[B:Z] < \infty$ then $[A:C] < \infty$.

One of the purposes of this paper is to present several results concerning Galois extensions over a field and Galois extensions with abelian Galois groups (§ 1). Prop. 1 will be used often to prove most of those results. Whereas, Prop. 1 was requested originally to prove that if $[A:B]_t=2$ and A is not of characteristic 2 then A/B is Galois [8]. In § 2, we shall present a new proof of the last fact without making use of Prop. 1.

 \S 1. At first, we shall prove the following proposition that was cited in [2, \S 1].

Proposition 2. If A is outer Galois and finite over B and [B:Z] $< \infty$ then $A = B \bigotimes_{z} C$.

Proof. Since $[A:C] < \infty$ (Prop. 1), $V_{A}(B \cdot C) = V = C$ and $B \cdot C = B \bigotimes_{Z} C$ is simple, the principal theorem of simple rings yields at once $A = B \bigotimes_{Z} C$.

Corollary 1. If A is outer Galois and left algebraic over a field B then A is a field.

Proof. By [6, Lemma 4], A/B is locally finite. Hence, A/B is locally Galois by [5, Lemma 2.2], and our assertion is obvious by Prop. 2.

By the way, we shall show that [2, Cor. 2.2] can be extended as follows:

Proposition 3. Let A/B be \S -regular (or strictly Galois with respect to \S). If Z is a perfect field of prime characteristic p and \S is of order p^e , then A/B is outer Galois. If moreover $[B:Z] < \infty$, then $A = B \otimes_{\mathbb{Z}} C$.

Proof. Since any derivation of the perfect field Z into B is 0, the case e=1 is obvious by [2, Th. 2.1 (c)]. Now, we shall proceed by the induction with respect to e. Assume e>1. If \mathfrak{P} contains an inner automorphism different from 1, then $\mathfrak{P}_0=\mathfrak{P}\cap \tilde{V}$ is an invariant DF-subgroup of \mathfrak{P} by [3, Th. 5], and $B_0=J(\mathfrak{P}_0,A)$ is $(\mathfrak{P}_0|B_0)$ -regular over B by [9, Cor. 3]. Noting that B_0/B is outer Galois by the induction hypothesis, we see that the center of B_0 is still perfect. As is well known, \mathfrak{P}_0 contains an invariant subgroup \mathfrak{P} of order p. Then, $J(\mathfrak{P},A)/B_0$ is $(\mathfrak{P}_0|J(\mathfrak{P},A))$ -regular and the center of $J(\mathfrak{P},A)$ is perfect. Hence, by the case e=1, $A/J(\mathfrak{P},A)$ is outer Galois, which is a contradiction. The second assertion is now a direct consequence of the former and Prop. 2.

In [3, Th. 1], we have seen that if \mathfrak{P} is an N-group of A with $B = J(\mathfrak{P}, A)$ then A is always \mathfrak{P}_r -homomorphic to \mathfrak{P}_r . If \mathfrak{P} is abelian, we can prove the following:

Theorem 1. If \S is an abelian N-group of A with $B = J(\S, A)$, then A is $\S B_r$ -isomorphic to $\S B_r$.

Proof. If we set $A = \bigoplus_{i=1}^{m} x_i B$ (m = [A:B]) then $\operatorname{Hom}_{B_i}(A,A) = \mathfrak{D}A_r = \bigoplus_{i=1}^{m} \sigma_i A_r = \bigoplus_{i,j} \sigma_i x_{jr} B_r$ with some $\sigma_i \in \mathfrak{D}([7, \text{ Th. 1}])$, and so the subring $\mathfrak{D}B_r$ of $\mathfrak{D}A_r$ satisfies the minimum condition for right ideals. If $\sigma = \sum_{i} \sigma_i y_{ir}$ $(y_i \in A)$ is an arbitrary element of \mathfrak{D} , then for each $\tau \in \mathfrak{D}$ there holds $\sum_{i} \tau \sigma_i y_{ir} = \tau \sigma = \sigma_r = \sum_{i} \tau \sigma_i (y_i \tau)_r$, whence it follows $y_i = y_i \tau$ Hence, each y_i is contained in B, namely, $\mathfrak{D}B_r = \bigoplus_{i=1}^{m} \sigma_i B_r$. Accordingly, it follows $\mathfrak{D}A_r = A_r \mathfrak{D} = \bigoplus_{i=1}^{m} x_{jr} B_r \sigma_i = \bigoplus_{i=1}^{m} x_{jr} (\mathfrak{D}B_r)$. Noting that $A^{(m)}$ (the direct sum of m copies of the $\mathfrak{D}A_r$ -inodule A) is $\mathfrak{D}A_r$ -isomorphic to $\mathfrak{D}A_r$, it is obvious that $A^{(m)}$ is $\mathfrak{D}B_r$ -isomorphic to $(\mathfrak{D}B_r)^{(m)}$, and so Krull-Schmidt theorem yields the $\mathfrak{D}B_r$ -isomorphism between A and $\mathfrak{D}B_r$.

Concerning a Galois extension with the abelian Galois group, there is a striking result that is essentially due to Faith [1, Th. 1].

Theorem 2. Let A be Galois and finite over B, and $[B:Z] < \infty$. If \mathfrak{G} is abelian then V = C or $V \subseteq B$, and so A/B is either outer Galois or inner Galois. If moreover B is a field then either A is a field or B coincides with V.

Proof. Assume that \circlearrowleft is not outer, namely, the field V does not coincides with C([1, prop. 1]). If x is in $V \setminus C$ then $x + c \in V$ (the multiplicative group of the regular elements in V) and c = (x+c)-x for every

 $c \in C$. We see therefore that V is generated by $V \setminus C$. Now, for arbitrary $x \in V \setminus C$ and $\sigma \in \mathfrak{G}$ there holds $\sigma \widetilde{x\sigma} = \widetilde{x}\sigma = \sigma \widetilde{x}$, whence it follows $x\sigma = xc$ with some $c \in C$. Similarly, $(x-1)\sigma = (x-1)c'$ with some $c' \in C$. Accordingly, we obtain x(c-c') = 1-c', so that c=c'=1, which proves evidently $x\sigma = x$. Hence, it follows $C \subseteq V \subseteq B$. Noting that $[A:C] < \infty$ by Prop. 1, we readily obtain $V_{\mathbb{A}}^2(B) = B$. The latter assertion is a consequence of Cor. 1.

In the rest of this section, we assume always that A is \mathfrak{G} -locally Galois over a field B and \mathfrak{G} is abelian. Under this situation, the latter part of Th. 2 is still valid.

Corollary 3. If A is &-locally Galois over a field B and & is abelian, then either A is a field or B coincides with V, and so every intermediate ring of A/B is simple.

Proof. By [5, Th. 2.3], A/B is Galois. In case \mathfrak{G} is outer, the commutativity of A has been shown in Cor. 1. Therefore, in what follows, we may restrict our attention to the case $V \neq C$. Let v be an arbitrary element in $V \setminus C$. Then, there exists $a \in A$ such that $va \neq av$. Now, for each $w \in V$, we can find a \mathfrak{G} -shade A' of B[a, v, w]. Since $\mathfrak{G}(A'/B)$ ($\subseteq \mathfrak{G}|A'$) is abelian and $V_{A'}(B)$ does not coincide with the center of A', $V_{A'}(B)$ coincides with B (Th. 2), which proves evidently V = B. The simplicity of every intermediate ring is then a consequence of [11, Cor. 2].

In what follows, we assume further that A is non-commutative, namely, A is inner Galois over the maximal subfield B (Cor. 3). We shall introduce here the following conditions:

- (i) If C' is an intermediate field of B/C with $[B:C'] < \infty$, and T an intermediate ring of A/B with $V_T(T) \subseteq C'$, then there exists an intermediate ring B' of T/B with $V_{B'}(B') \subseteq C'$ and $[B':B] < \infty$.
- (ii) If C' is an intermediate field of B/C then there exists a family $\{C'_{\alpha}$'s $\}$ of intermediate fields $C_{\alpha'}$ of B/C such that $[B:C'_{\alpha}] < \infty$ and $\bigcap C'_{\alpha} = C'$.
- (iii) If C' is an intermediate field of B/C with $[B': C'] < \infty$ then $[C'': C' \cap C''] < \infty$ for each intermediate field C'' of B/C.
- If T and T' are arbitrary (simple) intermediate rings of A/B then $V_A(T)=V_{T'}(T)=V_B(T)$, and $J(\tilde{B}\mid T,T)=B$, so that T/B is always inner Galois. In particular, if $[T:B]<\infty$ then $[T:V_T(T)]=[B:V_T(T)]^2=[T:B]^2<\infty$.

Lemma 1. Let $A \neq C$ be \mathfrak{G} -locally Galois over a field B, and let \mathfrak{G} be abelian. Let C' be an intermediate field of B/C with $[B:C'] < \infty$, and T an intermediate ring of A/B with $V_T(T) \subseteq C'$. Assume the condi-

tion (i). If T' is an arbitrary intermediate ring of A/T then $V_{T'}(C')$ is a central simple algebra of finite rank over C'.

Proof. By the condition (i), there exists an intermediate ring B' of T/B such that $V_{B'}(B') \subseteq C'$ and $[B':B] < \infty$. Then, $[B':V_{B'}(B')] < \infty$ by the above remark, and so we have $V_{B'}^2(C') = C'$. Hence, the center of $B'' = V_{B'}(C')$ coincides with C'. If $B^* = V_{T'}(C')$ ($\supseteq B''$) then $C' \subseteq V_{B*}(B^*) \subseteq V_{B*}(B'') = V_{B''}(B'') = C'$, namely, $V_{B*}(B'') = V_{B*}(B^*) = C'$. We obtain therefore $\infty > [B'':C'] = [B'':V_{B*}(B'')] = [B^*:C']$.

Now, we shall prove the following theorem that contains [4, Th. 2]. (Cf. [4, Lemma 2].)

Theorem 3. Let $A \neq C$ be \mathfrak{G} -locally Galois over a field B, and let \mathfrak{G} be abelian. If the conditions (i), (ii) and (iii) are satisfied, then there exists a 1-1 dual correspondence between closed regular subgroups of \mathfrak{G} and intermediate rings of A/B, in the usual sense of Galois theory.

Let T be an arbitrary intermediate ring of A/B, and x an arbitrary element of $T'=V_A^2(T)$. If $T_1=B[x]$ and $C_1=V_{T_1}(T_1)$, then ∞ $[T_1:B] = [B:C_1]$. Noting that $C_1 = V_{T'}(T_1) \supseteq V_{T'}(T') = V_{T}(T') = V_{T}(T)$, we see that $V_{T'}(C_1)$ and $V_T(C_1)$ are central simple algebras of finite rank over C_1 (Lemma 1). Hence, $[B:C_1]$ coincides with $[V_{T'}(C_1):B]$ as well as with $[V_T(C_1):B]$, and so x is contained in $V_{T'}(C_1)=V_T(C_1)\subseteq T$. We have proved thus $V_{\Delta}^{2}(T) = T$. Next, we shall prove that $V_{\Delta}^{2}(C') = C'$ for each intermediate field C' of B/C. By the condition (i), there exists a family $\{C_{\alpha}''s\}$ of intermediate fields C'_{α} of B/C such that $[B:C_{\alpha}'] < \infty$ and $\bigcap C_{\alpha}' = C'$. Since each $V_{A}(C'_{\alpha})$ is a central simple algebra (of finite rank) over $C_{\alpha'}$ (Lemma 1), $C'_{\alpha} = V_{A}^{2}(C_{\alpha'}) \cap V_{A}(C'_{\alpha}) = V_{A}^{2}(C_{\alpha'})$. It follows therefore $C' \subseteq V_A^2(C') \subseteq \bigcap V_A^2(C'_\alpha) = \bigcap C'_\alpha = C'$, nemely, $V_A^2(C') = C'$. Finally, we shall prove that A/T is left locally finite. Let F be an arbitrary finite subset of A. If we set $T^*=B[F]$ and $C^*=V_{T*}(T^*)$, then $[B:C^*]=$ $[T^*:B] < \infty$. Accordingly, if $C'' = V_T(T) = V_A(T)$ then $[C'': C^* \cap C''] < \infty$ ∞ by the condition (iii). Since the center of $T_1 = V_A(C^* \cap C'')$ coincides with $V_A^2(C^* \cap C'') = C^* \cap C''$ by the second assertion cited above, we obtain $[T_1:V_{T,}(C'')]=[C'':C^*\cap C'']<\infty$. Recalling here that $T_1\supseteq V_{A}(C'')=$ $V_{\it A}^{\it 2}(T)\!=\!T$ by the first assertion cited above, it is evident that $T\!=V_{\it A}(C'')$ $=V_{T_1}(C'')$. We obtain therefore $[T_1:T]=[C'':C^*\cap C'']$. Since T_1 contains obviously T^* as well as T, it follows then $[T[F]:T]_i \leq [T_1:T]$ $<\infty$, which proves the left local finiteness of A/T. Since A is B-Airreducible by [10, Th. 1], A is T-A-irreducible much more. Accordingly, A/T is h-Galois by [10, Prop. 4], and so $\mathfrak{G}(T) = \operatorname{Cl} \widetilde{V_A(T)}$ by [10, Th. 11 (a)].

§ 2. At first, we shall prove the following proposition.

Proposition 4. Let A be left locally finite over B. If $\widetilde{V}A_r$ is dense in $\operatorname{Hom}_{B_l}(A, A)$ then A/T is inner Galois for any simple intermediate ring T of A/B with $[T:B]_l < \infty$.

Proof. In the proof of [10, Th. 1], we have $\mathfrak{G}(T^*, A/B) = V \mid T^*$ by [11, Cor. 1], so that $\mathfrak{M}_j = \sigma_j u_{jl} A_r = (v_{jl} \mid T^*) A_r$ for some $v_j \in V$. Recalling here that $v_{jl} \mid T^*$ is contained in $\operatorname{Hom}_{T_l}(T^*, A)$, we see that v_j is contained in $V_A(T)$. It follows therefore $M_j = (Te)\mathfrak{M}_j = v_j(TeA) = v_jM$ is a T-A-homomorphic image of M, which proves that A is homogeneously T-A-completely reducible. Hence, $V_A(T)$ is a simple ring. The rest of the proof is obvious by [11, Cor. 1].

Corollary 4. If $[A:B]_l=2$ and $J(\mathfrak{G},A)=B$ then A/B is Galois. Proof. Since $2=[A:B]_r=[\operatorname{Hom}_{B_l}(A,A):A_r]_r>[\mathfrak{G}A_r:A_r]_r=(\mathfrak{G}:\tilde{V})$. $[I(\mathfrak{G}):C]$ by [5, Lemmas 1.3 (i), (iv) and 1.4 (ii)] (those are valid without the assumption that B is regular), $\mathfrak{G}\neq 1$ yields at once $\operatorname{Hom}_{B_l}(A,A)=\mathfrak{G}A_r$. If $[I(\mathfrak{G}):C]=1$, then \mathfrak{G} is an outer group of order 2, and then A/B is outer Galois. On the other hand, if $(\mathfrak{G}:\tilde{V})=1$ then $\operatorname{Hom}_{B_l}(A,A)=\tilde{V}A_r$, and so A/B is inner Galois by Prop. 4.

In the proof of Prop. 1 given in [8], the standard identity played an essential role. We shall remark finally that the following theorem [8, Th.] can be proved without making use of the standard identity.

Theorem 4. If $[A:B]_i=2$, $[B:Z] < \infty$ and Z is not of characteristic 2, then A/B is Galois.

Proof. Obviously, there exist no intermediate rings of A/B except A and B If B=C, there is nothing to prove. Next, if $B\supseteq C$ then $G \ne 1$, and then A/B is Galois by Cor. 4. Finally, we shall consider the case $B \not\supseteq C$. Let c be an arbitrary element of $C \setminus B$. Then, as we readily obtain $B \cap Bc = 0$, there holds $A = B \oplus Bc$. Consequently, it follows $V = V_A(B \cdot C) = C$ and $C = C \cap B$. We set here $C^2 = b_1c + b_2$ ($b_i \in B$). Then, for each $b \in B$ we have $(bb_1)c + bb_2 = (b_1b)c + b_2b$, which implies $b_1, b_2 \in C \cap B$. Hence, $a = c - \frac{1}{2}b_1$ is an element of $C \setminus B$ (and so $A = B \oplus Bu$) and $a \in C \cap B$ contained in $a \in C \cap B$. Now, one will easily verify that the mapping a : a + b = c and a = c + b = c is an automorphism of $a \in C \cap B$.

REFERENCES

- [1] C.C. FAITH: Abelian Galois groups, Proc. Amer. Math. Soc., 10 (1959), 767-774.
- [2] K. Kishimoto: On cyclic extensions of simple rings, J. Fac. Sci. Hokkaido Univ..

- Ser. I, 19 (1966), 74-85.
- [3] K. KISHIMOTO, T. ONODERA and H. TOMINAGA: On the normal basis theorems and the extension dimension, J. Fac. Sci. Hokkaido Univ., Ser. I, 18 (1964), 81-88.
- [4] M. Moriya, T. Nagahara and H. Tominaga: A note on Galois theory of division rings, Math. J. Okayama Univ., 7 (1957), 83-88.
- [5] T. NAGAHARA and H. TOMINAGA: On Galois theory of simple rings, Math. J. Okayama Univ, 11 (1963), 79—117.
- [6] T. NAGAHARA and H. TOMINAGA: Some theorems on Galois theory of simple rings, J. Fac. Sci. Hokkaido Univ., Ser. I, 17 (1963), 1—13.
- [7] T. NAGAHARA, T. ONODERA and H. TOMINAGA: On the normal basis theorem and strictly Galois extensions, Math. J. Okayama Univ., 8 (1958), 133-142.
- [8] H. TOMINAGA: On a theorem of N. Jacobson, Proc. Japan Acad., 31 (1955), 653—
- [9] H. TOMINAGA: A note on Galois theory of primary rings, Math. J. Okayama Univ., 8 (1958), 117-123.
- [10] H. TOMINAGA: On q-Galois extensions of simple rings, Nagoya Math. J., Nakayama Memorial Number (1966), 485—507.
- [11] H. TOMINAGA: Note on q-Galois extensions of simple rings, J. Fac. Sci. Hokkaido Univ., Ser. I, 19 (1966), 66-70.

DEPARTMENT OF MATHEMATICS,
HOKKAIDO UNIVERSITY

(Received April 1, 1966)