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Throughout the present paper, we use the following conventions:
AD1 isalways a simple ring (with minimum condition), B a unital sim-
ple subring of A, and ® means the group of all B-(ring) automorphisms
of A. Weset C=V (A), Z=VB), V=V, B) and H=ViB)=V (V).
Finally, as to other notations and terminologies used in this paper, we
follow [5] and [9].

In [8], we have proved the following proposition that plays often
important roles in Galois theory of simple rings (cf. [2], [5] and [6]).

Proposition 1. If [A: C]<<o then [B:Z]<<oco. Conversely, if
[A:B]; <o and [B:Z]<<oo then [A: Cl<<oo,

One of the purposes of this paper is to present several results concern-
ing Galois extensions over a field and Galois extensions with abelian Galois
groups (§1). Prop. 1 will be used often to prove most of those results.
Whereas, Prop. 1 was requested originally to prove that if [A:B];=2 and
A is not of characteristic 2 then A/B is Galois [8]. In §2, we shall
present a new proof of the last fact without making use of Prop. 1.

§ 1. At first, we shall prove the following proposition that was cited
in [2, § 1].

Proposition 2. If A is outer Galois and finite over B and [B:Z)
< oo then A= BQ:C.

Proof. Since [A: C]<<oo (Prop. 1), V.(B+C)=V=C and B«C=
B, C is simple, the principal theorem of simple rings yields at once A=
BX.C.

Corollary 1. If A is outer Galois and left algebraic over a field B
then A is a field.

Proof. By [6, Lemma 4], A/B is locally finite. Hence, A/B is
locally Galois by [5, Lemma 2. 2], and our assertion is obvious by Prop.
2.

By the way, we shall show that {2, Cor. 2.2] can be extended as
follows :
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Proposition 3. Let A/B be $-regular (or strictly Galois with res-
pectto D). If Z is a perfect field of prime characteristic p and 9 is of
order p°, then A|B is outer Galois. If moreover [B:Z]<<oo, then A=
B®:C.

Proof. Since any derivation of the perfect field Z into B is 0, the
case e=1 is obvious by [2, Th. 2.1 (c)]. Now, we shall proceed by the
induction with respect to e. Assume e¢>1. If  contains an inner auto-
morphism different from 1, then £,=HNV is an invariant DF-subgroup
of © by [3, Th. 5], and By=J($., 4) is (9|B,)-regular over B by [9,
Cor. 3]. Noting that B,/B is outer Galois by the induction hypothesis,
we see that the center of B, is still perfect. As is well known, 9, contains
an invariant subgroup % of order p. Then, J(B, A)/B, is (Dol J(PB, A))-
regular and the center of J(3, A) is perfect. Hence, by the case e=1,
A/ J(B, A) is outer Galois, which is a contradiction. The second assertion
is now a direct consequence of the former and Prop. 2.

In [3, Th. 1], we have seen that if © is an N-group of A with B=
J(O, A) then A is always 9©B,-homomorphic to $B,. If  is abelian,
we can prove the following :

Theorem 1. If © is an abelian N-group of A with B=J(9, A),
then A is DB,-isomorphic to 9B,.

Proof. 1f we set A=@7x,B (m=[A: B]) then Homy (4, A)=DA.=

vo:Ad,= @D, oux,,B, with some o€ H([7, Th. 1]), and so the subring

OB, of DA, satisfies the minimum condition for right ideals. If e=>0:y
(y:€ A) is an arbitrary element of §, then for each &% there holds
¥ to Y= ro=g:=2; ~a(y:v), whence it follows y,=y,r Hence, each
y; is contained in B, namely, $B,=@"s:B,. Accordingly, it follows A,
=A,9=®. ,%,,B,0.=C"x;,(DB,). Noting that A™ (the direct sum of m
copies of the $A,-module A)is $A,-isomorphic to HA,, it is obvious that
A™ is ©B,-isomorphic to ($B,)™, and so Krull-Schmidt theorem yields
the $B,-isomorphism between A and 9B,.

Concerning a Galois extension with the abelian Galois group, there is
a striking result that is essentially due to Faith [1, Th. 1].

Theorem 2. Let A be Galois and finite over B, and [B:Z] << co.
If ® is abelian then V=C or VC B, and so A/B is either outer Galois
or inner Galois. If morcover B is a field then either A is a field or B
coincides with V.

Proof. Assume that & is not outer, namely, the field V does not
coincides with C([1, prop. 1]). If x isin V\C then x+c&E V (the multi
plicative group of the regular elements in V) and c¢=(x-+c)—x for every
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¢ & C. We see therefore that V is generated by V\C. Now, for arbitrary
x€V\C and = © there holds s¥s=%s=0%, whence it follows zo=xc
with some c=C. Similarly, (x—1)e=(x—1)c' with some c¢'€C. Accord-
ingly, we obtain x(c—c¢")=1—¢’, so that ¢=¢'=1, which proves evidently
xc=x. Hence, it follows CC VC B. Noting that [A: C] << by Prop.
1, we readily obtain V3(B)=B. The latter assertion is a consequence of
Cor. 1.

In the rest of this section, we assume always that A is G-locally
Galois over a field B and & is abelian. Under this sitnation, the latter
part of Th. 2 is still valid.

Corollary 3. If A is &-locally Galois over a field B and © is abeli-
an, then either A is a field or B coincides with V, and so every inter-
mediate ring of A/B is simple.

Proof. By [5, Th. 2.3], A/B is Galois. In case ® is outer, the
commutativity of 4 has been shown in Cor. 1. Therefore, in what follows,
we may restrict our attention to the case Vs C. Let » be an arbitrary
element in V\C. Then, there exists ¢ = A such that vas4av. Now, for
each we& V, wecan find a G-shade A' of Ble, v, w]. Since &(A4'/B)
(E®|AY) is abelian and V.(B) does not coincide with the center of A’,
V .(B) coincides with B (Th. 2), which proves evidently V=B. The sim-
plicity of every intermediate ring is then a consequence of [11, Cor. 2].

In what follows, we assume further that A is non-commutative, name-
ly, A is inner Galois over the maximal subfield B (Cor. 3). We shall
introduce here the following conditions :

(i) If C' is an intermediate field of B/ C with [B: C']< oo, and T
an intermediate ring of A/B with V(7)< C’, then there exists an inter-
mediate ring B’ of T/B with V4(B)C C' and [B':B]<<oo,

(if) If C' is an intermediate field of B/ C then there exists a family
{C'ys} of intermediate fields C,' of B/C such that [B: C',]<<o and
NC,=C.

(iii) If C' is an intermediate field of B/C with [B': C'J<co then
[C": C'MC'"] <o for each intermediate field C" of B/C.

If T and 7' are arbitrary (simple) intermediate rings of A/B then
VAT)=V(T)=VT), and J(B|T, T)=B, sothat T/B is always inner
Galois. In particular, if [T:B]<<oe then [T :VAT)]=[B:VAT)]’=
[T:B]*< o0,

Lemma 1. Let As=C be &-locally Galois over a field B, and let &
be abelian. Let C' be an intermediate field of B/C with [B: C']<<oo,
and T an intermediate ring of Al/B with VAT)Z C'. Assume the condi-
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tion (). If T' is an arbitrary intermediate ring of A|T then Vy(C') is
a central simple algebra of finite rank over C'.

Proof. By the condition (i), there exists an intermediate ring B’ of
T/B such that V.(B')CC' and [B':B]<<oco. Then, [B': Va(B")] <o
by the above remark, and so we have V%.(C')= C’. Hence, the center of
B"=V(C") coincides with C'. If B*=V.(C") (2B") then C'CV (B*)
C VaB'")=VsAB'")= C', namely, Vz(B")=Vz(B*)=C" We obtain
therefore oo>[B": C']1=[B":Va(B'")]=[B*: C1].

Now, we shall prove the following theorem that contains [4, Th 2].
(Cf. [4, Lemma 2].)

Theorem 3. Let A= C be &locally Galois over a field B, and let
® be abelian. If the conditions (i), (i) and (iii) are satisfied, then there
exists @ 1—1 dual correspondence between closed regular subgroups of ©
and intermediate rings of A/B, in the usual sense of Galois theory.

Proof. Let T be an arbitrary intermediate ring of A/B, and x an
arbitrary element of 7'=V%(T). If T:=B[x] and C,;=V,(T;), then o>
[T,:Bl=[B: C]. Noting that C;=V T2V (TN=V(T)=V(T), we
see that V,.(C,) and V(C,) are central simple algebras of finite rank over
C,(Lemma 1). Hence, [B: C,] coincides with [V,(C,): B] as well as with
[VAC):B], and so x is contained in V,.(C)=V,(C)C 7. We have
proved thus V%(T)=T. Next, we shall prove that Vi(C")= C' for each
intermediate field C' of B/C. By the condition (i), there exists a family
{C."s} of intermediate fields C', of B/C such that [B: C,/}] <eoo and
N C.'=C'. Since each V,(C';) is a central simple algebra (of finite rank)
over C,/ (Lemma 1), Cly=Vi(C,))NVC)=ViC,). It follows there-
fore C'C V4(CYSNVL(CL)=NC,=C', nemely, Vi(C)=C' Finally,
we shall prove that A/T is left locally finite. Let F be an arbitrary finite
subset of A. If we set T*=B[F] and C*= V.«(T*), then [B:C*] =
[T#: B]<<oo. Accordingly, if C"=V(T)=V(T) then [C": C*NC"]<
oo by the condition (iii). Since the center of T;= V,.(C*NC") coincides
with V(C*MNC")= C*MC" by the second assertion cited above, we obtain
[T1:V,(CN]=[C": C* N C"]<oo. Recalling here that 7;2 V. (C")=
VA(T)=T by the first assertion cited above, it is evident that T= V(C")
= VTI(C"). We obtain therefore [T,: T]=[C": C*M\C']. Since T, con-
tains obviously T* as well as 7, it follows then [T[F]: 7T].<[T::T]
< oo, which proves the left local finiteness of A/7. Since A is B-A-
irreducible by [10, Th. 1], A is 7-A-irreducible much more. Accordingly,

A/T is h-Galois by [10, Prop. 4], and so &(T)=Cl V(T) by [10, Th.
11 (a)].
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§ 2. At first, we shall prove the following proposition.

Proposition 4. Let A be left locally finite over B. If vA, is dense
in Homy(A, A) then A|T isinner Galois for any simple intermediate
ring T of A/B with [T: B}, <<oce. )

Proof. In the proof of [10, Th. 1], we have &(T*, A/B)=V|T* by
[11, Cor.1], so that M,=0suuA,=(v,|T*)A, for some v,& V. Recalling
here that »,|T* is contained in Hom, (T, A), we see that v, is contained
in VT). 1t follows therefore M,=(Te)}M;=v,(TeA)=v;M is a T-A-homo-
morphic image of M, which proves that A is homogeneously 7T-A-com-
pletely reducible. Hence, V(T) is a simple ring. The rest of the proof is
obvious by [11, Cor. 1].

Corollary 4. If [A:B)i=2 and J(®, A)=B then A|B is Galois.

Proof. Since 2=[A: B],=[Homs(A, A): A,,>[BA,: 4,],=(8:V).
[I(®): C] by [5, Lemmas 1.3 (i), (iv) and 1. 4 (ii}] (those are valid with-
out the assumption that B is regular), 851 yields at once Hom,, (4, A)
=B8A, If[I(®):C]l=1 then ® is an outer group of order 2, and then
Al ﬁ is outer Galois. On the other hand, if (&: V)=1 then Homj (4, A)
=VA,, andso A/B is inner Galois by Prop. 4.

In the proof of Prop. 1 given in [8], the standard identity played an
essential role. We shall remark finally that the following theorem [8, Th.]
can be proved without making use of the standard identity.

Theorem 4. If [A:B],=2, [B:Z]<<oo and Z is not of charac-
teristic 2, then A/B is Galois. '

Proof. Obviously, there exist no intermediate rings of A/B except
A and B If B=C, there is nothing to prove. Next, if B2 C then &1,
and then A/B is Galois by Cor. 4. Finally, we shall consider the case
B2 C. Let ¢ be an arbitrary element of C\B. Then, as we readily obtain
BN\ Bc=0, there holds A=B Be. Consequently, it follows V=V (B-C)
=C and Z=CMNB. We set here ¢*=b,c+b,(b.= B). Then, for each
b= B we have (bb)c-+bby= (b;b)c+bb, which implies 0, b,&€ Z=CNB.

Hence, u= c—%bl is an element of C\B (and so A=B@Bx) and «® is

contained in Z. Now, one will easily verify that the mapping o:x+yu
—> x—yu (x, yE B) is an automorphism of A with J{(s, A)= B.
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