IMBEDDINGS OF DOLD MANIFOLDS

TAKUO FUKUDA.

Let P(m, n) be the manifold defined by A. Dold [1], that is the manifold of dimension m+2n obtained from $S^m \times PC(n)$ by identifying (x, z) with $(-x, \overline{z})$, where S^m is the usual m-sphere and PC(n) is the usual complex projective n-space, and $x \in S^m$ is the antipodal point of $x \in S^m$ and $\overline{z} \in PC(n)$ is the complex conjugate point of $z \in PC(n)$. The purpose of this paper is to obtain an imbedding and non-imbedding theorem for these Dold manifolds in euclidean space.

In this paper we say that a homeomorphism of P(m, n) into a euclide an k-space is an imbedding if it is differentiable and regular.

This paper consists of two parts. In the first part we have an imbedding theorem.

Theorem 1. Let H be the normal line bundle of the cannonical imbedding of P(m, n) imto P(m+1, n). If P(m, n) can be imbedded in a euclidean k-space with normal bundle N so that $N \otimes H$ has a nonzero cross-section, then P(m+1, n) can be topologically imbedded in a (k+1)-space.

By A. Haefliger [3], if 2k > 3(m+2n+1) then this can be approximated by a differentiable imbedding. Finding the obstructions to the existence of a non-zero cross-section of $N \otimes H$ we have

Theorem 2. Suppose n>0 $n\equiv 0 \mod 2$ $m\equiv 1 \mod 4$ and $2n+m\neq 2^k+1$. Then P(m,n) can be imbedded in (2m+4n-2)-space.

In the second part we make an application of Thom's Non-Imbedding Theorem[7]. We calculate the values of the inverse automorphism Q of the total Steenrod square Sq on $H^*(P(m, n); Z_2)$ and we have

Theorem 3. Suppose $n = 2^i$ and $m = 2^k - 2^{i+1} + 2^j > 0$, where j < i. Then P(m, n) can not be imbedded in (2m + 4n - 2)-space.

Massey and Peterson showed that a manifold of dimensions $n\neq 2^i$ can be imbedded in (2n-1)-space[5], so the result is best for $2n+m\neq 2^h$. Recently J. J. Ucci got the best result for the same codimension in the cases of the types $(0, 2^i)$, $(2^j, 2^i)$; $0 \le j \le i$, $(2^j-1, 1)$; $j \ge 1$, and $(m, 2^i)$; $2^{1+i} \le m$ and $\binom{2m+2^{i+1}-1}{m} \equiv 1 \mod 2$, [8]. A part of theorem III is common to J. J. Ucci's second type.

Notation: Let X/\sim denote the quotient space of X by the relation \sim , for example $S^m \times P\bar{C}(n)/(x,z) \sim (-x,\bar{z})$ denotes P(m,n). $A \subset B$ means that A is topologically imbeddable in B.

Part I

1. Proof of theorem I.

The proof of this theorem is the same as the one in [2] for n=0, and also analogous to it for the other cases. Let V be a tubular neighborhood of P(m,n) in P(m+1,n). Since H is then the normal line bundle of the cannonical imbedding of P(m,n) into P(m+1,n), V can be naturally imbedded in H. Let I denote the trivial line bundle over P(m,n). If L, M are two vector bundles over P(m,n), let Hom(L,M) be the bundle whose fiber at p is $Hom(L_p,M_p)$, where L_p and M_p are fibers at p respectively. Then $Hom(H,I)\approx H$ and so $N\otimes H\approx N\otimes Hom(H,I)\approx Hom(H,N)$. A non-zero cross-section of $N\otimes H$ is also a non-zero cross-section of Hom(H,N), that is, an imbedding of H as a subbundle of H. So if there exists a non-zero cross-section of Hom(H,N), and by the natural imbedding of H into H we have an imbedding of H into H, and by the natural imbedding of H into H we have H into H we have H into H into H we have H into H into

Observe the cellular structure of P(m+1, n).

$$P(m+1, n) = S^{m+1} \times PC(n)/(x, z) \sim (-x, \overline{z})$$

= ${}^{+}S^{m+1} \times PC(n)/(x_0, z) \sim (-x_0, \overline{z}),$

where ${}^+S^{m+1}$ is the upper half of S^{m+1} and $x_0, -x_0 \in S^m$. Therefore V is homeomorphic to $[0,1)\times S^m\times PC(n)/(0,x,z,)\sim (0,-x,\overline{z})$. Let D^{m+1} denote a disk of dimensions m+1, and let \overline{X} and X denote the closure and the boundary of a set X respectively. Then $P(m+1,n)-V\cong D^{m+1}\times PC(n)$ and we have $P(m+1,n)=\overline{V}\bigcup_{ia}D^{m+1}\times PC(n)$, here $\overline{V}\bigcup_{ia}D^{m+1}\times PC(n)$ is a cell complex which is obtained by attaching $D^{m+1}\times PC(n)$ to \overline{V} by the attaching homeomorphism, i.e., $id:D^{m+1}\times PC(n)\cong V$. Hence

$$P(m+1, N) \subset \mathbb{R}^k \times \mathbb{R}^1 \subset \mathbb{R}^{k+1}$$
, Q. E. D.

2. The obstructions (proof of theorem II).

2.1 Obstruction theory. Massey and Peterson showed that for any compact differentiable manifold M of dimensions $n \neq 2^k$ there exists an imbedding of M in a (2n-1)-space [5]. Let N denote the normal bundle of the imbedding of P(m, n) in a (2m+4n-1)-space for $m+2n\neq 2^k$. Then $N \otimes H$ is an (m+2n-1)-plane bundle over P(m, n). In order to

find a non-zero cross-section of $N \otimes H$, we need observe only the primary and the secondary obstructions to the existence of a cross-section of its associated S^{m+2n-2} —bundle.

We see from M. Mahowald [4] the following.

1). The primary obstruction is the Fuler class

$$\chi(N \otimes H) \in H^{m+2n-1}(P(m, n); \mathbb{Z})$$

2). If $\chi=0$, there exist many extentions of the cross-section to (m-2n-1)-skelton of P(m,n). The set of the secondary obstruction classes in $H^{m+2n}(P(m,n); Z_2)$ for such extended sections is a coset of the group $(Sq^2+w_2)H^{m+2n-2}(P(m,n); Z)$. Hence if

$$(Sq^2 - | W_2)H^{m+2n-2}(P(m, n); Z) = H^{m+2n}(P(m, n); Z_2),$$

then we have an extention of the section to P(m, n), where w_i denotes the Stiefel-Whitney class.

2.2. The Euler class.

Proposition 1.
$$H^{2n+m-1}(P(m,n); Z)=0$$
 for $m+n=$ even,
i. e, $\chi(N \otimes H)=0$ for $m+n=$ even.

Proof. We consider the cellular decomposition and the boundary operator of P(m, n) in Dold's [1]. The notations of cells are the same as in [1]. $\ell(C_i, D_j) = (1 + (-1)^{i+j})(C_{i-1}, D_j)$. Let (C^i, D^j) denote the cochain which assigns 1 to (C_i, D_j) and 0 to all other (i+2j)-cells. Then the cochain group $C^{2n+m-1}(P(m, n); Z)$ is generated by (C^{m-1}, D^n) .

So $Z^{2n+m-1}(P(m,n); Z)=0$, and $H^{2n+m-1}(P(m,n); Z)=0$ for m+n=even.

2.3 The class $w_2(N \otimes H)$.

Let $T_{m,n}$ denote the tangent bundle of P(m,n), and let \mathfrak{R}_T denote the normal bundle of the cannonical imbedding of $T_{m,n-1}$ into $T_{m,2}$. Let c and $d \neq c^2$ be the generators of $H^1(P(m,n); Z_2)$ and $H^2(P(m,n); Z_2)$ respectively.

To prove lemma 2 we use the following Dold's result [1] and the well known fact with respect to the Stiefel-whitney classes of the tensor product of bundles.

(a) 1)
$$w(T_{m,n}) = (1-c)^m (1+c+d)^{n+1}$$
, especially $w(T_{2,1}) = 1$.

- 2) $w(\mathfrak{N}_T) = (1+c+d)$.
- 3) $T_{m,n} \oplus H = g^*(T_{m+1,n})$, where g is the cannonical imbedding of P(m, n) into P(m+1, n).
- 4) $T_{m,n-1} \oplus \mathfrak{N}_T = f^*(T_{m,n})$, where f is the cannonical imbedding of P(m, n-1) into P(m, n).
- (b) Let ζ be an r-vector bundle over X with $w(\zeta) = \prod_{i=1}^{r} (1 + \alpha_i c)$ and η be a q-vector bundle over X with $w(\eta) = \prod_{j=1}^{q} (1 + \beta_j c)$, where $c \in H^1(X; \mathbb{Z}_2)$. Then $w(\zeta \otimes_{\eta}) = \prod_{i=1}^{r} (1 + (\alpha_i + \beta_j)c)$.

Lemma 2.

- 1) $w(T_{2.1} \otimes H) = (1+c)^4$.
- 2) $w(\mathfrak{N}_T \otimes H) = (1+c+d)$.

Proof. 1) $w(T_{2,1})=1$ and w(H)=1+c, hence by (b) we have immadiately $w(T_{2,1} \otimes H) = (1+c)^4$.

2) Consider the restriction of $\mathfrak{N}_T \otimes H$ to real projective space PR^m of dimensions $m(\subset P(m,n))$. Let $\mathfrak{N}_T|_{PR^m}$ and $H|_{PR^m}$ denote the restriction of \mathfrak{N}_T and H to PR^m respectively. Then by (a) we have $w(\mathfrak{N}_T|_{PR^m}) = 1+c$, and $w(H|_{PR^m}) = 1+c$. By (b) $w(\mathfrak{N}_T|_{PR^m} \otimes H|_{PR^m} \otimes H|_{PR^m}) = 1+c$. Hence $w(\mathfrak{N}_T \otimes H)$ is equal to whether 1+c or 1+c+d. If we suppose $w(\mathfrak{N}_T \otimes H) = 1+c$, then by (b) we have $w((\mathfrak{N}_T \otimes H) \otimes H) = 1+c$, but $\mathfrak{N}_T \otimes H \otimes H = \mathfrak{N}_T$, and so $w(\mathfrak{N}_T \otimes H \otimes H) = w(\mathfrak{N}_T) = 1+c+d$. This is a contradiction. Hence we have $w(\mathfrak{N}_T \otimes H) = 1+c+d$.

Lemma 3. $w_i(T_{m,n} \otimes H) = [(1+c+d)^{n-1}]_i$ for i=1, 2, where $[\quad]_i$ denotes the i-dimensional component.

Proof. If we leave out of cosideration of the classes of dimensions≥ 3,

$$w(T_{m,n} \otimes H) = w(T_{m,n-1} \otimes H)w(\mathfrak{N}_T \otimes H)$$

$$= w(T_{m,1} \otimes H)(w(\mathfrak{N}_T \otimes H))^{n-1}$$

$$= w((T_{m-1,1} \oplus H) \otimes H)(w(\mathfrak{N}_T \otimes H))^{n-1}$$

$$= w(T_{m-1,1} \otimes H)(w(H \otimes H))(w\mathfrak{N}_T \otimes H))^{n-1}$$

$$= w(T_{2,1} \otimes H)(w(H \otimes H))^{m-2}(w(\mathfrak{N}_T \otimes H))^{n-1}$$

$$= (1+c)^4 (1+c+d)^{n-1}$$

$$= (1+c+d)^{n-1}.$$

Proposition 4. Suppose m and n are even. Then $N \otimes H$ is an orientable bundle and

$$w_2(N \otimes H) = c^2 + d$$
 for $n \equiv 2 \mod 4$
 $w_2(N \otimes H) = d$ for $n \equiv 0 \mod 4$.

Proof. $(T_{m,n} \oplus N) \otimes H = I^{4n+2m-1} \otimes H$. so $w(T_{m,n} \otimes H) w(N \otimes H) = w(I^{4n+2m-1} \otimes H) = (1+c)^{4n+2m-1}$. If m and n are even, then $(1+c)^{4n+2m-1} = (1+c+c^2+\cdots\cdots)$. And

 $w(T_{m,n} \otimes H) = 1 + c + d + \cdots$ for m is even and $n \equiv 2 \mod 4$, $w(T_{m,n} \otimes H) = 1 + c + d + c^2 + \cdots$ for m is even and $n \equiv 0 \mod 4$. Hence we have the proposition.

2.4 $(\mathbf{Sq}^2 + \mathbf{w}_2)\mathbf{H}^{2n+m-2}(\mathbf{P}(\mathbf{m},\mathbf{n}); \mathbf{Z})$

Lemma 5. Suppose m+n is even. Then $H^{2n+m-2}(P(m,n);Z)\cong Z+Z_2$, which is generated by the cohomology classes of cocycles (C^m, D^{n-1}) and (C^{m-2}, D^n) .

Proof. Cochain group $C^{2n+m-2}(P(m,n); Z) = \{(C^m, D^{n-1})\} + \{(C^{m-2}, D^n)\}.$ $\delta(C^m, D^{n-1})(C_{m-1}, D^n) = 0$, so $\delta(C^m, D^{n-1}) = 0$.

$$\begin{split} \delta(C^{m-2},\,D^n)(\,C_{m-1},\,D_n) &= (\,C^{m-2},\,D^n)(\delta(\,C_{m-1},\,D^n)) \\ &= (\,C^{m-2},\,D^n)((1+(-1)^{m+n-1})(\,C_{m-2},\,D_n)) = 0, \text{ so} \end{split}$$

 $\delta(C^{m-2}, D^n) = 0$: Hence $Z^{2n+m-2}(P(m, n); Z) = \{(C^m, D^{n-1})\} + \{(C^{m-2}, D_n)\}.$ On the other hand,

$$\delta(C^{m-1},D^{n-1})(C_m,D_{n-1})=(C^{m-1},D^{n-1})((1+(-1)^{m+n-1})(C_{m-1},D_{n-1}))=0, \text{ so } \delta(C^{m-1},D^{n-1})=0.$$

$$\delta(C^{m-3}, D^n)(C_{m-2}, D_n) = (C^{m-3}, D^n)((1+(-1)^{m+n-2})(C_{m-3}, D_n) = 2, \text{ so}$$

$$\delta(C^{m-3}, D^n) = 2(C^{m-2}, D^n)$$
. Hence if $m+n$ is even, then

$$H^{2n+m-2}(P(m,n);Z) = \{(C^m,D^{n-1})\} + \{(C^{m-2},D^n)\}/\{2(C^{m-2},D^n)\} \cong Z + Z_2.$$

Here $\{x\}$ denotes the free group generated by x.

Let [x] denote the cohomology class of x. Then

$$Sq^{2}[(C^{m-2}, D^{n})] = {m-2 \choose 2}c^{m}d^{n} + {m-2 \choose 1}{n \choose 1}c^{m}d^{n}.$$

$$Sp^{2}[(C^{m}, D^{n-1})] = {n-1 \choose 1}c^{m}d^{n}.$$

Hence we have thethe following table.

m, u mod 4	$w_2. H^{2n+m-2}(P(m,n); Z)$	$S_q^2(C^{m-2},D^n)$	$S_q^{2}(\mathbb{C}^m,\mathbb{D}^{n-1})$
$n \equiv 0$ and $m \equiv 0$.	$H^{2n+m}(P(m,n);Z_2)$	$c^m d^n$	$c^{m}d^{n}$
$n\equiv 2$ and $m\equiv 0$.	0	0	$c^m d^n$
$n \equiv 0$ and $m \equiv 2$.	$H^{2n+m}(P(m,n);Z_2)$	0	$c^m d^n$
$n\equiv 2$ and $m\equiv 2$.	0	$c^m d^n$	$c^m d^n$

Hence if $n\equiv 0 \mod 2$ and $m\equiv \mod 4$, then $(Sq^2+w^2)H^{2n+m-2}(P(m,n); Z)H^{2n+m}(P(m,n); Z_2)$, that is, then $N\bigotimes H$ has a non-zero cross-section. By theorem I we have theorem II.

Part II

Let Sq denote the total Steenrod square. It is known that Sq is an automorphism of the mod 2 cohomology ring $H^*(X; Z_2)$ of a space X such that $H^q(X; Z_2) = 0$ for all sufficiently large q. We will denote the inverse automorphism by Q and its component of degree i by Q^i . $Q^0 = 1$, and Q^i can be defined inductively by the relation $\sum_{i+j=R} Q^i Sq^j = 0$. The following properties of Q^i are immediate.

Lemma 6.

- 1) $Q^k(x \cdot y) = \sum_{i=0}^k Q^i(x) \cdot Q^{k-i}(y)$. (Cartan formula.)
- 2) $Q^{2n+1} = Q^{2n}Sq^{1}$.
- 3) $Q^{2n+1}Sq^{2k+1}=0$.
- 4) Suppose $x \in H^1(X; Z_2)$. Then $Q^k x = 0$ for $k \neq 2^k 1$ and $Q^k x = x^{2^k}$ for $k = 2^k 1$.

In this part we use R. Thom's Theorem: If Y is a compact space such that, for some i, r > 0

$$Q^{\mathfrak{l}}: H^{r}(Y: Z_{\mathfrak{d}}) \longrightarrow H^{r+\mathfrak{l}}(Y: Z_{\mathfrak{d}})$$

is not zero, then Y is not imbeddable in $S^{r+2i}[7]$.

We remember $H^*(P(m, n); Z_2)$ and Sq^1 operating on $H^*(P(m, n); Z_2)$ given by [1].

- I. Cohomology ring $H^*(P(m, n); Z^2)$ is generated by $c \in H^1(P(m, n); Z_2)$ and $d \in H^2(P(m, n); Z_2)$ with $c^{m+1} = 0$ and $d^{m+1} = 0$.
- II. $Sq^1d = cd$.

Then theorem III follows from

Theorem IV.

a)
$$Q^{2^{m-1}}d = \sum_{j=0}^{m-1} c^{2^{m-2i+1+1}}d^{2i}$$
.

b)
$$Q^{2^{m+l}+2^{l+1}-2}d = \sum_{j=1}^{m-1} c^{2^{m+l}-2^{l+j+1}+2^{l+1}}d^{2^{l+j}}.$$

In this part all calculations will be done mod 2.

3. Proof of theorem IV.

Lemma 7.

1) $Q^{2k}d = (Q^{k-1}d)^2$.

2)
$$Q^{2^{m-2}}d = d^{2^{m-1}}.$$

 $Proof.$ 1). $Q^{2k}d = \sum_{i+j-2k} Q^i Sq^j d = Q^{2j-1} Sq^1 d + Q^{2k-2} Sq^2 d$
 $= Q^{2k-2}d^2$ by lemma 6. 3)
 $= \sum_{i+j-2k-2} Q^i d Q^j d,$

the terms vanish except the middle term,

2). By 1)
$$Q^{2^{m-2}}d = (Q^{2^{m-1}-2}d)^2 = \cdots = (Q^0d)^{2^{m-1}} = d^{2^{m-1}}.$$

 $=Q^{k-1}dQ^{k-1}d=(Q^{k-1}d)^2.$

Lemma 8.

$$Q^{2k+1}d = \begin{cases} 0 & \text{for } 2k+1 \neq 2^m - 1\\ \sum_{i=0}^{m-1} c^{2m-2^{i+1}+1} d^{2^i} & \text{for } 2k+1 = 2^m - 1. \end{cases}$$

Proof. This is proved by induction. It is clear that $Q^1d = cd$ for 2k+1=1. Suppose $2k+1=2^m-1$ for an integer m(>0) and that the lemma is true for all odd numbers <2k+1. We have by lemma 6.1

$$Q^{2^{m}-1}d = \sum_{i+j=2m-1} Q^{i}Sq^{j}d = Q^{2^{m}-2}cd + Q^{2^{m}-3}d^{2}$$

=
$$\sum_{i+j=2m-2} Q^{i}cQ^{j}d + \sum_{i+j=2m-3} Q^{i}dQ^{j}d.$$

Because the second sum vanishes, we have by lemma 6.4, lemma 7.2 and the hypothesis of induction

$$\begin{split} Q^{2^{m}-1}d &= Q^{2^{h}-1}cQ^{2^{m}-2^{h}-1}d.\\ &= \sum_{2^{l}+2J=2^{m}} Q^{2^{l}-1}cQ^{2^{J}-1}d + cQ^{2^{m}-2}d\\ &= Q^{2^{m}-1}-1}cQ^{2^{m}-1}d + Qc^{2^{m}-2}d\\ &= c^{2^{m}-1}\sum_{J=0}c^{2^{m}-1}-2^{l+1}+1}d^{2^{l}} + cd^{2^{m}-1}\\ &= \sum_{l=0}^{m-1}c^{2^{m}-2^{l+1}+1}d^{2^{l}}. \end{split}$$

Hence we have proved the case $2k+1=2^m-1$.

Suppose $2k+1 \neq 2^m-1$ for any integer m and that the lemma is true

for all odd numbers $\langle 2k+1,$ Then

$$Q^{2k+1}d = Q^{2k}cd = \sum_{\substack{2^{i}+2^{j}=2k+2}} Q^{2^{i}-1}cQ^{2^{j}-1}d + cQ^{2k}d.$$

a). If $2k+2=2^{i}+2^{i}$ for some i>j, then

$$\begin{split} Q^{2k+1}d &= cQ^{2^{\ell}+2^{j}-2}d + Q^{2^{\ell}-1}cQ^{2^{j}-1}d + Q^{2^{j}-1}cQ^{2^{\ell}-1}d \\ &= cQ^{2^{\ell-j}-1}d^{2^{j}} + c^{2^{\ell}}(\sum_{h=0}^{j-1}c^{2^{j}-2^{h+1}+1}d^{2^{h}}) \\ &+ c^{2^{j}}(\sum_{h=0}^{j-1}c^{2^{\ell}-2^{h+1}+1}d^{2^{h}}). \end{split}$$

We apply lemma 7. 1) for the first term and the hypothesis of the induction for the second and the third terms. We then see that the above equals

$$\sum_{h=j}^{i-i} c^{2^{i}+2^{j}-2^{h+1}+1} d^{2^{h}} + \sum_{h=0}^{j-1} c^{2^{i}+2^{j}-2^{h+1}+1} d^{2^{h}} + \sum_{h=0}^{1-1} c^{2^{i}+2^{j}-2^{h+1}+1} d^{2^{h}} = 0$$

b). If $2k+2 \rightleftharpoons 2^i+2^j$ for any i>j, then $Q^{2k+1}d=cQ^{2k}d$. In order to show $Q^{2k}d=0$ for such 2k, it is sufficient to prove that if $Q^{2k}d\ne 0$ then $2k=2^i+2^j-2$ or $2k+1=2^i-1$. Suppose $Q^{2k}d\rightleftharpoons 0$. Then since $Q^{2k}d=(Q^{k-1}d)^2\ne 0$, we see $Q^{k-1}d\rightleftharpoons 0$. If k-1 is odd, then by the hypothesis of the induction we have $k-1=2^i-1$, that is, $2k=2^i+2-2$. If k-1 is even, then $Q^{k-1}d=\left(Q^{\frac{k-1}{2}-1}d\right)^2\ne 0$. Hence $Q^{\frac{k-1}{2}-1}d\rightleftharpoons 0$. If $\frac{k-1}{2}$ is odd, then by the hypothesis $\frac{k-1}{2}-1=2^i-1$, that is, $2k=2^{i+1}+2^2-2$. If $\frac{k-1}{2}-1$ is even we can repeat the same argument. Thus if $Q^{2k}d\ne 0$, we see then

that is, $2k=2^{n+i}+2^n-2$ or $2k+1=2^{i+1}-1$. Hence if $Q^{2k}k \neq 0$, then $2k=2^i+2^j-2$ or $2k+1=2^i-1$. Hence $Q^{2k+1}d=0$ for $2k+2\neq 2^i+2^j$. The lemma is thus proved.

Lemma 8 contains theorem IV a). It remains the proof of IV b).

Lemma 9.

$$Q^{2^m}d = \sum_{i=1}^{m-1} c^{2^{m}-2^{i+1}-2} d^{2^i}$$
.

Proof.

$$Q^{2^m} d \cdots (Q^{2^{m-1}-1} d)^2$$
 (by lemma 7.1)

$$= (\sum_{j=0}^{m-2} c^{2^{m-1}-2^{i+1}+1} d^{2^i})^2$$
 (by lemma 8)

$$= \sum_{j=1}^{m-1} c^{2^m-2^{i+1}+2} d^{2^i}.$$

PROOF OF THEOREM IV b).

$$\begin{split} Q^{2^{m+i}+2^{i+1}-2}d &= (Q^{2^{m+i-1}+2^{i}-2}d)^2 = \cdots \\ &= (Q^{2^{m+1}+2^{2}-2}d)^{2^{i}-1} \qquad \text{(by lemma 7. 1)} \\ &= (Q^{2^m}d)^{2^i} = \sum_{j=1}^{m-1} c^{2^{m+i}-2^{i+j+1}+2^{i+j}}d^{2^{i+1}} \qquad \text{(by lemma 9).} \end{split}$$

REFERENCES

- [1] A. Dold: Erzeugende der Thomschen Algebra R, Math., Zeit. 65 (1956), 25-35.
- [2] D. B. A. EPSTEIN and R. L. E. SCHWARZENBERGER: Imbeddings of real projective spaces, Ann. Math., 76 (1962), 180—184.
- [3] A. HAEFLIGER: Plongements différentiables de variétés dans variétés, Comment. Math. Helv. 36 (1961), 47-82.
- [4] M. Mahowald: On obstruction theory in orientable fiber bundles, Trans. Amer. Math Soc., 110 (1964), 315-349.
- [5] W. S. MASSEY and F. P. PETERSON: on the dual Stiefel-Whitney classes of a manifold, Bol. Soc. Mexicaoa, 8 (1963), 1-13.
- [6] N. E. STEENROD: Cohomology operations, Priceton Univ, Press, Princeton, N. J.,
- [7] R. Thom: Espaces fibres en spheres et carres de Steenrod, Ann. Sci. Ecole Normale Sup., 69 (1952), 109—182.
- [8] J. J. Ucci: Immersions and embeddings of Dold manifolds, Topology, 4 (1965), 283

 -293.

DEPARTMENT OF MATHEMATICS,
OKAYAMA UNIVERSITY

(Received May 1, 1966)