IMBEDDINGS OF DOLD MANIFOLDS
TAKUuO FUKUDA.

Let P(m, n) be the manitold defined by A. Dold [1], that is the
manifold of dimension m-+2n obtained from S™X PC(n) by identifying
(x,z) with (—=x,2), where S™ is tke usual m-sphere and PC(n) is the
usual complex projective n-space, and x&S™ is the antipodal point of
x&S™ and zE PC(n) is the complex conjugate point of z& PC(n). The
purpose of this paper is to obtain an imbedding and non-imbedding theorem
for these Dold manifolds in euclidean space.

In this paper we say that a homeomorphism of P(m, »n) into a euclide
an k-space is an imbedding if it is differentiable and regular.

This paper consists of two parts. In the first part we have an imbedd-
ing theorem.

Theorem 1. Let H be the normal line bundle of the cannonical
imbedding of P(m, n) imto P(m+1,n). If P(m, n) can be imbedded in a
euclidean k-space with normal bundle N so that NQH has a nonzero
cross-section, then P(m-+1, n) can be topologically imbedded in a (k+1)-
space.

By A. Haefliger [3], if 2k>3(m-+2n--1) then this can be approxi-
mated by a differentiable imbedding. Finding the obstructions to the
existence of a non-zero cross-section of NQH we have

Theorem 2. Suppose n>0 n=0 mod 2 m=1 mod 4 and 2n-+m==
28 +1, Then P(m,n) can be imbedded in (2m+4n—2)-space.

In the second part we make an application of Thom's Non-Imbedding
Theorem[7]. We calculate the values of the inverse automorphism @ of
the total Steenrod square Sg¢ on H* (P(m, #);Z,) and we have

Theorem 3. Suppose n=2' and m=2F— 27" 27>0, where j<i.
Then P(m,n) can not be imbedded in (2m+4n—2)-space.

Massey and Peterson showed that a manifold of dimensions 7542’ can
be imbedded in (2n—1)-space[5], so the result is best for 2n-+ms£2"
Recently J. J. Ucci got the best result for the same codimension in the
cases of the types (0, 29, (2/,2%);0</7<i, (2/—1,1); j=1, and (m, 29;

y _ot+l __
2+t < and (2m 1 31 1) =1 mod 2, [8]. A part of theorem III is com-

mon to J. J. Ucci’s second type.
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Notation: Let X/~ denote the quotient space of X by the relation
~, for example S™x PC(n)/(x,2)~(—x,z) denotes P(m, n). ACB
means that A is topologically imbeddable in B.

Part I

1. Proof of theorem I.

The proof of this theorem is the same as the one in [2] for =0, "and
also analogous to it for the other cases. Let V be a tubular neighborhood
of P(m,n) in P(m-+1, n). Since H is then the normal line bundle of the
cannonical imbedding of P(m, n) into P(m-+1, ), V can be naturally
imbedded in H. Let I denote the trivial line bundle over P(m, n). 'If L,
M are two vector bundles over P(m, n), let Hom(L, M) be the bundle
whose fiber at p is Hom(L,, M,), where L, and M, are fibers at p
respectively. Then Hom(H, I)=~H and so NQH =~ N Hom(H, I) ==
Hom(H, N). A non-zero cross-section of N@H is also a non-zero cross-
section of Hom(H, N), that is, an imbtedding of H as a subbundle of N.
So if there exists a non-zero cross-section of N H, we have an imbedding
of H into N, and by the natural imbedding of V into H we have VCH
CNCR- |

* Observe the cellular structure of P(m-1, n).

P(m+1,n)=S""'x PCn)/(x, 2)~(—x, 2)
=*S§"*' % PC(n)/ (%0, 2)~(— %0, 2),

where *S™'! is the upper half of S™" and x,, —x,=S™ Therefore V is
homeomorphic to [0, 1) xS™X PC(n)/(0, x, z, }~(0, —x, z). Let D™ de-
note a disk of dimensions m+1, and let X and X dcnote the closure and
the boundary of a set X respectively. Then P(m+-1, n)— V=D"*"'x PC(n)
and we have P(m-+1, n)=V\UuD"*'X P C(n), here V\U..D™'x PC(n) is a
cell complex which is obtained by attaching D™*'x PC(n) to 174 by the
attaching homeomorphism, i. e, id: D"“"'x PC(n)== V. Hence

Pim—+1, NYCR*XR'CR*"', Q.E. D.

2. The obstructions (proof of theorem II).

2.1 Obstruaction theory.  Massey and Peterson showed that for any com-
pact differentiable manifold M of dimensions n#2" there exists an im-
bedding of M in a (2n—1)—space [5]. Let N denote the normal bundle
of the imbedding of P(m, n) in a (2m+4n—1) —space for m-+2n2"
Then N@H is an (m-+2r—1)— plane bundle over P(m, ). In order to
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find a non-zero cross-section of N H, we need observe only the primary
and the secondary obstructions to the existence of a cross-section of its as-
sociated S™***~*—bundle.
We see from M. Mahowald [4] the following.

1). The primary obstruction is the Fuler class

X(NQH)=H™ (P(m, n); Z)

2). If X=0, there exist many extentions of the cross-section to (s -I-
2n—1)-skelton of P(im,n). The set of the secondary obstruction classes in
H™*(P(m, n); Z,) for such extended sections is a coset of the group
(Sg* +w)H™***(P(m, n) ; Z). Hence if

(Sg*-1-wo)H" >~ *(P(m, n) ; Z)y=H™*(P(m, n); Z),

then we have an extention of the section to P(m, #), where w; denotes
the Stiefel-Whitney class.

'2.2. The Euler class.
Proposition 1. H™ ™ (P(m,n); Z)=0 for m+n=even,
ie, X(NRH)=0 for m-+n=even.

Proof. ‘We consider the cellular decomposition and the boundary
operator of P(m, n) in Dold’s [1]. The notations of cells are the same as
in [1]. &(C, D)=1+(—1)"*))(C;.,, D). Let (C, D’) denote the cochain
which assigns 1 to (C, D;) and 0 to all other (i--2j)-cells. Then the
cochain group C**™(P(m,n); Z) is generated by (C™7', D*).

6(C™, D'Y(Con, D) =(C™7, D,)(E(Cam, Da))
=(C", D")Y(1-+(—1)"**Coicr, D)) =2
for m-tn=ecven.

So Z#*™ Y P(m, n); Z)=0, and H*** ' (P(m, n); Z)=0 for m-+n=even.

2.3 The class w,(NQH).

Let T.. denote the tangent bundle of P(m, n), and let%, denoto
the normal bundle of the cannonical imbedding of T, .., into T... Let
¢ and d==c¢® be the generators of H'(P(m, n);Z,) and H*(P(m, n); Z)
respectively.

To prove lemma 2 we use the following Dold’s result 1] and the well
known fact with respect to the Stiefel-whitney classes of the tensor product
of bundles.

(@) 1) w(Tn.)=QQ-+c)"(L+c+d)"", especiallzy w(T,,)=1.
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2) wNy)=1+c-+d).

3) Tnn@PH=g*(Tms.), where g is the cannonical imbedding
of P(m, n) into P(m-t1,n)

4) T,na®Ry=1*(T,. ), where f is the cannonical imbedding
of P(m,n—1) into P(m, n).

(b) Let ¢ be an r-vector bundle over X with w(¢ )=J:E(1 +a,c) and

7 be a g-vector bundle over X with w(y) =Jﬁ(1+ﬁ,c), where cE H(X; Z,).
=1
Then w(¢®7)=TT(L-+-(ot+3)0).

Lemma 2.
1) w(T. . @H)=(1+c)'
2) w(PQH)=1+c+ d).

Proof. 1) w(T.)=1 and w(H)=1-+c¢, hence by (b) we have im-
madiately w(7,,QH)=(1-c)'\

2) Consider the restriction of 9,QH to real projective space PR™
of dimensions m(C P(m, ). ). Let N;|pzm and H|pz» denote the restric-
tion of N, and H to PR™ respectively. Then by (a) we have w(RNr|pzm)
=1+c¢, and w(H|pgm)=1+c. By (b) w(Nr|pem@H|pen@H|pzm) = 1+c.
Hence w(N,QH) is equal to whether 1+¢ or 1--c+d. If we suppose
wRH)=1+¢, then by (b) we have w((NQH)RH)=1+c. but
N RHRH =Ny, and so wR:RQHRH)=w(I;)=14c+d. This is a
contradiction. Hence we have w(R,QH)=14c¢+d.

Lemma 3. w (T, QH)=[(1+c+d)* "], for i=1,2, where [ ]:de-
notes the i-dimensional component.
Proof. If we leave out of cosideration of the classes of dimensions=
3,
(T W @H) = (T, -1 QH (RO H )
=wW( T QH ) w(H:QH))**
= W{(To-1, DH)QH )(w (I QH))" ™
= (T -1, QH)w(HYH)wItyQH))"
=w(T2,@H )N w( HRH )" *(w(Nr:QH))"™
=(1+c) A +c+dy!
=(1+c+d)"

Proposition 4. Suppose m and n are even. Then NQQH is an
orientable bundle and
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w.(NQH)=c*+d for n=2 mod 4
wANRQH)=d for n=0 mod 4.

Proof. (Tn.DNYQH=I"**"1RQH, so
W(Tn QH)w(NQH)=w (I QH)=(1+c¢)"**'. If m and » are even,

then (1+¢)"* ™ '=(1+4c+c*+-+---), And
wW(TnQH)=1+c+d+ - for m is even and n=2 mod 4,
W( Ty eQRQH)=14c+d+c>+ e for m is even and #n=0 mod 4

Hence we have the proposition.

24 (Sq*+wy)H**"™}P(m,n);Z)

Lemma 5. Suppose m+n is even. Then H”‘“"‘"é(P(m, n);Z2)=2Z+Z,,
which is generated by the cohomology classes of cocycles (C™ D*™*) and
(C™%, D",

Proof. Cochain group C**™ *(P(m,n) ; Z)={(C™,D* ")} + {(C* %DM}
o(C™ D 'Y C,,-1, DY)=0, so &(C™ D" )=0.

3(C™%, D")(Cpr, Dn)=(C™%, D")(6(Cpuy, D))
= (Cm—‘:’ Dﬂ)((l +(__1)m+7z—1)(c ~23 Dn)): 0’ SO
6(C™2, D")=0: Hence Z*"*P(m, n); Z)={(C™, D)} +{(C™ Da)}.
On the other hand,
8(C™, D*N(C,, Do) =(C™, D> N(A+(=1)"*"" ) Cppey, Daa))=0, s0
3(C", D) =0.
(C™% D" Cu-zy D)= (C™3, D')(14+(—=1)""""*)(Cpos, Da)=2, sO
o(C™3, DMN=2(C™ % D"). Henceif m-+#n iseven, then
H**™P(m,n) ; Z)={(C™, D"} +{(C™?2 DM}/ {2(C™2 D)} =Z + Z..

Here {x} denotes the free group generated by x.
Let [x] denote the cohomology class of x. Then

ng[( Cm—z’ Dn)] — (m 5— 2) cdr +- (m -1— 2) (r)cmdu.
spl(cr, D =("7 1) ema

Hence we have thethe following table.

m,umod & | w. H*™"*(P(m, n); Z) | SHC™, D")| SHC™, D)

n=0 and m=0. H**™( P(m, n); Z,) cmd® cd"
n=2 and m==0. 0 0 cd"
#=0 and m=2. H**(P(m, n); Z) 0 c"d”
n=2 and m=2. 0 cnd” car
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Hence if #=0 mod 2 and m=mod 4, then (Sq¢*-+w?*) H™*"*(P(m, n);
ZYH**"(P(m, n); Z,, that is, then NQH has a non-zero cross-section.
By theorem I we have theorem II.

Part II

Let Sqg denote the total Steenrod square. It is known that Sq is an
automorphism of the mod 2 cohomology ring H*(X; Z,) of a space X
such that HY(X: Z,)=0 for all sufficiently large g. We will denote the
inverse automorphism by Q and its component of degree i by Q' @'=1,
and Q' can be defined inductively by the relation 3 @Q'S¢’=0. The

i+f=R
following properties of @' are immediate.

Lemma 6.

Kk
1) Q%xey)= 3\ Q(x)-Q*"(y). (Cartan formula.)
J=0
2) Q2n+1: ansql.
3) Qﬂn-#l Sqi‘k-(-l:o'
4) Suppose x= H' (X ; Z.). Then Q*x=0 for k%2"—1 and Q*x=x" for
k=2"—1. ' .
In this part we use R. Thom's Theorem: If Y isa compact space
such that, for some i, »>0 ‘ '

Qt: HT(Y; Zg) - Hr-H( Ir’.ZB)

is not zero, then Y is not imbeddable in S™**[7].

We remember H*(P(m, n) ; Z,) and Sq' operating on H*(P(m, n) ;
Z,) given by [1]. ,
I. Cohomology ring H*(P(m, n) ; Z%) is generated by ce H(P(m, n); Z,)
and deH(P(m,n); Z,) with ¢c**''=0 and d"*'=0.
1. Sq'd=cd.

Then theorem III follows from

Theorem 1V.
m—l 9 9 7 L
a) Q?m—]d_:_ Z: C,_Al(—_if]'F]dﬂ :
j=0

R S T et e Al

by @ d=Z] ct
=

In this part all calculations will be done mod 2.
3. Proof of theorem IV,
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Lemma 7.
1) Qth: (Qt—ld)2'

2) sz—2d=d3m—1.
Proof. 1). Q¥d= > Q'S¢’d=@Q"'Sq¢'d +Q**S¢’d

f1+j=2k

=Q*"g* by lemma 6. 3)
= > Q'd Q’d,

i+j=2k-2
the terms vanish except the middle term,
—_ Ql:—lko—ld: (Qk—ld)z.

2). By1l)
Qim-2d=(Q2m—I_2d)e: e — (Qﬂd)zm—1=d2m—1.

Lemma 8.

0 *for 2k+15£2"—1

Q2k+ld= {m_l ')m—21+1+l 2i ' ” -
>c d for 2kR+1=2"—1.

i=0
Proof. This is proved by induction. It is clear that Q'd=cd for
2k+1=1. Suppose 2k+1=2"—1 for an integer »{(>0) and that the
lemma is true for all odd numbers <<2k+1. We have by lemma 6. 1

Qz'"—ld = Qisqjd — sz—zcd - Q2"‘-3d2

i+j=2m—1
= 37 Q'¢Qd+ > Q'dQid.
1+ j=2m—-2 t+j=2m-3

Because the second sum vanishes, we have by lemma 6. 4, lemma 7. 2 and
the hypothesis of induction

Qﬂm—]d= th—lcQﬂm—zh—ld_
— 2 Q2(—10Q21~1d+CQ2m-2d

olyogmat

m—1_ m—1_ m-2
=Q2 ICQE 1d+ch d

m—1 m—1_,t41 < =1
=c¢¥ P TP Y ed?
j=0

=”il cﬂ’"—.’!“ 1+1d2‘
i=0 )
Hence we have proved the case 2k +1=2"—1.
Suppose 2k+152"—1 for any integer m and that the lemma is true
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for all odd numbers <<2k+41, Then
Q*"d=Q%d= X Qz‘—chzf—ld +cQ%d.

alyalasisn
a). If 2k+2=2'+2' for some i>j, then
Q2Ic+1d:cQ2‘+z-’--zd+Q2‘—10Q21—1d+sz—lcQz'—xd

1d_y ,4) TR I e RS h
___cQa ldz +cﬁ(zcz 3 +ld2)
r=0

+¢ (3 - g,

he=0
We apply lemma 7. 1) for the first term and the hypothesis of the induc-
tion for the second and the third terms. We then see that the above equals

i J-1

1, ,J_gh+1 n [
DALY LIE S P
h=j =0

33 tealoghtlyg g
+h2_0c d* =0
b). If 2k+222'+2’ for any {>j, then Q**'d=cQ*d. In order to show
Q*¥d=0 for such 2k, it is sufficient to prove that if @*d<~0 then 2k=
2'+2/—2 or 2k+1=2'—1. Suppose Q*d30. Then since Q*d=(Q"'d)’
#0, we see Q*'d30. If %2—1 is odd, then by the hypothesis of the
induction we have k—1=2'—1, thatis, 2k=2'+2—2. If k—1 iseven,

then Q“id=(gT)'5£0. Hence Q7 'dx0. If ’%—1- is odd, theu by

—2h+l+ldﬂh

the hypothesis % S L_1=2—1, thatis, 2k=2"'+2'-2 I 'k;l -1
is even we can repeat the same argument. Thus if Q*d%:0, we see then
k-1
—1

that is, 2k=2"*'+2"—2 or 2k +1=2""'—1. Hence if Q%*k=0, then
2k=292'+2/—2 or 2k+1=2'—1. Hence Q**'d=0 for 2k+2+#2'+2.
The lemma is thus proved.

Lemma 8 contains theorem IV a). It remains the proof of IV b).

Lemma 9.

szd _ E’ 62»._2t+1_,d21
i=1



IMBEDDINGS OF DOLD MANIFOLDS 89

Proof.

Q7d--(@" Y (by lemma 7.1
_ (1“2—362m_1_2(+1+1d2{)2 (by lemma 8)
J=0

-1
=mZ cam_gi+l+2dzi
j=1

PROOF OF THEOREM IV b).

[7]
(8]

Qi g (@ T gyl
=(Q gy (by lemma 7. 1)

m m-1
=(Q7af' =%¢ d

mAdl_gi+ S+l g0 +] ai+l

(by lemma 9).
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