AUTOMORPHISMS OF ALGEBRAS AND A THEOREM
CONCERNING NORMS

KATSUHIKO MASUDA

When a new theorem is obtained in the theory of non-commutative algebras
as a generalization of a well-known theorem in the theory of fields, the follow-
ing question arises rather naturally : What a thing new does the generalization
introduce into the proper theory of fields? Sometimes one can find an answer
to it readily in a proof to the generalization. This paper will be devoted to ob-
taining such a proof to the following theorem :

Theorem 1. Let K be a field, A a normal simple algebra over K
of finite rank, o a ring-automorphism of A, B the set of elements that
o keeps unchanged, and k the intersection BMK of B and K. Suppose
that the rank [K:k] of K over kis finite and BK is simple. Then, there
exists, for each simple subring H of A containing B, a ring-automorphism
v of A, such that H coincides with the set of elements of A that - keeps
unchanged. Conversely, let i be an arbitrary rving-automorphism of A
that keeps each element of B unchanged, then the set M of elements of A
that n keeps unchanged is a simple ring.

The new point of this theorem lies in that it does not exclude the case
when k is a Galoisfeld, which was open hitherto. When % contains infinitely
many number of elements, it coincides with the known generalizations” of Bort-
feld’s theorem®, due to Nagahara, Tominaga, and Inatomi, up to formulation
of the condition. Our proof is self-contained, and we do not need the Galois
theory of rings as its prerequisite.

Chapter I, consisting of four sections, is devoted to reducing the proof of
Theorem 1 into a proof of a theorem (Theorem 3) belonging to the proper scope
of the theory of fields. Chapter II, consisting of three sections, is devoted to
proving Theorem 3. These two chapters are independent to each other except
the point that combining them furnishes the proof to Theorem 1, our main
theorem. In §§1-2, we shall give a lemma (Lemma 1) and a theorem (Theorem
2). In §3, we shall prove the last part of Theorcm 1, and reduce the proof of
the rest part to a proof to a certain special case (stated in Lemma 4). In §4, we
shall complete the desired reduction.

In §5, we shall study polynomials and simple extension of fields. In §6,
we shall study the form that gives the norm mapping. After preparations in

1). Cf. [2] and [3]. We consider only the case that [A: K]<-», though the case that [4: K]
=co is disscussed in these papers.

2). Cf. 1.
39
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§§ 5-6, we shall prove Theorem 3, in §7, and complete the proof of Theorem
1.

Chapter 1. Ring-Automorphisms of Algebras.

1 Lemma.

Lemma 1. Let k be a field, K a finite algebraic extension field
of k, separable and Galois over k, A a ring that contains K in its center
and is of finite rvank over K, and B a subring of A having k as its
inteisection B K with K. Suppose that BK is simple. Then, for an
arbitrary subring H of BK containing B there holds that H is simple,
BK is isomorphic with the tensor product HR.K of H and K over the
intersection L of H and K, H=BL, and, moreover, H is isomorphic
with the tensor product BRQiL of B and L over k.

Proof. Let H be as stated in the lemma. As, from the supposition, BK
is simple and K is contained by the center of A, H can not have the radical,
and the center W of BK is a field. As W coincides with the centralizer of B
considered in BK, the center V of H is the intersection HN\W of H and W, so
WO VDOK. As Wis an extension field of K of finite rank over K, V is a field.
Then H is simple.

Obviously, VNK=HNK=L. As K/L is separable and Galois, VK is
isomorphic with the tensor product VQ;K of V and K over L. On the other
hand, as K/L is separable, the tensor product H®.K of H and K over L is
semisimple, and so, the center of HK coincides with the natural image of the
center of HR;K. The center of HY:K coincides with VR, K=VKCW.
Therefore, the kernel of the natural mapping of HX);K onto HK=BK(CA
consists only of 0, so BK=H;K, and W= VK,

Let F denote BL. As F is a subring of BK containing B, from the above
proof it follows that F is simple. Obviously, H D F, and FIN\K=L. Applying
the above proof to F in place of H, we obtain that BK=FK is isomorphic
with the tensor product FQ,K of F and K over L. Then we obtain [H: L]

+[K:L]=[BK:L]=[F:L] [K: L] Hence [H: L]=[F: L], so H=F
~BQ:L,q.e d.
2. The subring charactrized by " Let K be a field, A a normal
simple algebra over K of finite rank, ¢ a ringautomorphism of A, B the
subring of A consisting of elements of A that & keeps unchanged, and % the
intersection of B and K. Suppose that the rank of K over k is finite. Then
it holds

Theorem 2. The set of all elements of A that ¢ keeps unchanged
coincides with BK, where we denote the rank [ K: k] of K over k by n.

Proof. Let K be an extension field of & equivalent witn K/k, and let A



AUTOMORPHISMS OF ALGEBRAS 41

denote the tensor product of A and K over k. As, from the supposition, K/k
is separable, 4 is semisimple, having K®,.K?®) as its center. There exists a set
of # mutually orthogonal idempotent e¢;, e,, -, ¢, belonging to the center of A,
such that 1=¢,+e,+ - +e, We denote Ae(i=1,2, -+, n) by A, Each 4,
is isomorphic with A. As ¢ keeps each element of & invariant, there exists a
ringautomorphism & of A satisfying
1 (aRa) =a" R« (aQaEAd; ac A, a=K).

Applying a suitable permutation to the suffices, if necessary, we can, as is well
known, suppose that

e1" =€, 67 =¢3 -+, 0,7 =¢).
From now on, we suppose it, without any loss of the generality of our proof.
Obviously, the set of all elements of A that & keeps unchanged coincides with
BR:K. " keeps each e, with i=1, 2, --+, n unchanged, induces a ring-auto-
morphism of A'. Then an arbitrary element Z of A is kept by & unchanged, if
and only if @ can be written as a=ae; -+ (@es)v -+ + (@e)"" ! and ae, is kept by
5" unchanged. Then the projection of BR:K into A, coincides with the set of the
elements of A, that & keeps unchanged, and so we obtain that the direct sum

(B®k7{)ei +(B ®ET{-)62+ vt (B®kR)e1n
of (B®kl_()e¢CAT with =1, 2, -+, # coincides with theset M of the elements
of A that 5" keeps unchanged. Therefore,

M=B(K®:K)=(BK)®:K CA=AR:K.
As BK coincides with the intersection of A and (BK)X.K, we obtain AN\M
=BK, which certifies the theorem, q.e.d..

3. Reduction 1. Let K be a field, A a normal simple algebra of finite rank
over K. Let & be a ring-automorphism of A, B the subring of A consisting
of the elements of A that & keeps unchanged, and % the intersection BN K of
B and K. Suppose that the rank n=[K: %] of K over %k is finite. Then "
is an inner automorphism of A, and there exists a regular element s of A such
that

(2) & =sas™ (as A).

=g, and so, from Theorem 2, it follows

(3) sEBK.

The subring K[s] of A generated dy s over K is contained by the center U
of BK, and BK coincides with the centralizer of K [s] considered in A.
From now on, throughout Chapter I, we suppose that BK is simple. Then

Obviously, sss~

3. Cf [4).



42 K. Masupa

U is a finite algebraic extension field of K, and K[s] is a field: K[s]=K(s).

Then as is easily seen, K(s) coincides with U, which we state as

Lemma 2. Let s be a regular element of A satisfying (2), and sup-
pose that BK is simple. Then K[s]is a field and coinsides with the cen-
ter U of BK.

Let @ be an,arbitrary element of A. Obviously,

4) 57a°(s°) '=(sas" ) =(a)* =(a&)"=sa’s"},
and thus s and s” determine the same inner automorphism of A, so, we
obtain

n+1

¢ =s5"s'e K.
Then, Neut=1, and, as K/k is cyclic, there exists a regular element 7 of K
such that

C—-l — _q —1770’ .
Let s, denote s;. As easily seen, s, belongs to the intersection of B and
K(s), and satisfies (2). From Lemma 2 follows K(s,)=U. Let U, denote the
intersection UN\B of U and B. Obviously, U, coincides with the center of
B, and there holds UMNK=~k. As K[k is separable and Galois,
CU: U] [Us: k]=[K:k] [Us: k]=[K(so) : ] =[K: k] Tk(s0) : ],
hence, [U,: k]=[k(so) : k], and U,=Ek(s,), which we state as

Lemma 3. Under the supposition of Lemma 2, there exists a regular
element s, of the centerU, of B such that s, satisfies (2) and generates U,
over k.

Lemma 4. Let ¢ be a ring-automorphism of A keeping every element
of B unchanged. Let B, be the set of the elements of A that - keeps un-
changed, then B, is simple.

Proof. Let k, denote the intersection B, K of B, and K. The rank
m of K over & is a divisor of #. From Theorem 2 it follows that B, K is the set

of the elements of A that ™ keeps unchanged. Obviously, =™ is an inner
automorphis m of A, and there exists a regular element t of A such that
a =tat™ (e A).

As, from the supposition, ¢ keeps each element of B unchanged, ¢ belongs
to the center of U= K(s,), so, ¢ generates a field over K. Obviously, B.K
is the centralizer of K{#). Hence B,K is simple and has K(¢) as its center.
Applying Lemma 1 to K/k, and B,K, we obtain that B, is simple, g.e.d..

Let H be an arbitrary simple subring of A containing B. Let B’ denote the
intersection HNBK of H and BK, k' the intersection B'/N\K of B’ and K,
and m' the rank [#/:k] of &' over k. Then it follows readily from Lemma 1,
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that B’ is simple and coincides with the set of the elements of A that ¢'=¢"
keeps unchanged. Considering B/, %', and &', in place of B, k, and o, we
obtain the following

Lemma 5. For the proof of the existence of = for H as stated in

Theorem 1, it is sufficient that we give a proof fo it under the supposition
of HNBK=25.
4. Reduction II. Let H be a simple subring of 4 which contains B and
whose intersection HMBK with BK coincides with B. Then, obviously,
HNK=BNK=Fk. The centralizer V of H considered in A is contained
by K(s,), is algebraic simple extension field of 2, and coincides with the center
W of HK; V=W. The center Z of H coincides with the intersection HN\ W.
Obiously, HNW=HNBEKNW=BN\W=BNK(sdN\W=Fk(s)) \W. So, Zis
an algebraic simple extension field of %: there exists a non-zero element #, of
Z such that Z=Fk(#,). From Lemma 1 it follows W= K({#,), and HK is isomor-
phic with the tensor product HQK of H and K over k. Therefore, there
exists a ringautomorphism ¢* of HK such that

&) ht=p, aF=ox (ke H, aE K),

where we denote the restriction of ¢ into K by oz Let f be an arbitrary
regular element of A. We denote the inner automorphism of A given by
the mapping a—faf(e=A) by f* Obviously, %' induces an inner
automorphism of HK. Hence there exists a regular element # of HK such
that the restriction of #* into HK coincides with ¢*s~". We denote the
ringautomorphism #*s of A by 1. So, the restriction of p into HK coincides
with o*. Therefore, 2 keeps every element of H and # belongs to the center
W of HK. Let H, be the set of the elements of A that s keeps unchanged.
From Lemma 4 follows that H; is simple. Let v denote SolNww,u. Obviously,

(6) v¥ =y

Then, from Lemma 3, we obtain that there exists a non-zero element v, of the
center Z; of H, such that »,*=v" and k{(2) coincides with Z,, Now, we sup-
pose that there exists a regular element w in the center W of HK such that
v1=0, Nyjz, w generates Z over k; k(v;)=Z. Under this supposition, we can
prove that there exsts a ring-automorphism = of A such that H coincides with
the set of the elements of A that = keeps unchanged, as follows; let r=puw?,
and let F' be the set of the elements of A that = keeps unchanged. As is easily
seen, FK is the centralizer of K(v:) in A. As, from the supposition, K (2))
=ZK=W, we obtain FK=HEK. FN\K=Fk, and HKD F D H. Then it
follows readily from Lemma 1 that F=H. Thus, the proof of Theorem 1 is
reduced to the proof of the following
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Theorem 3. Let L be a field, M, K be subfields, and k the intersec-
tion of M and K, respectively. Suppose that L is equal to MK and is of
finite rank over k, Kk|E is separable and Galois, and, moreover, M/[k
is simple extension. Then there exists for each non-zero element c of M a
non-zero element d of M such that ¢ Nynd generates M over k;
M=Fk(cNyud).

The proof of this theorem will be obtained in § 7 in the next chapter.

Chapter II. Norms and simple extensions.

5. Polynomials and simple extensions. We state the following lemma
without proof.

Lemma 6. Let L be a field, M a subfield. Let F(X;, X, X)) be a
polynomial of r independent indeterminates X, with i=1, 2, ey 7 with
coefficients in L. Let mi(i=1,2, ---, r) be natural numbers such that each
myis properly greater than the degree of F with reference to X, respec-
tively. Suppose that there exists a set of m elements a, ; of M with suffices

i=1,2, e, 7 and j=1, 2, ---, m, such that F(a, By * a,jr) e M for each

5
pair of J's with 1<j7,<m, and ai><a for j=xj', where we denote
TT m, by m. Then F(Xi, -, X,) is a polynomial of Xi's with coefficents
i=1
in M.

One obtains its proof by the mathematical induction with reference to »
without any difficulty, and we omit it.

Lemma 7. Let L be a field, and M a subfield. Suppose L| M is an
algebraic simple extension. Let F(X,, Xi, -+, X,) be a polynomial of r
in dependent indeterminates with coefficients in L such that L is generated
by the coefficients of F(X,, -+, X,) over M, and suppose that M contains
infinitely many elements. Then there exists a set 9 of sufficiently many
points p of the r-space over M such that, for each p of AN, F(p)=F(p; P
s, py) generates L over M, and it holds ps~q. for each pair of distinct
two points p, q of U, where we denote the i-th coordinates of p and q by
P and q,, respectively.

Proof. let £ be an algebraic closure of L, and s denote the rank
[Ls: M] of the maximum separable extension L; of M contained by L. Let
ai(i=1, 2, +++, s) be this distinct isomorphisms of L/M into £/M. Let D(X,
X, +o+, X,.)=i'|<_£ (F°t— F°5). Then, from the supposition, D50, and there

exist point sets 2 of points p, ¢,--+ of the »-space over M such that D(p)=D
(p1, ==, P,)5%0, and p,5%q:(i=1, 2, -, r) for each pair of points p, ¢ (p5q)

in . As, from the supposition, L/ M is simple extension of finite rank, the
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intermediate fields between L and L, are linearly ordered (in a finite length) by
inclusions. Suppose that this lemma is false. Then, for each %I, we can not
generate L over M by F(p) with p€9.  On the other hand, we can take [
with sufficiently many p&EN satisfying M(F(p)) 2 L,. We can readily obtain
a contradiction, considering both Lemma 6 and the supposition that the coeffici-
cents of F generate L over M. The rest is trivial, q.e.d..

6. The generic form of norms. Let G be a finite group of order n, @
the rational number field, X, and Y, 2n independent indeterminate with
elements g, # of G as suffices. Let F(XY') be the polynomial of X’s and Y'’s
with coefficients of rational integers given as

M FEY)=TI(S Xa¥)EQLX, -+, ¥, 1.

We call it the generic form of norms with reference to G. Let y denote a
monomial ¥ Y-+ Ygn of Y’s of degree n:

R=i1% 1y~ = +in.
Let P/X) denote the coefficient of y in F(XY) arranged as polynomial of
Y's with coefficients in Q[ X, ---, X; ]. We fix a linear order of elements of

G, denote X,(Y,)by X (Yi), respectively, so as to obtain the lexicographic
order of monomials of X’s. Let 7, denote the rational integer that appears as
the coefficient of the highest term of P,(X). As is easily seen, P,(X)5=0
and r,=1, for every finite group G and every y as stated above. For exam-
ple, let G be a cyclic group of order 4. Then
F(XY) =X+ XV, + XY, + X,Y) (XY, + X, Y, + X, Y.+ X, 1))
(X Y+ XY+ XGY, X Y) (X Y+ XY+ XY+ X, Y)).
Let y be, for exampl, Y,"Y3Y,. Then the highest term of P,(X)is X*X*
Applying the natural mapping of the ring of rational integers onto the

prime field of characteristic p5=0, if necessary, we obtain

Lemma 8. Let k be an arbitrary field and let F(XY) be the generic
Jorm of norms with reference to a finite group G of order n, considered
as polynomial of X’s and Y’s with coefficients in k. Then every monomial
of Y's of degree n appears in F(XY), having a polynomial of X's (with
coefficienls in k) or positive degree as its coefficient.
7. Proof of Theorem 3. Let L be afield, M and K subfields of L, and
let % be the intersection MM K of M and K. Suppose that L=MK, L is of
finite rank over k, M/k is an algebraic simple extension, and, moreover, K/k
is separable and Galois. Let ¢ be an arbitrary non-zero element of M. Now,
we distinguish the following two cases: Case 1. Suppose that % is a Galoisfeld.
Then, from the supposition, L is a Galoisfeld, and, as is well known, every

3). Cf. 4.
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element of M is a norm of an element of L%). Let 2 be a non-zero element of
M such that M=~k(m). There exists an element d of L such that

(8) "= Nyd.
Then the theorem is obvious®).

Case 2. Suppose that % contains infinitely many elements. If M=k%, the
theorem is trivial. Hence we suppose that the rank m of M over k is properly
greater than 1. Let F(XY) be the generic form of norms with reference to the
Galois group G of L/M. We determine a linear order of the elements of G,
fix it throughout the rest of this paper, and use it as in the proof of Lemma 8.
Let n=[K:k], and {w%; g, G, i=1,2, -, n} be a normal basis of K/Fk.
We denote w’ by w,. Let U/(i=1, 2, -+, ) be n independent indeterminates,
and let

9) uj={2”.w,"JU, (7=1,2, -, n).
=1

As the determinant of the coefficients of (15) is not equal to 0, from Lemma 8
follows that every monomial 3’s of Y’s of degree » appears in F(uY)=F (u,,
“y Uny Yy, oo+, Yy), where we denote Y, by Y, as before. As, from the

supposition, k contains infinitely many elements, we can find z elements p;
(i=1,2, -+, n) of K such that every monomial ¥ of Y’s of degree n appears
in F(Y), having non-zero coeffieient P,(p), where P,3) denotes the element
of L obtained from P,(X) through the substitution (specialization) X;—p; with

(10) 51 = ZUlo'th + w:gipg"‘:" vee u)nﬁpn (i‘ = 1, 2, Yy 71).
P.’s belong to K and as is easily seen, P,(p) belong to k. Let v,(j=1, 2, ---m)
be a basis of M/k, and Wi(i=1,2, -, nand j=1,2, -+, m) be nm indepen-
dent indeterminates, and w; be such linear form given as

(11) w¢= W;ﬂ)l + mﬂ)g‘]' R vam' (i= 1, 2, ceey, H-).

If y and y, are two monomials of Y’s of degree # different to each other,
then, obviously, a same monomial of W's does not appear in both y(w) and
() at the same time. Therefore, considering the expansion of the polynomial
of W’s obtained from y,=Y; Y,---Y, through substitution Y;—w,; we obtain
that the coefficients of F(p, W) considered as a polynomial of W contain (as
subset) a linear basis of M over k. Then, obviously, the coefficients of ¢cF(p, @)
generate M over k. From Lemma 8 follows that there exists a point &=(b,,)
of mn-space over k such that the element F(p, w (b)) of M obtained from
F(p,w) through the specialization W;;—b,; generates M over k. Let

(12) d=p1 wi(b) + o le(bz) +oee P wu(bw>:

4), When £ is a Galoisfeld, we can find an element 4’ such that k(cNrjxd’) coincides
with arbitrarily given intermediate field M’ between M and L.
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where we denote p;*(byv;+ bpvs+ -+ + bi,0n) €L by pirwi(by) (=1, 2, «+, ).

Asis easily seen, Nznd=F(p, w(b)), and we obtain M=k(c Nyxd), q.e.d.

As is stated in §4, it completes the proof of Theorem 1, which is the aim
of this paper.
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