SUPPLEMENTARY REMARKS TO THE PREVIOUS PAPERS

TAKASI NAGAHARA, KAZUO KISHIMOTO and HISAO TOMINAGA

The present note contains several improvements of the results obtained in [2], [4] and [5], which are closely related with the recent ones cited in [1]. However, our proofs will be given without making use of Inatomi's [1].

As to notations and terminologies used in this note, we follow the previous ones [4] and [5]. Now, we shall prove our first lemma.

Lemma 1. Let $U \ni 1$ be an algebra over an infinite field Φ of finite rank, and T an intermediate ring of U/Φ . If U = T[x] then U = T[u] with some regular element u.

Proof. $A = \psi[x]$ is evidently a commutative subalgebra of U. If we denote by N the radical of A, then $\overline{A} = A/N = \psi[\overline{x}] = \overline{A}_1 \oplus \cdots \oplus \overline{A}_s$, where \overline{A}_i 's are fields over ψ and \overline{x} is the residue class of x modulo N. We set here $\overline{x} = \overline{a}_1 + \cdots + \overline{a}_s(\overline{a}_i \in \overline{A}_i)$. Since ψ is infinite, we can find such an element $k \in \psi$ that each \overline{A}_i -component of $\overline{x-k}$ is non-zero. And then, it will be clear that u = x - k is a regular element and U = T[u].

In virtue of Lemma 1, we can prove the following sharpening of [4, Theorem 1].

Theorem 1. Let R be a separable simpe algebra over a field $\psi \subseteq C$ of finite rank. If a is an arbitrary element of $R \setminus C$ then $R = \psi[a, r]$ for some regular element r.

Proof. In any rate, by [4, Theorem 1], $R = \psi[a, b]$ for some b. Then, if ψ is infinite, our assertion is clear by Lemma 1. Accordingly, in what follows, we may assume that ψ is finite and n > 1, whence $R = (C)_n$. To be easily seen, in the proof (i) of [4, Lemma 10] we may replace the nilpotent element $u^* = \sum_{n=1}^{n} e_{ii-1}$ by the regular element $1-u^*$. And so, by the proof Case III of [4, Theorem 1] and the proof Case I of [4, Proposition], we obtain eventually $R = \psi[a, r]$ with some regular element r.

Now, [1, Theorem 2] is only an easy consequence of Theorem 1, and conversely.

Corollary 1 (Inatomi). Let R be a simple algebra over C of finite

rank, and B a subring of R containing 1 such that $B \cap C$ is a field and C is separable and finite over $B \cap C$. Then, R is generated by some regular element of R over B, if and only if B is not contained in C or R is commutative.

Lemma 2. Let $U \ni 1$ be a ring, A a subring of U containing 1 that is represented as $\sum_{i=1}^{m} A'c_{i,j}$ with matrix units $c_{i,j}$'s (m > 1) and $A' = V_A(\{c_{i,j}\})$, and B a subring of U such that $B\widetilde{A} \subseteq B$.

- (i) If $Bc_{pq} \subseteq B$ for some c_{pq} then BA = B.
- (ii) Let 2A=0, and x an element of A' neither 0 nor 1. If $B(x+c_{12}) \subseteq B$ then BA=B.
- (iii) If $B(\sum_{2}^{m} c_{ii-1} + c_{1m} + c_{22}) \subseteq B$ then BA = B. (Needless to say, in case B contains 1, our conclusion BA = B in (i)-(iii) may be replaced by $A \subseteq B$.)
- Proof. (i) If $p \neq q$ then $B \supseteq (1+c_{qp})Bc_{pq}(1+c_{qp})^{-1} = B(1+c_{qp})c_{pq}(1-c_{qp}) = B(c_{pq}+c_{qq}-c_{pp}-c_{qp})$ and $B \supseteq Bc_{pq}$ imply $B \supseteq B(c_{qq}-c_{pp}-c_{qp})$, whence it follows $B \supseteq Bc_{pq}(c_{qq}-c_{pp}-c_{qp}) = B(c_{pq}-c_{pp})$. Again by our assumption, we obtain $B \supseteq Bc_{pp}$. Now, for each $i \neq p$ and $a' \in A'$, $B \supseteq (1+a'c_{ip})Bc_{pp}(1+a'c_{ip})c_{pp}(1-a'c_{ip}) = B(c_{pp}+a'c_{ip})$ and similarly $B \supseteq (1+a'c_{pi})Bc_{pp}(1+a'c_{pi})Bc_{pp}(1+a'c_{pi})$. Accordingly, we have $B \supseteq Ba'c_{ip}$ and $Ba'c_{pi}$. From those, it will be easy to see that $B \supseteq BA$.
- (ii) We set $a_1 = x + c_{12}$ and $a^* = c_{22} + c_{11} + c_{21}$. Then, $B \supseteq (1 + c_{21}) Ba_1 (1 + c_{21})^{-1} = B(a_1 + a^*)$ implies $B \supseteq Ba^*$. And further, $B \supseteq B(a^* a^{*2}) = Bc_{21}$. Now, BA = B is a direct consequence of (i).
- (iii) Setting $a_2 = \sum_{i=1}^{m} c_{ii-1} + c_{1m} + c_{22}$, $B \supseteq (1 + c_{12}) Ba_2 (1 + c_{12})^{-1} = B(a_2 + c_{11})$ implies $B \supseteq Bc_{11}$. And so, again by (i), we obtain BA = B.

Next, we expose our second theorem. It contains [1, Lemma 4] and [2, Theorem 3]. And its proof is simpler than that of Inatomi's we think.

Theorem 2. Let U be a ring containing 1, $A \ni 1$ a simple subring of U different from $(GF(2))_2$. If B is a two-sided simple subring of U and invariant relative to all inner automorphisms effected by regular elements of $A: B\widetilde{A} = B$, then either BA = B or $A \subseteq V_U(B)$.

Proof. In fact, for the case where A is a division ring, our proof proceeds just like in that of [3, Lemma 3.5]. And so, the details may be left to readers. While, in case A is not a division ring, we set $A = \sum_{i=1}^{m} A' c_{ij}$ with matrix units c_{ij} 's (m > 1) and a division ring $A' = V_{A}(\{c_{ij}'s\})$. One may remark here that $V_{U}(B)$ is also invariant relative to \widehat{A} , and that the same argument as in the proof of [3, Lemma 3.5] proves that for each biregular element a of A (i. e. a and 1-a are regular) there holds either $Ba \subseteq B$ or $a \in V_{U}(B)$. Now, we shall complete our proof by

distinguishing three cases:

Case I: A is not of characteristic 2. Evidently, $a_0 = 2 + c_{12}$ is biregular. And so, as we noted above, either $Ba_0 \subseteq B$ or $a_0 \in V_v(B)$, that is, either $Bc_{12} \subseteq B$ or $c_{12} \in V_v(B)$. Recalling here that $V_v(B)\widetilde{A} = V_v(B)$, our assertion is clear by Lemma 2 (i).

Case II: A is of characteristic 2 and $A' \neq GF(2)$. As $a_1 = x + c_{12}$ $(x \neq 0, 1 \in A')$ is evidently biregular, it follows either $Ba_1 \subseteq B$ or $a_1 \in V_{\sigma}(B)$. And then, Lemma 1 (ii) yields at once our assertion.

Case III: A is of characteristic 2 and m>2. In this case, to be easily verified, $a_2 = \sum_{1}^{m} c_{11-1} + c_{1m} + c_{22}$ is biregular. And so, this time, our assertion is a consequence of Lemma 1 (iii).

Combining Theorem 2 with [5, Corollary 3.9], one will see at once the next corollary that contains completely [5, Theorem 4.5].

Corollary 2. Let a simple ring R be locally finite and h-Galois over a simple subring S, $[R:H]_i \leq \aleph_0$, and T an f-regular intermediate ring of R/S. Then, T is \mathfrak{G} -normal if and only if T/S is Galois and either $T \subseteq H$ or $V \subseteq T$, provided V is different from $(GF(2))_2$.

Next, we shall prove the following improvement of [4, Theorem 4] that contains [1, Theorem 6] as well.

Theorem 3. Let a simple ring R be Galois and finite over a simple subring S, and T a \widetilde{V} -normal simple intermediate ring of R/S. Then, n(T/S) = 1 if and only if $S \not\subseteq V_T(T)$ or T is commutative.

Proof. It will suffice to prove the if part only. For the case where $[S:Z]=\infty$, we have seen in [3, Corollary 2.1] that our assertion is true even for arbitrary intermediate ring T. And so, in what follows, we may restrict our attention to the case $[S:Z]<\infty$ (whence $[R:C]<\infty$ by [6, Lemma]), and we distinguish two cases:

Case I: C is finite. Since (R and so) T is finite, $T/S \cap C$ is a separable simple algebra of finite rank. If $S \not\subseteq V_T(T)$, by Theorem 1, T = S[t] with some regular t. On the other hand, if $T = V_T(T)$, there is nothing to prove.

Case II: C is infinite. By Theorem 2, we obtain $V \subseteq T$ or $T \subseteq H$. Since, in case $S \supseteq Z$ our assertion is clear by [4], Theorem 3], in what follows, we shall assume that S = Z. Now, $S = Z \subseteq C_0 = V_v(V)$ implies $V_R(C_0) = V = V_R(V_R(V))$, whence it follows H is commutative: $H = C_0$. If T is commutative, then $T \subseteq H$ in any rate. Accordingly, n(T/S) = 1 by [4], Theorem 2]. On the other hand, if $S \not\subseteq V_T(T)$ then $T \subseteq H$ yields the contradiction $S \subseteq T = V_T(T)$. It follows therefore $V \subseteq T$, whence $V_T(T) \subseteq V_R(T) \subseteq H = C_0$. Hence, R, T and S satisfy the assumptions in [4], Proposition]. And so, if S is an arbitrary element of $S \setminus V_T(T)$, then

there exists some t such that T = Z[s, t] = S[t].

We shall present here another proof to [1, Theorem 5].

Corollary 3. Let a simple ring R be Galois and finite over a simple subring S. If T is a \widetilde{V} -normal simple intermediate ring of R/S, then $T = S[t, t\tilde{r}]$ with some t and r.

Proof. By Theorem 3, it will suffice to prove our assertion for the case $S \subseteq V_T(T)$ (whence $[R:C] < \infty$ by [6, Lemma]). If C is finite, the finite ring T is a separable algebra over S. And then, our assertion is clear by [7, Theorem 2]. On the other hand, if C is infinite, $T \subseteq H$ or $T \supseteq V(=V_R(S) \supseteq V_R(V_R(T)) = T$, whence T = V) by Theorem 2. Hence, our assertion is a consequence of [4, Theorem 2] and [7, Theorem 1].

Finally, we shall prove a partial extension of [4, Theorem 6]. To this end, the next lemma will be needd.

Lemma 3. Let a simple ring R be Galois and finite over a simple subring S, and T a regular intermediate ring of R/S. If $S \not\subseteq V_T(T)$ then $n(T/S) \leq \text{Max} \{0, n(Z[V_T(T)]/Z) - [S:Z]\} + 2$.

Proof. In case $[S:Z] = \infty$, our assertion is clear by [3, Corollary 2.1]. And so, we may, and shall, restrict our proof to the case $[S:Z] < \infty$ (whence $[T:V_T(T)] < \infty$ by [6, Lemma]). Then, by Theorem 1, $T = V_T(T)[S,u]$ for some u. Now, let $S = \sum_{i=1}^k \oplus Zd_i$ and $Z[V_T(T)] = Z[a_1,\cdots,a_h]$ where $h = n(Z[V_T(T)]/Z)$. We set here $v = \sum_{i=1}^s a_i d_i$, where $s = \text{Min}\{k,h\}$. Then, $T' = S[u,v,\{a_i:s < i \le h\}]$ is a simple subring of T by [4, Lemma 11], for $T'[V_T(T)] = T$. Noting that $S[V] = S \times_Z V$, we see that $\{d_i$'s} is linearly independent over V. And so, for any element $x \in V_R(T')$ ($\subseteq V$). $0 = xv - vx = \sum_{i=1}^s (xa_i - a_ix)d_i$ yields at once $xa_i = a_ix$ ($i = 1, \cdots, s$). It follows therefore that $V_R(T') = V_R(S[u, a_1, \cdots, a_h]) = V_R(T)$, that is, T' is a regular subring of R. Accordingly, R is Galois and finite over T'. Recalling here that V is \mathfrak{G} -normal, $0 = v - v\sigma = \sum_{i=1}^s (a_i - a_i\sigma)d_i$ with every $\sigma \in \mathfrak{G}(R/T')$ implies $a_i = a_i\sigma(i = 1, \cdots, s)$, whence it follows $a_i \in T'(i = 1, \cdots, h)$. We have proved therefore that $T = T'[V_T(T)] = T'$. Our lemma is now a direct consequence of $T' = S[u, v, \{a_i: s < i \le h\}]$.

Theorem 4. Let a simple ring R be Galois and finite over a simple subring S. If $S \supseteq Z$ then, for any regular intermediate ring T of R/S, $n(T/S) \le n_0 = \text{Max } n(W/Z)$, where W runs over all the intermediate rings of V/Z.

Proof. Firstly $S \supseteq Z$ yields evidently $S \subseteq V_T(T)$. If $n_0 = 1$, V is commutative and then n(T/S) = 1 by [4, Theorem 2]. And so in what follows, we may assume that $n_0 > 1$. If $n(Z[V_T(T)]/Z) - [S: Z] \leq 0$ then $n(T/S) \leq 2$

by Lemma 3. While, if $n(Z[V_T(T)]/Z) - [S:Z] > 0$ then $n(T/S) \le n(Z[V_T(T)]/Z) - [S:Z] + 2 \le n(Z[V_T(T)]/Z) \le n_0$ again by Lemma 3. Another consequence of Lemma 3 is the next

Corollary 4. Let a simple ring R be Galois and finite over a simple subring S. If $[S:Z] \ge m_0 = \text{Max } n(U/Z)$, where U runs over all the commutative intermediate rings of V/Z, then $n(T/S) \le 2$ for any regular intermediate ring T of R/S.

Proof. In case $S \nsubseteq V_T(T)$, our assertion is clear by Lemma 3. On the other hand, if $S \subseteq V_T(T)$ then $T \subseteq V$, and $1 = [S:Z] \ge m_0$ means $m_0 = 1$. Since $T = V_T(T)[u, v]$ for some u, v by Theorem 1, it will be easy to see that $n(T/S) \le n(V_T(T)[u]/Z) + 1 = 1 + 1 = 2$.

REFERENCES

- [1] A. INATOMI, On generating elements of simple algebras, Kodai Math. Sem. Rep., 14 (1962), 149-159.
- [2] K. KISHIMOTO, Some remarks on Cartan-Brauer-Hua theorem, J. Fac. Sci. Hokkaido Univ., 15 (1961), 219—220.
- [3] T. NAGAHARA and H. TOMINAGA, On Galois and locally Galois extensions of simple rings, Math. J. Okayama Univ., 10 (1961), 143—166.
- [4] T. NAGAHARA and H. TOMINAGA, Corrections and supplements to the previous paper, Math. J. Okayama Univ., 11 (1963), 67-77.
- [5] T. NAGAHARA and H. TOMINAGA, On Galois theory of simple rings, Math. J. Okayama Univ., 11 (1963), 79-117.
- [6] H. TOMINAGA, On a theorem of N. Jacobson, Proc. Japan Acad., 31 (1955), 653—654.
- [7] H. TOMINAGA and F. KASCH, On generating elements of simple rings, Proc. Japan Acad. 33 (1957), 187—189.

DEPARTMENTS OF MATHEMATICS,
OKAYAMA UNIVERSITY
HOKKAIDO UNIVERSITY
HOKKAIDO UNIVERSITY

(Received January 8, 1963)

ERRATA:

SUPPLEMENTARY REMARKS TO THE PREVIOUS PAPERS

(This Journal, Vol. 11, pp. 159-163)

Takasi NAGAHARA, Kazuo KISHIMOTO and Hisao TOMINAGA

Page 160, line 11.	For "(iii) If $B(\sum_{2}^{m} c_{ii-1} + c_{1m} + c_{22}) \subseteq B$ then $BA = B$ "
	read "(iii) Let $2A=0$ and $m>2$. If $B(\sum_{i=1}^{m} c_{i+1}+$
	$c_{1m}-c_{1m-1})\subseteq B$ then $BA=B$ ".
Page 160, lines 24-25.	For "(iii) Setting, we obtain $BA = B$ " read "We
	set $a_2 = \sum_{i=1}^{m} c_{ii-1} + c_{im} + c_{im-1}$ and $a^{**} = c_{22} + c_{11} + c_{12}$.
	Then, $B \supseteq (1+c_{12})Ba_3(1+c_{12})^{-1} = B(a_2+a^{**})$ im-
	plies $B \supseteq Ba^{**}$, and hence $B \supseteq B(a^{**} + (a^{**})^2) =$
	Bc_{12} . Now, $BA = B$ is a consequence of (i)".
Page 161, line 10.	For " $a_2 = \sum_{i=1}^{m} c_{ii-1} + c_{im} + c_{22}$ " read " $a_2 = \sum_{i=1}^{m} c_{ii-1} + c_{22}$ "
	$c_{1m}+c_{1m-1}$