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The present note contains several improvements of the results obtained
in [2], [4] and [5], which are closely related with the recent ones cited
in [1]. However, our proofs will be given without making use of Inatomi’s
[1].

As to notations and terminologies used in this note, we follow the
previous ones [4] and [5]. Now, we shall prove our first lemma.

Lemma 1. Let U3 1 be an algebra over an infinite field @ of finite
rank, and T an intermediate ring of UJ@. If U=T[x)then U=T [u] with
some regular element u.

Proof. A=¢[x] is evidently a commutative subalgebra of U. If we
denote by N the radical of A, then A=AIN = ¢[z] = A @ZS,
where A/s are fields over ¢ and ¥ is the residue class of ¥ modulo N. We
set here x=a,+ - +a,(a. E E). Since ¢ is infinite, we can find such an
element k< # that each E-component of x—Fk is non-zero. And then, it
will be clear that u = x— k is a regular element and U = T {«].

In virtue of Lemma 1, we can prove the following sharpening of [4,
Theorem 1].

Theorem 1. Let R be a separable simpe algebra over a field @ (ZC)
of finite rank. If a is an arbitrary element of R\C then R =d[a,r] for
some regular element r.

Proof. In any rate, by [4, Theorem 1], R= ®[a, b] for some &.
Then, if ¢ is infinite, our assertion is clear by Lemma 1. Accordingly,
in what follows, we may assume that ¢ is finite and »>1, whence R =
(C)s. To be easily seen, in the proof (i) of [4, Lemma 10] we may replace
the nilpotent element #* =3 7"¢;., by the regular element 1—#*. And so,
by the proof Case III of [4, Theorem 1] and the proof Case I of [4, Proposi-
tion], we obtain eventually R = [a, ] with some regular element ».

Now, [1, Theorem 2] is only an easy consequence of Theorem 1, and
conversely.

Corollary 1 (Inatomi). Let R be a simple algebra over C of finite
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rank, and B a subring of R containing 1 such that BN\C is a field and
C is separable and finite over BNC. Then, R is generated by some regu-
lar element of R over B, if and only if B is not contained in C or R is
commutative,

Lemma 2. Let U31 be a ring, A a subring of U containing 1 that is
represented as 2.1 A'ciy with matrix units ¢;fs (m>1) and A'=V ,({ci;’s}),
and B a subring of U such that BAC B.

(i) If Bcye© B for some cyy then BA=B.

(ii) Let 2A=0, and x an element of A’ neither 0 nor 1. If B (x-+c¢)
C B then BA=B.

(iii) If B(ZFcu-1+Cim+¢n) © B then BA=B.

(Needless to say, in case B contains 1, our conclusion BA = B in (i)-(iii)
may be replaced by ACB.)

Proof. (i) If p5%q then B2 (1+cop)Bcyp(l+cop) ™ = B(1-+cqgp)Cpa(1—
Cap) = B(CpotCoq— Cpp—Cop) and B 2D Bcy, imply B D B(€y— Cpp— Cqp), Whence
it follows B 2 B¢ (Caq— Cpp—Cqn) = B(Cpq — Cpp). Again by our assumption,
we obtain B2 Bc,,. Now, for each i p and a'€ A', BD(1+a'c,,)Bc,,
(I+d'cip)'= B(1+a'ciy) cop(1—a'cip) = B(cpp+a’ci,) and similarly BD(1+
@'Cyt) Bepp(1 + a'cp) ™ = B(cpp + a'cyy). Accordingly, we have B2 Ba'cy,
and Ba'c,. From those, it will be easy to see that B D BA.

(ii) Weset @,=x+cpand a* =cn--cy+en. Then, BDO(1+cy) Ba,
(1+c¢y)™' = B(a,+a*) implies B2 Ba*. And further, B2 B(e* — a*)=
Bey. Now, BA = B is a direct consequence of (i).

(iii) Setting @x=3 3 'cu_1+Cim-+Cn, B2 (1+cp) Bas(1+cw) ' = Blay-+
cu) implies B2 Bey,. And so, again by (i), we obtain BA = B.

Next, we expose our second theorem. It contains [1, Lemma 4] and
[2, Theorem 3]. And its proof is simpler than that of Inatomi’s we think.

Theorem 2. Let U be a ring containing 1, A 21 a simple subring of
U different from (GF(2)),. If B is a two-sided simple subring of U and
invariant relative to all inner automorphisms effected by regular elements
of A: BA= B, then either BA= B or AC V,(B).

Proof. In fact, for the case where A is a division ring, our proof
proceeds just like in that of [3, Lemma 3.5]. And so, the details may
be left to readers. While, in case A is not a division ring, we set
A = 3 Ale; with matrix units ¢s (m>1) and a division ring A’ =
Vi({ci/s}). One may remark here that V;(B) is also invariant relative to
X, and that the same argument as in the proof of [3, Lemma 3. 5] proves
that for each biregular element @ of A (i. e. @ and 1—a are regular) there
holds either BaZ B or a & V,(B). Now, we shall complete our proof by



SUPPLEMENTARY REMARKS TO THE PREVIOUS PAPERS 161

distinguishing three cases:

Case I: A is not of characteristic 2. Evidently, a,=2+c¢,. is biregu-
lar. And so, as we noted above, either Ba,C B or aE V. (B), that is, either
Bci:C B or ¢ € Vy(B). Recalling here that V;(B) A=V y(B), our assertion
is clear by Lemma 2 (i).

Case II: A is of characteristic 2 and A'5=GF(2). As ay=x+cu (x50,
1€ A') is evidently biregular, it follows either Ba, & B or @€ Vy(B).
And then, Lemma 1 (ii) yields at once our assertion.

Case III: A is of characteristic 2 and m>>2. In this case, to be
easily verified, a, = X_.7ciy_1 +Cim+Cx is biregular., And so, this time, our
assertion is a consequence of Lemma 1 (iii).

Combining Theorem 2 with 75, Corollary 3. 9], one will see at once
the next corollary that contains completely [5, Theorem 4. 5].

Corollary 2. Let a simple ring R be locally finite and h-Galois over
a simple subring S, TR: H;=< X, and T an f-regular intermediate ring
of R|S. Then, T is normal if and only if T[S is Galois and either
TC Hor VCT, provided V is different from (GF(2)),.

Next, we shall prove the following improvement of [4, Theorem 4]
that contains [1, Theorem 6] as well.

Theorem 3. Let Qsimple ring R be Galois and finite over a simple
subring S, and T a V-normal simple intermediate ring of R/S. Then,
n(T/S)=1if and only if SEVAT) or T is commutative.

Proof. It will suffice to prove the if part only. For the case where
[S: Z]= oo, we have seen in [3, Corollary 2. 1] that our assertion is true
even for arbitrary intermediate ring 7. And so, in what follows, we may
restrict our attention to the case [S:Z] << o (whence [R: C] < oo by [6,
Lemma]), and we distinguish two cases:

Casel: Cis finite. Since (R and so) T is finite, T/SMCis a separable
simple algebra of finite rank. If S & V,(T), by Theorem 1, T=S[¢] with
some regular £. On the other hand, if T=V(T), there is nothing to prove.

Case II: Cis infinite. By Theorem 2, we obtain VC T or TC H.
Since, in case S 22 Z our assertion is clear by [4, Theorem 3], in what
follows, we shall assume that S=Z. Now, S=ZC C,=V(V) implies
Va(C) =V =V5(Vr(V)), whence it follows H is commutative: H= C,.
If T is commutative, then 7 C H in any rate. Accordingly, »(7/S)=1
by [4, Theorem 2]. On the other hand, if SZV,(T) then T C H yields
the contradiction SC T = V(7). It follows therefore V © T, whence
Ve(T)CVe(T)S H=C, Hence, R, T and S satisfy the assumptions in
[4, Proposition]. And so, if s is an arbitrary element of S\V.(T), then
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there exists some ¢ such that T = Z s, t]=S[¢].
We shall present here another proof to [1, Theorem 5].

Corollary 3. Let a simple ring R be Galois and finite over a simple
subring S. If T is a V-normal simple intermediate ring of R[S, then
T =S¢, t7] with some t and r.

Proof. By Theorem 3, it will suffice to prove our assertion for the
case SCV,(T) (whence [R: C]<<o by [6, Lemma]). If Cis finite, the
finite ring 7 is a separable algebra over S. And then, our assertion is clear
by [7, Theorem 2]. On the other hand, if C is infinite, TC Hor T2 V(=
Ve (S) 2 Ve(Ve(T))= T, whence T=V) by Theorem 2. Hence, our asser-
tion is a consequence of [4, Theorem 2] and [7, Theorem 1].

Finally, we shall prove a partial extension of [4, Theorem 6]. To this
end, the next lemma will be neeed.

Lemma 3. Let a simple ring R be Galois and finite over a simple
subring S, and T a regular intermediate ring of R|S. If SZ V.(T) then
n(T/S)EMax {0, n(Z[V.(T)]/Z)—[S:Z]} +2.

Proof. 1In case [S:Z]= oo, our assertion is clear by [3, Corollary
2.1]. And so, we may, and shall, restrict our proof to the case [S:Z] <<
co (whence [T: Vx{(T)Y]<<co by [6, Lemma]). Then, by Theorem 1, T =
Vo(T)L[S, u] for some . Now, let S=3., @ Zd, and Z[VAT)]=Z[a,, -,
a,] where h=n(Z [V,(T)]/Z). We set here v = 3>i_1aid;, where s = Min
{k, h}. Then, T'=S[u,v, {a;; s<<i<h}] is a simple subring of T by [4,
Lemma 113, for T'[V.(T)] = T. Noting that S[V]=8X .V, we see that
{dys} is linearly independent over V. And so, for any element x &€ Vx(T")
(CV). 0=2x0—vx=2i_-.(xa;—a;x)d, yields at once xa,=ax (=1, ---, s).
It follows therefore that Vi(T') = Va(S[u, @, -, an]) = V(T), thatis, T'
is a regular subring of R. Accordingly, R is Galois and finite over T".
Recalling here that V is. @-normal, 0=v—ve = XJj..(&i—a0)d, with every
cEG(R/T') implies @&;=a,0(i =1, .-+, s), whence it follows ¢, € T/(i =1,
-+, h). We have proved therefore that T=T'[V,(T)] = T'. Our lemma
is now a direct consequence of 7' =S[w, v, {a;;s<<i<h}].

Theorem 4. Let a simple ring R be Galois and finite over a simple
subring S. If S2Z then, for any regular intermediate ring T of R[S,
n(T/S) < n, = Max n(W/Z), where W runs over all the intermediate
rings of V] Z.

Proof. Firstly S22 Z yields evidently S&Z Vo (T). If n,=1, V is com-
mutative and then #(7/S)=1 by [4, Theorem 2]. And so in what follows,
we may assume that #,>1. If n(Z[V,.(T)]/Z)—[S: Z]1<0 then #(T/S)<2
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by Lemma 3. While, if n(Z[V(T)]/Z)—[S: Z]>0 then n(T/S)=
n(Z{V(T)1/2)-[S:Z)1+2<n(Z[V(T)]/Z)<n, again by Lemma 3.
Another consequence of LLemma 3 is the next

Corollary 4. Let « simple ving R be Galois and finite over a simple
subring S. If [S: Z]=my= Max n(U/Z), where U runs over all the com-
mutative intermediate rings of V|Z, then n(T]S)<2 for any regular
intermediate ring T of R/S.

Proof. In case SZ V,(T), our assertion is clear by Lemma 3. On
the other hand, if SCV,(T) then TC V, and 1=1{S: Z] =m, means m,
=1. Since T = V(T )[u, v] for some u, v by Theorem 1, it will be easy
to see that #(T/S)=n (Vo (D[ul/Z) +1=1+1=2.
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and Hisao TOMINAGA

Page 160, line 11. For “(iii) If B(ZFcu-1-+ Cim+C)EB then BA=B"
read “(iii) Let 2A=0and m>2. If B(Zcu-1+
Cim-+Cim—1) & B then BA=B".

Page 160, lines 24—25. For “(iii) Setting-+:, we obtain BA=B" read “We
set @y= I Cur+Cim+Cin-1 and a**=cp-+cn-ten
Then, B2D(1-cwp)Bas(1-+c) "= Bla;+a**) im-
plies B2 Ba**, and hence B2 B(a** +(a**)’) =
Bei,. Now, BA=RB is a consequence of (i)”.

Page 161, line 10. For “@aa="cy_1+cim+ce’ read “gy=2Fcu-+
Cimt+Cim—1’-
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