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Introduction. Since N. Jacobson and N. Nobusawa found a key to the
treating of Galois theory of infinite dimension for division rings, a number
of important developments have taken place in this direction for division
rings and simple rings. They are given mainly by the present authors and
N. Nobusawa in the series cited in the references cited at the end of this
paper. The main purpose of this paper is to present a kind of Galois
theory of infinite dimension for simple rings such that our previous theo-
ries and Walter’s one are completely unified.

Our study starts with the preliminary section §1, which contains se-
veral tool lemmas. And, in §2, we shall consider ®-locally Galois exten-
sions. As we can prove that R/S is ®-locally Galois if and only if R/S is
Galois and locally Galois, all the cases for simple rings studied till now
are concentrated to the one for Glocally Galois extensions. And, in this
case we shall give a somewhat intrinsic characterization of the Galois
group. Next, in order to annex Walter’s theory [18] to our present study,
the notion of “hereditarily Galois” (‘“‘h-Galois™) will be introduced. In fact,
if R/S is ®&-locally Galois or if R is a division ring and R/S is Galois then
R/S is seen to be h-Galois. § 3 is exclusively devoted to the treaty of h-Galois
extensions, and we shall see that the Galois correspondence, the extension
theorem, the normality theorem and the transitivity theorem are all valid
with the desirable style. Further, in §4, weshall state several supple-

mentary remarks for &-locally Galois extensions, which will be of enough
interest for themselves.

In what follows, we shall summarize the notations and definitions
which will be used very often in the subsequent study. Throughout the
present paper, R be always a simple ring (with minimum condition), and
S a simple subring of R containing the identity element of R. And we
shall use the following conventions:

~ R=2X{Dey; where e's are matrix units and D= Vx({e,/’s}) a division
ring.

C: the center of R.

Z : the center of S.

V': the centralizer Vi(S) of S in R. And in case V is a simple ring,

we set V =>Ug,, where g,,’s are matrix units and U= V,({g,,s}) a divi-
sion ring.
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H: the centralizer of V in R. And in case H is simple, we set H=
>1Kdy, where d,’s are matrix units and K= V;({d.’s}) a division ring.

C,: the center of V, which coincides with the center of H.

& : the group of all the S-(ring) automorphisms of R.

And, as to general notations we follw [8].

R/S is said to be locally finite if S[F] is left-finite over S for each
finite subset F of R. Now, let T31 be a subring of R. If the fixring J (9,
R) of an automorphism group © in R coincides with 7, R/T is said to be
w-Galois and O is called @ Galois group of R/ T. In particular, the totality
of the T-(ring) automorphisms of R will be named as the Galois group of
R/T and denoted by &(R/T). If both T and Vi(T) are simple rings, T is
called a regular subring of R. And, in case R/T is w-Galois and T is re-
gular, we say that R/T is Galois. On the other hand, if for each finite
subset F of R there exists a simple subring N containing S[F] such that
[N:S],<<o and N/S is Galois then R/S is said to be locally Galois. In
general, for any subset E of R, a simple subring N containing S{E] will
be called a shade of E (or of S[E]) in R if N is Galois and finite over S,
and R is N-R-irreducible. Here, one may remark that Vz(NN) is necessarily
a division ring. To be easily seen, R/S is locally Galois if and only if each
finite subset of R possesses its shade in K.

Now, let © be a non-empty subset of &. © is said to be locally finite
if the image of each element of R by © is finite. And (9, R/S) will be
saidtobe . f.d. if [S[F $]: S],<<oo for each finite subset F of R. If for
each finite subset F of R there exists a simple subring S’/ containing S[F]
such that S’ is Galois and finite over S and &(S""/S)C9{S", then we shall
say that R/S is 9-locally Galois. 1f R/S is $-locally Galois then for an
arbitrary finite subset F of R there exists a shade S’ of F such that
®&(S'/S)CS 9| S". Such a shade will be called a $-skade of F. Although one
will readily see that if R/S is $-locally Galois then each shade of a given
finite subset is a $-shade, the term “©-shade’” will make clear the range
in which the shade is considered. And, one may remark here that R/S is
®-locally Galois if and only if for each finite subset F of R there exists a
shade S’ of F such that a Galois group of S'/S is contained in &|S’.
Finally, let D be a subgroup of &, and V= Ve(J(9, R)). If Vj is simple
and $2 Vg then 9 is called a (%)-regular subgroup. And a (»)-regular sub-
group D is said to be regular or (%,)-regular according as J(9, R) is simple
or [V:Vg],<<eo. Moreover, if © is regular and (x,)-regular then D is
f-regular. On the other hand, a regular intermediate ring 7 of R/S is
called an f-regular subring if [V :Vg(T)],<<oo. For instance, to be easily
verified, if T is a regular intermediate ring of R/S with [T[{e;/s}]: S].<
oo then T is f-regular. (Cf. [4, Corollary 1].)
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Now, let © be a group of automorphisms of R, 9, the group of inner
automorphisms contained in , and I(9) the subring of R generated by
all the regular elements inducing inner automorphisms belonging to D,.
If 7(9) is a simple ring and $2 I(/\bl), 9 will be called an N -vegular group.
For an N-regular group © with [I(9): C]<<oo and (D: H)<<oo, it is
known that I(®) = Vx(J(9, R)), and this fact plays an important réle in
Galois theory of finite degree. However, as one will see in the following
example, this is not true for the case of infinite degree. Because of this
reason, we have defined above a regular group © by making use of Vg
instead of (D).

Example. Let C be the algebraic closure of the rational number field
P. As is well-known, C is Galois and algebraic (and so locally finite) over
P and &(C/ P) contains an automorphism « of infinite order. Now, cosider
the 2 X 2 complete matrix ring R = (C); = (P). X»C over C. To be easily
seen, R is Galois and locally finite over S= P. As [Vz(S): Vix(R)] =
[R: C]=4, ®=O®(R/S) is locally compact by Theorem 2.6. And &(C/P)
may be naturally regarded as a subgroup of ®. Let a=1-ey (& (P)y).
Then, noting that ¢™'=1—e,, we readily see that a* =1+ key for each
integer k. Now, let © be the subgroup [sz]of & generated by sa. Noting
here that s2 = ao and ¢ is of infinite order, one will easily see that $ is
an outer group of infinite order. Moreover, if - is an arbitrary element of
the topological closure © of  in ® then for each intermediate rings S, S.
of R/(P), with [S,: P]<Coo there exist some integers ki, k. such that ¢|S;=
(c@)|S:(i =1,2). And then, g"|(P),=(sca)"1|(P)s =< |(P), = (ca):|(P),=
a*2|(P),, whence g*17*2[(P), =1, that is. 1+ (k —k.)en = a2 P. Hence,
we have b, = k,, which means - =(s2)" € . Thus, we have seen that
is a closed outer (and so N-regular) group. Finally, as H = Vi(Vx(S)) =C,
So=(P). contains a linearly independent basis of R over H and a system of
matrix units of R as well. We set here &, = ®(R/(P),). If - =(sa)* is an
element of N then z*|(P),=<{(P), =1 will yields at once 2=0, which
proves that 8, 9=1. Accordingly, it follows that (9: (N D) 7(D)) =
($:1) = oo, Hence, $ can not be regular by Theorem 2.9.

1. Preliminary lemmas. The fact stated in the next lemma has

been used in our previous study. We shall present here a notably simple
proof.

Lemma 1.1. Let T be a subring of R. If there exists a directed set
{Rs's} consisting of simple subrings R,’s of R such that T=\U.Rs then T
is @ simple ring.

Proof. Let Ry=31D,f,,;€{R.'s} be of maximal capacity (< the capa-
city [R|R] of R). Then, for each R,2 R, we have R, = >\ D, fi; with the
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division ring Du = Vg ({fi/s}). As evidently T=\Upg 2z Ra=(UDa)fy
and \U D, is a division ring, 7 is a simple ring.

Lemma 1.2. If R/S is locally Galois, and V a division ring, then
R is S-R-irreducible.

Proof. For any non-zero element x& R, there exists a shade N of {x}.
Since N is S-N-irreducible by [8, Lemma 1.1], SxN =N >1, whence
SxR = R.

The following three lemmas will play important roles in our sub-
sequent consideration.

Lemma 1.3. Let S be a regular subring of R, © a set of S-(ring)
automorphisms of R, and S' an intermediate ving of R/S such that R is
S'“R-irreducible.

(i) For each s €9, (¢|S)R, is S,-R,-irreducible and x,— (¢:S")x, is
an R,isomorphism of R, onto (s|S")R,.

(ii) For any subset D' of ©, ©'|S! is linearly independent over R, if
and only if so it is over V,.

(iii) The R,-module (D|S") R, possesses a subset of $|S’ as a linearly
independent R.-right basis, and 9'|S(S|S") is a linearly independent
R,-right basis of (DiSOR. if and only if it is a linearly independent V.-
right basis of (9|S")V..

(iv) Let « be an S-(ring) isomorphism of S’ into R. Then « R, is S's-
R,-isomorphic to (a|SNR,(sE®) if and only if a=c0|S' for some regular
element vE V.

Proof. (i)-(iii) will be shown in the same way as in [3, Lemma 2].

(iv) Assume that «a R, is S',-R,-isomorphic to (¢|S)R,. If ¢|S' o av,
under the isomorphism, then one will easily see that » & V. Moreover,
av, R, = aR, yields at once vR=R. Hence, v is a regular element of . Now,
it will be easy to see that a =+2|S'. And the converse part is an easy con-
sequence of (i).

Corollary 1.1. Let S be a regular subring of R, and S' an inter-
mediate ring of R|S such that R is S-R-irreducible. If an S-(ring) iso-
morphism « of S' into R is contained in > (a.|S)R,.(6.E®) then a=0p|S'
(€ ®|S") for some regular element v EV and some ;< {6s}.

Proof. By Lemma 1.3, each (¢.|S)R, is S;-R,-irreducible and R,-iso-
morphic to R,. And so, the non-zero S;-R,-submodule a R, of 3 (s, |S)HR,
being R.-homomorphic to R,, we see that there exists some ;& {s.’s} such
that aR, is S;-R isomorphic to (75| SHR,. Hence, by Lemma 1.3 (iv), a =
#,9| S’ for some 7 & V.

Lemma 1.4. Let S be a regular subring of R, and S’ an intermediate
ring of R|S such that R is S-R-irreducible.
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(i) For each non-zero vEV, (v,|S)R, is S,-R,-irreducible and x,—
(2:18Dx, is an R,-isomorphism of R, onto (v,|S")R,.

(i) For any subset W of V, W,|S' is linearly independent over R,
if and only if W is linearly right-independent over V'=Vy(S'). Parti-
cularly, in case W is consisting of regular elements, W|S' is linearly
right-independent over R, if and only if W is linearly right-independent
over V.

(iii) If Wisa linearly independent Vi-right basis of V consisting of
regular elements then WS’ is a linearly independent R,-basis of (V|S)R,.

Proof. (i) The proof is the same with that of Lemma 1.3 (i).

(ii) Assume that W,|S’ is linearly dependent over R, and > 7 (v, ]S") x:.
=0(, €W, ;>0 R) is a non-trivial relation of the shortest length.
Then, by (i), without loss of generality, we may set x, = —1. And so, we
may assume that ,|S’'= > (v.|S)x;,. Now, for arbitrary y = S’ there
holds

0= yr(vuls’) — (Uu|S'))’r =7 (UHIS’) (J’xi“xty)r-
Since our relation is of the shortest length, it follows that x,eV/(i =2,
.-, m). Consequently, we have #, =3 7vx,(x;E V). The converse will
be almost trivial. To prove the last assertion, it will suffice to remark
that in case W is consisting of regular elements WIS’ is linearly inde-
pendent over R, if and only if so is W;|S'.

(iii) Let » be an arbitrary regular element of V. Then, v =2 ww,
with some w,& W and »,€V'. We obtain therefore #|S'=u2"|S'=
Srawanit| S'=Sww. v =32 (wwwv™"), | S, whence it follows( W|S)R.,
=(V|S"R,. Hence, our assertion is clear by (ii).

Lemma 1.5. Let S be a regular subring of R, and S’ an intermediate
ring of R[S such that [S': S]i<<oo and R is S'-R-irreducible.

G [V: V'], [S': 8], where V' =V5(S).

(i) [(Vo|SHR.: R, =[V: V'], for each cE®.

(iii) If & is a subgroup of ®& containing V then the S.-R,-module
(&'|SHR, is completely reducible, its homogeneous component is of the
form (ﬁrlS’)R,(aE@ﬁ’), and the number of homogeneous components is
finite.

Proof. (i) co>[S": ST, = [Homs, (S', R): R.1,=[(VIS)R,: R.], by
Lemma 1.3 (i). Since V possesses a linearly independent V'-right basis
consisting of regular elements, 00>[(V|S’)R,: R.].=[V:V']. by Lemma
1.4 (iii).

(ii) By (i), we can find a linearly independent finite V’-right basis
{w, +-+, w.} of V consisting of regular elements. Then, in virtue of Lemma
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1.4 (iii), there holds (Vo |S)R,=(V|S) R.o = (i@ (@:]| SR )e = 3@ (o |
SNR,.

(iii) Our former assertions are direct consequences of Lemma 1.3 (i)
and Lemma 1.3 (iv). And the last one is easy by [Homg, (S, R): R,], =
[S,: S]¢<°°.

Lemma 1.6. Let R be locally finite over a regular subring S. Then,
S is locally finite if and only if V<o or V=C, or what is the same,
if and only if © is almost outer.

Proof. At first, the only if part is a direct consequence of [16,
Theorem 1].” Now, we shall prove the if part. Let » be an arbitrary
element of R. Then, there exists an intermediate ring S’ of R/S [7] such
that [S’: S];<< o> and R is S’-R-irreducible. In virtue of Lemma 1.3 (iii),
we have ®|S'C S¥@(a:]S)V, for some g, -+, 0:E®. If #V<oo, then
®&|S’ is evidently finite. On the other hand, if V= C then each «|S'e®|S’
coincides with some 4;|S’ by Corollary 1.1. And so, in either cases, &|S’
is finite. We have proved therefore that & is locally finite. Finally, if @
is almost outer: # V<Coo i.e. (V¥: C¥)<<oco, then # V<o or V=C by
[16, Lemma 11.%

Now, on the group @ we may place the finite topology. Here a basis
for the neighborhoods of ¢+&® consists of the sets U(s, F)={-€0®; - |F=
o|F}, where F runs over all the (non-empty) finite subsets of R (or sub-
rings of R finitely generated over S). Now, it is clear that each U(qs, F) is
open and coincides with &(F)s. Moreover, noting that U(1, F) = &(F) is
a subgroup of &, we readily see that U(s, F) is closed as well. According-
ly, for any subset T of R it follows that &(T) is closed. Next, we shall
prove that @ is a topological group. In fact, for an arbitrary finite subset
F of R and arbitrary ¢ €, there holds ¢ '®&(F)s = & (Fs), that is, &(F)o
=¢@(F¢s). And so, we obtain (B(Fs Ne) '=6!1GFe")=@F)s' =
U™ F), and &(Fo - &OFs)r =& (F)o-= U(sr, F) for each o, - @.
Hence, & is a topological group. Consequently, if there exists a compact
neighborhood U(1, F) then & is locally compact.

Suppose now that & is compact. Then, for any »r & R we have & =
ULB({7r})as, where {a)'s} is a complete representative system of & modulo
®&({r}). Hence, it must be a finite open covering: G =U7®({rDao
Accordingly, {r}®={rs, -**, 7s..}. In particular, if S is a regular subring
then # V<Coo or V= C by the proof of Lemma 1.6. Conversely, if & is locally
finite and R/S is locally finite, then S[F®] is G-normal and left-finite
over S for each finite subset F of R. And so, wo have R=\U,\N,, where

1) We should like to note here two typographical errors in the statements of [16,
Theorems 1 and 1°]. #(E) should replace 1+ (R).

2) The second theorem stated in [1, Remarks, p.482] is essentially contained in [16,
Lemma 1]. For, if (R*: S*) < o (where S is not necessarily simple) then it is clear
that S is a w-subring of R.
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N, runs over all the &-normal intermediate rings of R/S with [N.: S}, <
oo, We set here &, = ®|N,, which is evidently a finite group of S-(ring)
automorphisms of N,. And then, the topological group & can be regarded
as the inverse limit of the system {®,}. Hence, as is well-known, & is
compact.

Moreover, we can prove the next that contains [18, Theorem 4].

Lemma 1.7. Let R be locally finite over a regular subring S. Then,
® is locally compact if and only if [V: C]l<<oo.

Proof. Suppose at first that @ is locally compact. Then, there exists
a compact neighborhood U(1, F). Here, without loss of generality, we
may assume that S’=S[F] is a regular subring and R is S'-R-irreducible.
Then, as is remarked above, it follows that #Vi(S')<<oo or Vx(S')=C.
And so, in any rate, we have [ Vy(S'): C]<Coo. On the orher hand, [V:
V(SN],< [S': S]i<< o by Lemma 1.5. It follows therefore [V: C] =[V:
V(SN)], - [Va(S8"): C] <. Now, we shall prove the converse part. As
00>[V: C]=[R: H], we can find a finite subset F such that S’ =S"F]
is simple and Vx(S")=C. Then, R/S'is locally finite. And so, as is noted
above, &(S’) is compact, which proves the local compactness of &.

Lemma 1.8. Let R be outer Galois and algebraic over S, © a Galois
group of R|S, and S' an intermediate ring of R[S. If [S':S],<<oo then
S! =S[t"] for some t' and #(D|S") =#{#'}©=[S":S]. And conversely, if
#(D|S") << oo then [S': S] << oo

Proof. At first, one may remark that R/S is locally finite by [3,
Theorem 2], whence @ is L. f.d. If [S":S],<<eo then S'=S[#] by [3,
Corollary 1]®. Further, if T is a ©-normal shade of S’ then 8(7/S)=9|7T,
that is a finite group. Accordingly, |S'={a,[S’, --*, a;|S'}. Hence, we
have Homs(S', T)=(9|S) T, = 2i(a: | ST, =3Va(a|S)T, by Lemma 1.2
and Lemma 1.5 (iii). We obtain therefore s= "Homs/(S’, T): T,]. = [S": S]
=[S’: S]. Now, we shall prove the converse part. For an arbitrary ele-
ment ¢ of S! there holds #{#}9=#(D|ISU])Z#H(H|S) <. And so, we
can choose an element %, & S’ such that #{¢}9 is maximal. Then, S'=
S[t]. For, if not, there exists a subring S’ of S’ such that S 2 S{t)
and [S":S],<<oco. As S"=S[t"] for some ¢ by [3, Corollary 1], by the
assertion cited previously, it follows that #{#"}9 =[S": S1> S[4]: S1=
#{#,} , which is a contradiction.

1f for each k elements x., -+, 2. of R we have [S[x;, -, x:]: S]i<<oo
then R/S is said to be k-(/eft) algebraic. Corresponding to [3, Theorem
2], we shall prove the following two lemmas.

3) As is noted in [9], the proof of [8, Theorem 3.1] is not complete. Nevertheless
[9, Theorem 2] secures that [8, Theorem 3.1] is certainly true, whence we see that
[3, Corollary 1] (whose proof needed [8, Theorem 3.1]) holds good.
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Lemma 1.9. Let R/S be Galois and 2-algebraic. If | V: Cl<<oco then
R/S is locally finite.

Proof. Since our assertion for the case [S: Z]<<co is contained in
[8, Theorem 5.1], we shall restrict our subsequent consideration to the
case [S: Z]= oo, Since S[V]=Sx,V, we have [S[V_.: V], =, whence
[H[V]: V],=occ., And so, noting that H[V] = H X e,V, we obtain [ H: Col
=oo, Thus, R is inner Galois and finite over the simple ring H that is
infinite over its center C,. Accordingly, we have R= H[a] by [8, Theorem
2.1]. Hence, for each finite subset F of R there exists a finite subset E
of H such that S[E][e]=2F. Since S[E]=S[&] for some b by Lemma
1.8, S[F] is contained in S[, b] that is left-finite over S.

Lemma 1.10. Let R/S be Galois and 3-algebraic. If [V: Cy]<<oo
then R/ S is locally finite.

Proof. Since V is inner Galois and finite over C,, by [17, Theorem
1], V=_Cla, a,] for some a,, a;. If SCC, then one will readily see that
Cy=C, whence[V: C]<<co. Accordingly, our assertion is clear by Lemma
1.9. Thus, in what follows, we may restrict our attention to the case
where SZC. At first, we shall prove the existence of an intermediate
ring S’ of R/S with the following properties:

(@) [S':S];<<oo.

(b) R is S'-R-irreducible.

(c) Va(SHCEC(

(d) H'=V,(V(S")) is simple and of capacity #»(= the capacity of R).

() SEC' = Vyu(H').

To this end, we shall distinguish here two cases:

Case I: S contains merely diagonal elements. V contains evidently
{ey, =+, enn}, whence the capacity of V is equal to ». And so, without
loss of generality, we may assume that e;,'s are all contained in V, whence
SCD. As Sis not contained in C= V,(D), there exist some xS and yED
such that xys%=yx. Set a,= > %ey_, + yey,, or @, =y according as n>1 or
n=1, Then, S§'=S[a,, a., a,] is our desired one. In fact, by making use
of the same method as in the proof of [8, Lemma 2. 3], we see that $'2
{eif's}. Andso, R is S'-R-irreducible and H' = V,(Vx(S')) is a simnple ring
of capacity »n. Further, Vi(S")C V.(Sla,, a])= Vi (Ci[a:, a.])=C, And
finally, (e) is evident by the fact xS and y =¢"E S'C H'.

Case II: S contains a non-diagonal element b= 3>le,c.(ci; € D).
Here, without loss of generality, we may assume that ¢;,5=0 (cf. [3, p.62—
631). If = (1 "eu+euucie) (L —eniConcil) -+ (L—escanerd), then 7' = (1+
€nCuCin) (Lt e cumeit) (1 e + enncin) and rbr~' = X e d;y with dy, =1
and d,,= 0 (i=2). Hence, b =>)(r""e,;r) (r"'dyr) is contained in S, which
means that we may assume from the beginning that ¢,,=1 and ¢, =0 (i=2).
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We set here g, = D5e, -, and S'=S[ay, @, as]. Then, R is S'-R-irreducible
by [3, Lemma 6 (ii)] and Vu(S) S Vi(S[a, as])=C,. Next, ai ' =e,
implies be,, =e,; € S'. And so, ey =a‘"'e, €S’ (=2, -+, 1n). Now, to be
easily verified, V,(S)CVi({ey, e, -+, em}) = D. Hence, H' = Vx(Vx(S"))
2Ve(D)2 {e;/s}, from which (d) will be clear. And, (e) is a direct con-
sequence of the fact b= S and {e;s} S H'.

Now, let S’ be an arbitrary intermediate ring of R/S with the properties
(a)-(e). Needless to say, every subring containing S’ left-finite over S has
also these properties. H'= V(V(S")) 2 Vi(Cy) 2 V implies evidently C'=
H'NVy(S)=Ve(S"). Andso, [V5(S): C']=[V: Va(S)].<[S": S]i<<ee by
Lemma 1.5(i). Hence, H' is inner Galois and finite over V.(V)= H(whence
H is simple). As (SC)YHZ (', in virtue of [9, Corollary 2], H'= H[a,*]
with some &,*. Hence, as S’ is a subring of H' left-finite over S, we have
S'CS[F] [a*] for some finite subset F of H. Recalling here that S[F]=
S[a,*] with some @.* by Lemma 1.8, it follows that S'C S[a*, a.*]. Now,
for arbitrary », € R the above argument yields S[a,* a*, «,]CS[a*%,
@.**] with some a** @**. Continuing the same procedures, for each
finite subset {u,, -, #,}C R we obtain eventually S[u, -, #,] < S[a$,
a.3] for some a8, @%. Hence, we have proved that R/S is locally finite.

For the later use, we shall state the following as a corollary.

Corollary 1.2. Let R/S be Galois and 3-algebraic. If[V: C,l<oo
then H is simple and there exists an intermediate ring S' of R|S such that
R is S"“R-irreducible and, for each subring S* containing S' such that
[§*: S],<oo, H* = Vy(V,(S%) is a simple ring containing V and
[Va*(S): Vyx(H*)] < eco.

Proof. At first, R/S is locally finite by Lemma 1.10. And, as is
noted at the beginning of the proof of Lemma 1. 10, if SCC then [V: C]
<<oo, And so, S'=S[{ey's}, {w's}] is our desired one, where {u,'s} is
a linearly independent C-basis of V. On the other hand, in case SZC,
there exists an intermediate ring S’ of R/S with the properties (a)-(e) cited
in the proof of Lemma 1. 10. And, our assertion will be easy by the proof
of Lemma 1. 10.

2. &-locally Galois extensions. At first, we shall prove the next
theorem that contains evidently [11, Theorem 2].

Theorem 2.1. Lef R be locally finite oves a regular subring _§, and
DR, dense in Homs(R, R) for some subgroup 9 of & containing V. If S'
is an arbitrary intermediate ring of R/S with [ S': S],<<oo such that R is
S'-R-irreducible then J(9(S'), R)=S".

Proof.' By Lemma 1. 5 (iii) and our assumption, we obtain
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Homs,(S', R) = (DIS)R, =25 @ (Vai|S))R..

If J(H(S"), R)5S', for arbitrary y& J(H(S"), R)\S' we set S"=S[y],
which is evidently finite over S. Since S”"22S' and V,(S") =Vx(S"), we
have

[(VaulSR,: R1=[V: Va(SH1,=[V: V(S")], =[(Veu|S")R,: R.]. by
Lemma 1. 5 (ii). Moreover, of course, Ei(VafIS”)R, =316 (VU,IS”)R,.
Now, noting that [(D|S) R,: R, ],=[5:S],<[S": 5], =(P|S")R,: R.1,
by Lemma 1. 5 (iii) we obtain

(DIS")R. = 1@ (Vail SR @ @ (V=51 SR,
for some ;€9 (f=1). Since =;|S' is contained in >} @(1701|S')R,, there
exists some o, such that ¢,|S' =,5|S’ for some 7€V by Corollary 1. 1.
And then, ;7' €9(S) = D(S") implies r; = ro.7 with some =& D(S").
Accordingly, we have ,|S"=:6:5|S" =6.5|S"E 6.V | $" = V| S, which is
a contradiction, We have proved therefore J($(S"), R)=S".

Lemma 2.1. If R/S is ©-locally Galois then it is Galois.

Proof. Let a be an arbitrary element of R\S. Then there exists a
-shade N of {a}. Since there exists some & G(N/S)C O|N such that
assa, we readily see that J(®, R)=S. Next, it will be easy to see that
V=\UVx(S), where N runs over all the shade of finite subsets of R. Since
each Vy(S) is simple, V is simple by Lemma 1. 1. (Cf. [8, Lemma 4. 31.)

Theorem 2.2. Let © be a non-empty subset of &, If R/S is D-locally
Galois then OR, is dense in Homs, (R, R).

Proof. Let M =3)7"Su, be an arbitrary submodule of R left-finite
over S. Then, by our assumption, there exists a ©-shade S’ of {u/s}.
Then, as is well-known, Homg/(S', S")=®&(S'/S)S’,. Now let {x;, -+, .} be
a linearly independent S-left basis of S', and «;'s elements of Homs, (S, S')
such that

x50 =8y (f, 7 =1,+, s
Then, {a/s} is evidently a linearly independent S,-basis of Homyg, (S', S').
And it can be a linearly independent R,-basis of Homs(S’, R) as well.
Hence, by our assumption, Homs,(S', R) = &(S'/S)R,=(D|S")R.. Accord-
ingly, as is well-known, Homg, (M, R)= Hom; (S, R)|M = (D|SHR.|M =
DR, | M.
Combining Theorem 2.1 with Theorem 2.2, we obtain

Corollary 2.1. Let R/S be D-locally Galois for a subgroup © of ®
containing V. If S'is an intermediqte ring of R]S with [S': S],<<oco such
that R is S"-R-irreducible then J(9(S'), R) =§',
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Lemma 2.2. Let R be Galois and locally finite over S. If[V: C]<oo
then R|S is ®-locally Galois.

Proof. Let {v,, -+, v} (v/s are regular) and {r,, -+, 7.} be a linearly
independent C-basis of V and an H-left basis of R respectively. We set
here R =3 R'd,. with the simple ring R’ =V,({dn's}), where d,’s are
matrix units of H. Noting here that & (H/S) isl.f.d. and @*=@|H isa
Galois group of H/S, one will readily see that H/S is is &*-locally Galois.
If T=S[{dw’s}], then T =3} T'd,. with the division ring 77" = V({dn's})
and J(®(T), R) = J(V, RYNJ(®(T), R) = J(&*(T)|H, H) =T by Corollary
2.1. And so, if U= 3V(T)d:. then J(&(T)- U, R)=V.(U)=T'. More-
over, one will readily see that Vi(T")=> Vd,. We have proved therefore
that R is Galois and locally finite over 7’. Next, we shall prove that
®(R/T")R, is a dense subring of Hom,;(R, R). Since V(7") is finite over
C, R is finite and inner Galois over Vio(Vz(T")) =V Ve (T)) =V (V(T))
=RNV(Vpo(H)) = K(=V;({dw's})). And so, noting that K is a division
ring, we see that R is m’) R,irreducible by finite Galois theory. It
follows therefore that R is ®(R/T')R,-irreducible. Recalling here that
Viomez.z, (&(R/THR,) = T;, Jacobson’s density theorem [2] shows that
®(R/T")R, is a dense subring of Hom, (R, R). Accordingly, by Theorem
2.1, R is Galois over Sy,=T[{e;'s}{r,’s}]. Now, to see that R/S is G-locally
Galois, it will suffice to prove that there exists a Galois group & of R/S
such that (f&i, R/S) is 1.f.d. Noting here that R/S, is outer Galois and
J(&(Sy)|H, H)=S,NH = H,(a simple ring), one will readily see that
®&(Sy)|H=®&(H/ Hy). And so, it will be easily verified that H'— >} g H'r,
and S'— S’ H are mutually converse correspondences between inter-
mediate (simple) rings H' of H/H, and intermediate ones S’ of R/S,. In
what follows, this fact will be used often without mention. Now, let H’
be a &(H/S)-normal shade of S,[v,, -+, v, ]MNH, and set S'=> pH'r,. As
&(H'/S) ={s1, -+ o} | H' for some s;'s in &, we have §(H/S)={s&, ---,
o.®'} | H, where @' =B(S’). We set here 7;0: = hyyoro(i=1, =+, u; =1,
-+, t), and let N be a &(H/S)normal shade of H'[{/,'s}]. If we set
M=>@Nr, then &= {eE®; Ms=M]} contains {¢, &', «+-, 7,&'} as well
as m, and so we have ](@, RMCJ{a®, -, 0,8}, RINJ{7D, =,
v.}L, Ry =J({a, &, -, 6. &'} |H, H)=S, that is, ](@5, R)=S. Next, let F=
{ar = lwro(biwE H; E=1,-+, s)} be an arbitrary finite subset of R,
and set E = {lypo; k=1, -, s; v=1, e+, ¢; aE@i}, which is evidently
a finite set. Then S[F @] CMI[E], and M[E] is left-finite over S. Hence,
we have proved that (&, R/S) is Lf. d.

Lemma 2.3, Let S be a regular subring of R, and S' a regular in-
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termediate ring of R|S such that S'|S is Galois and [S': S1<<oo. If
&(S'/S)CSS|S' and R is S'-R-irreducible then S'MH is simple and
LS': S'MHL =[V: Ve(S)]..

Proof. Let &' ={s®; S'¢=S5"}, Vo={vEV; S's=5'}. Then, f;o
is a normal subgroup of &' and G(S'/S)=&’|S". Since 17(,|S' contains
1//IS/) |S', V,| S’ is a regular subgroup of (S'/S) and the simple ring S, =
J (FIZ.IS', S" is contained in Vg (Vs(S)). And so, S/S is outer Galois and
[S): S1=(®(S'/S): V,|S")=s. Now, let {a,|S' =118, 4,5} (nES)
be a complete representative system of &(S'/S)/ V,|S’. Then, as is noted
in the proof of Theorem 2.2, there holds Homs (S, R) = (&'|S)R, =
Ef(ﬁa,lS’)Rr. If 5/|S' =008 (i5%j) for some v £V, then we see that
S'=S8' 6, =Ss,»=S'v, whence » =V,. But this is a contradiction. Hence,
by Lemma 1.5 (iii) we obtain

2.1) Homg (S, R) = S){(Ver:| )R, = Vi@ (Vau|S) R,

Accordingly, by Lemma 1.5 (ii) and (iii),

[S': Solu+ [So: ST=[S': S]; = "Hom,,(S", R): R,1,=s-[V: Vu(S)],.
Recalling here that [S,: S]=s, we have [S': S;]=[V: V,(58)],. On the
other hand, (2.1) implies (Vo|S")R, = (V|S')R,. Hence, in virtue of
Lemma 1.4 (i), (ii) and Lemma 1. 5 (ii) we see that V possesses a linearly
independent V,(S')-basis consisting of elements belonging to V,. Recalling
here that V, contains all the regular elements of V(5'), we obtain S,=
Ve (Vo) =S'"NVe([Vo]) =S NVa(V)=S'MH. We have proved therefore
that S'MV H is simple and [S": S"M A, =[V: V,(S)],.

Lemma 24. If R/S is locally Galois then H is simple and Galois
over S.

Proof. Let F be an arbitrary finite subset of H, and S’ a shade of
F. As SCS'NH=S'NV(V)CTS'NV(C)=S5"and [S':S_, < oo, there
exists a finite subset W of V such that S'MH =S'NVy (W)= Vs (W). We
consider here an arbitrary shade S of S'[ W], and set V"= V..(S), H'=
Ve (V). Then, by [8, Lemma 1.4] H'"NS'(= Vs(V")) is a simple ring
containing HNS'= Vs (V). On the other hand, H'NS'= Vs (V") C V(W)
=HMNS'. Hence, HN\S' is a simple subring of H containing F which is
Galois over S(=J(®(S"/S)Y|S'MNG(S'/S), S")). Whence, our assertion is a
direct consequence of Lemma 1.1 and {8, Lemma 4.2].

Corollary 2.2. Let R/S be &-locaily Galois.
(i) 1fS'is an arbitrary ®-shade then R' =V (Vi(S") is simple and
[R’: H]z < oo,
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. (i) R/H is @ (H)-locally Galois.

Proof. (i) At first, as R/S' is locally Galois, R’ is simple by Lemma
2.4, Let F be an arbitrary finite subset of R’ that is linearly left-inde-
pendent over H. We choose here a &-shade N of S'[F, {e;,’s}}, and set
S*=(NNH) [S, {es}, F], which is evidently a simple subring of N.
Now, by Lemma 2. 3, we see that NN\ H is simple and o« >[N: NNH],
=[V: Vx(N)].. Accordingly, noting that S*2S’ and R/ NN H is &(NNH)-
locally Galois, we obtain oo >[N: S*],- [S*: NN H], = [V: Va(§%)],-
[Ve(S*): Va(N)]., [N: S*],=[Ve(S*): Vo(N)], and [S*: NNH]l.=
[Ve(NNH): Vu(S*)],=[V: Ve(S*)]. by Lemma 1.5(). If follows there-
fore [S*: NNH],=[V: Vu(S*)..=TV: Vi(S'[{eys}1)],, for R\ DS'[F]12S.
Since S* contains F, the last fact implies at once [R": H], &

[V: Ve(S'[{eys}).r<oo.

(ii) Let F be an arbitrary finite subset of R, and S’ a &-shade of
{gsas}\UF. We set here Vo={v&EV; S'5=5'}. Then, as is shown in the
proof of Lemma 2.3, V=[V,]. And so, noting that R’ =V,(Vx(S")) is a
simple ring containing {g,,'s} and finite over H by (i), we see that R’ is
a O (H)-shade of F.

Corollary 2.3. Let R/S be &-locally Galois. If S' is a regular in-
termediate ring of R|S such that [S': S],<<oo then H'=V,(Vy(S)) is
simple‘ana' [H': H,=[V: Vx(S)],

Proof. Let S" be an arbitrary ®-shade of S'[{ei;'s}, {gpe's}], where
Zwo’'S are matrix units of V(S'). Then, the proof of Corollary 2.2 (i) will
yield at once [ H": H],=[V: V&(S")],<<eo, where H" =V, (V,(S")). Since,
to be easily seen, R/S' is &(S')-locally Galois (whence H’ is simple by
Lemma 2. 4) and S is a &(S’)-shade, the same reason yields [H'': H'], =
[Ve(SY: Vu(S")],. Andso, (H":H,-[H": Hj,=[H":H],=[V: Vi(S")].
=[V: V(8] [Vi(S"): Vi(S")], implies [H': H], =[V: Vux(S")], <oo.

Lemma 2.5. If R/Sis &-locally Galois then it is ®&*-locally Galois
for any regular Galois group ® of R/ S.

Proof. Let S’ be a G-shade of an arbitrary finite subset of R. Then,
by Lemma 2.3, (H'=S8'MH is simple and) oo> [S': H'], =[V: Vx(S")], =
[V(H"): Ve(S")],. Accordingly, it follows that Homy/(S', R) = (‘71 SYR,
by Lemma 1. 5. Since H'/S is outer Galois and &*|H is a Galois group of
H/S, &(H'/]S)=8*|H'= {a,|H', -+, 6.|H'} where ¢, &*(cf. [8, Corol-
lary 1.1]). And so, for each ¢« = there exists some ¢; such that ¢|H'=
os|H', that is, so,' € ®(H'). Hence, so,~'|S'EHomy(S", R) = (V|S')R,,
whence go,7'|S'=2|S (v E V) by Corollary 1.1. It follows therefore ]S’
= pg,;|S'€ &*| S'. This proves evidently &|S' = &*|S’. In particular, we
obtain &(S’'/S)C®*| S,
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Theorem 2.3. R/S is G-locally Galois if and only if R]S is Galois
and locally Galois.

Proof. The only if part is clear by Lemma 2. 1. Now, we shall prove
the if part. Let S' be an arbitrary shade of {e;’s}, and H'=S'"\H. Then,
by the same way as in the proof of Lemma 2. 4, we can find a subset W of
V such that H' = Vg, (W). And then, for any shade S of S'[ W] we can
see that H' coincides with the simple ring S'MH"', where H''=Vs.(V(S)).
Moreover, if we set &' = {e=®(S"/S); S'a =S'} then G(S'/S)=@"|S'
and & |H'(=®"|S'M\ H") is a Galois group of H'/S. On the other hand,
recalling that H is simple by Lemma 2.4, it follows that G&(H'/S) =
(G|H)|H'=®|H'. And so, for each a € &(S'/S) there exists some ¢ E S
such that «| H' = ¢| H', that is, as~' is an H'-isomorphism. Since S''/S
is trivially &(S"/S)-locally Galois, S' is still a shade of {e,'s} in S,
and ‘M H"=H' as is cited in the proof of Lemma 2.5, there holds
Hom;(S', §") = (V"|S"S. where V"= Vs.(S). Accordingly, we have
Hom,(S', R) = (V| SR, by the same methods as in the proof of Theoem
2.2. Hence, by Corollary 1.1, as'=12u|S’ for some u= V(= Vi(H"), whence
a=1uc|S'€®|S. We have proved therefore that $(S'/S)C &|S".

Theorem 2.4. Let R/S be Galois and locally finite. If [V: C) < oo
then R[S is &-locally Galois.

Proof. Let S' be an intermediate ring with the properties cited in
Corollary 1. 2. For an arbitrary finite subset F' of R, we set T = S'[F].
Then, in virtue of Lemma 1. 3, there holds

BITSBINV, =X @DV, ¢=(T:5]: <, s;EG)

We set here S*= T [Tqy, »*+, Ta,]. Then, H* = V,(Vx(S*)) is a simple ring
containing V and V = Vy.(8) is finite over the center C* of H* (Corollary
1.2). Noting that Vi(S*) =V (H*)C Va(V)NV(S*) = Va(S*[V]), we
have H* D V,(V,(S*[V])), whence H* = V,(V,(S*[V])). As to be easily
verified, S*[ V1 is &-normal, H* is G-normal too. Hence, H*/S is Galois.
And then, H*/S is &(H*/S)-locally Galois by Lemma 2.2, Accordingly,
there exists a & (H*/S)-shade of F. Hence, R/S is ®&-locally Galois by
Theorem 2. 3.

Corollary 2.4. Let R be Galois and locally finite over S, and
{V:CyJ<<oo. For each finite subset F of R, there exists a &-normal in-
termediate simple ring H* of R{H[F, V] such that [ Va{S): Va(H*)]<<oo
and H* = V,(Va(H*)).

Now, in virtue of Lemma 1.9, Corollary 2.1 and Lemma 2.2, [4,
Theorem 1] is true under the following condition:

(I) R is Galois and 2-algebraic over S and [V : C] < oo,
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Moreover, by [8, Theorem 4.1]®, (I) is equivalent to the next:
(1) R/S is locally Galois and [V: C]<<oo,
Thus, we obtain the following conclusion.

Conclusion 2.1. The conditions (I) and (1) are equivalent to each
other. And if one of these is fulfilled, we obtain the following:

(i) For each regular intermediate rings R,, R. of R/S, every S-(ring)
isomorphism p of R, onto R, can be extended to an automorphism of R.

(ii) For each regular intermediate ring R' of R[S, R/S' is G(R')-
locally Galois.

Secondly, by the validity of Lemma 1. 10, Theorems 2.1, 2.4 and
Corollary 2. 1, the condition (3) stated in [4, p.191] is a consequence of
the following:

(1) R is Galois and 3-algebraic over S and [V : Cp] << oo.

And so, [4, Theorem 2°, [13, Lemma] and Theorem 3. 4 yield the next
conclusion. (Cf. also [8, Theorem 4. 4].)

Conclusion 2.2. Let the condition (I1) be satisfied and [R: H], < Ry
And let R,, R, be f-regular intermediate rings of R/S.

(i) If p is an S-(ring) isomorphism of R, onto R, then p can be ex-
tended to an automorphism of R.

(i) R/R, is &(R,)-locally Galois.

The second assertion in the following theorem is a particularly import-
ant property of &-locally Galois extensions.

Theorem 2.5. Let R/S be &-locally Galois, and &* a regular Galois
group of R/S.

(i) ©*is densein ®.

(ii) For any regular subring S* with [S*: S],<<oo, there holds
J(B*(S*), R) = S*,

Proof. (i) Let S’ be an arbitrary &-shade. Then in the proof of
Lemma 2.5, we have seen that ®&|S’ = &*|S'. This fact implies evidently
the density of &*.

(ii) At first, R/S is ®*-locally Galois by Lemma 2. 5. Let V,(S*) =
2 U*g* e, where U* =V, (oo ({g%*ma's}) is a division ring. And con-
sider a @*-shade S’ of S*[{g*,+.'s}]. Then, J(B*(S"), R)=S' by Corollary
2.1. Further, as J(B(S'/S)(S*), S') = S* and G(S'/S) S &*|S/, we readily
see that J(®*(S*), R) = S*.

Corollary 2.5. If R/S is &-locally Galois, and R' a regular inter-

4) In the proof of [8, Theorem 4.1], we should remark that Gq|MpCGs if M2 Mg,
which will be easily seen by [8, Corollary 1.1]. And, by the way, we remark here
that the last part of the proof may be omitted, In fact, it is evident that ¢ is an
automorphism of R,



04 Taxast NAGAHARA and Hisao TOMINAGA

mediate ring of RJH such that [R': H],<<oo, then R'=Vx(V:z(R")).
Proof. Vis evidently a regular Galois group of R/H, and R/H is
& (H)-locally Galois by Corollary 2.2 (ii). And so, R/ H is ﬁlocally Galois
by Lemma 2.5. Now, in virtue of Theorem 2.5 (ii), we obtain Vi (V.(R")
=J(V(R), R)=R'. |
We shall state here the following topological properties of Galois
groups as a theorem.

Theorem 2.6. Let R be Galois and locally finite over S.

(1) © is discrete if and only if [R: S] < oo,

(ii) G is compact if and only if ® is almost outer, or what is the
same, if and only if © is locally finite.

(iil) ® islocally compact if and only if [V: C] < oo,

Proof. Since (ii) is proved just before Lemma 1.7 and (iii) is con-
tained in Lemma 1.7, it suffices to prove (i) only. At first, the if part is
evident. And so, we shall prove the only if part. Since & is locally com-
pact, [V: C]<<oo by (iii). And there exists a regular intermediate ring
S’ of R/S such that _S’: S, << o and &(S’) is compact. Combinig this with
the assumption that & is discrete, it follows that # &(S')<<oo. Since R/S
is G-locally Galois, R/S' is Galois by Theorem 2.5. And so, as is well-
known, we have [R:S'] <<oo, whence [R:S],=[R:S']:[S": S, <<oo.

Our next task is concerned with the local-finite dimensionality.

Lemma 2.6. If R is Galois and locally finite over S and [V: C]<<
oo, then (&% R/S) is I.f.d. for any finitely generated subgroup &* =
Lo, =, om] of ©.
Proof. Let {r,, ---, r,} be a linearly independent H-left basis of R.
We set here S,=S[{e,'s}, {dw's}, {ro’s}] and H,=S,NH. Now, if r=
2 hoy (hy EH) is an arbitrary element of R, then
Pubw = 2 Huw?s  (Buww € H),
Fumid = SV hiwnts (B € H), (w=1, -, m).
Since H/S is outer Galois, there exists a (S(H/S)-normal shade H' of
Hy[{ Auwwo's}, {Huw's}), {h's}]. And then, as is noted in the proof of Lemma
2.2. N=>H'r,(DS[r]) is a ring finite over S. Moreover, as one can
easily see that N is &*-normal, N contains S’ {#} &*]. Hence, (&*, R/S)
is L. f.d.

Corollary 2.6. Let R be Galois and locally finite over S, and [V: C]

<oo. Then, there exists a Galois group & of R/S such that (&%, R/S)
is . f.d. for each finite subset % of .
Proof. Let @ be the group considered in the proof of Lemma 2.2,
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We have seen there that (&, R/S) is 1. f.d. On the other hand, ([§], R/S)
is I.f.d. by Lemma 2.6. Here, for an arbitrary finite subset F of R, we
set S, = S[S,[F] ®] and S, =S [So[FI[®]1], where S, isthe ring mentioned
in the proof of Lemma 2.2. Then, as is noted in the proof of Lemma 2.2,
Si=>a HNS)r,(i=1, 2). If H* is a §(H/S)-normal shade of (HNS,)\U
(HNS,) then S* =3 @ H*7, is a G[F]-normal subring finite over S. We
have proved therefore that (@[%], R/S) is 1. 1. d.

Theorem 2.7. If R is Galois and locally finite over S and [V: Cy]<<
oo then (8%, R/S) is L f.d. for any finitely generated subgroup &* of ®.

Proof. Let » be an arbitrary element of R. Then, by Corollary 2.4,
there exists a &-normal simple subring H* containing H[r, V] such that
V =V (S) is finite over the center of H*, Since H*/S is evidently Galois
and G*|H*C G(H*/S), (8*|H*, H*/S) is L. f.d. by Lemma 2.6. Hence,
[S{{r} ®*]:S],<< oo, which proves that (&%, R/S)is 1. f.d.

Next, we shall prove that [15, Theorem 6] is still true under the
assumption that R/S is ®-locally Galois.

Lemma 2.7. Le! R be ®&-locally Galois over S, and 9 a (%y)-regular
subgroup of &. If Ry=J(D, R) then (HNRy is simple and) [Ry: HN\Ry]:
oo,

Proof. Since H is simple and Galois over S by Lemma 2.4, there
exists a &(H/S)-normal shade M of {d’s}. To be easily seen (or by
Theorem 2.5), R/M is Galois. We set here $* =®&(R/M)NH. Then, H*
is a normal subgroup of $ and Vo= Vg~ Moreover, noting that M/S is
outer Galois, we readily see that co>[M:S]1=(D: H*). On the other
hand, as [V: Ve],<C oo, we can find a finite subset EC R, such that Vp =
V«(SLE]). Now, let S' be a ®-shade of M[E], and set R’ = Vx(Vr(S").
Then. R’is simple and [R': H],<<oo by Corollary 2.2. If R* =J(9* R)
and H* = HNR* then Vor=Voa=V,(STE )DVy(S") and DD H* yield
R'DR*DR,. Since R* is $-normal, sois H*. And so, noting here that
H* and HN\ K, are simple by [8, Theorem 1.1] and J($|H*, H*)=HN\R,,
we see that H*/HN\ R, is outer Galois with a Galois group $|H*. Hence,
we have
2.2) 00 > (9D:9%) = #(D|H*) = [H*: HN\R,].

Now let R* =3 R¥*d,, with R** = V,({d,'s}). And then, we can choose
a linearly independent H*-left basis {a.'s} of R* from R**. Suppose {a.'s}
is linearly dependent over H, and > !'h;a, =0 (b, & H) a non-trivial rela-
tion of the shortest length. Here, without loss of generality, we may
assume that A, =1. If one of A/ s, say k,; is not contained in H* then
there exists some = 9* such that ko5~ k. Andso, S hai— S ha)e=0,



96 TakAsl NAGAHARA and Hisao TOMINAGA

that is, 27(h—h0)a; = 0 is a non-trivial relation. This contradiction
shows that o> [R': H],= [R*: H*],. Now, combining this with (2.2),
we have o >[R*: H*],- [H*: HN\RJ = [R*: HNR,]. = [Ry: HN\R,y]..

Corollary 2.7. Let R be Galois and locally finite over S, and [V: C]
<oo, If © is a (%)-regular subgroup of ® then it is regular.

Proof. By Lemma 2.3, R/S is &locally Galois. And so, R, =J(, R)
is left-finite over H,= HN\R, by Lemma 2.7. Since R/H, is Galois and
& (Hy)-locally Galois by Conclusion 2.1, without loss of generality, we may

assume from the beginning that H,=S. Now, let (55 a subgroup of & with
the property cited in Corollary 2.6, and set R, = Ry{{e:’s}]. Here, as
[R::S]; <o and R,= J(9, R), there exists a finite subset § of £ such

that J(F| Ry, R) = R,. We set here &* = &[], then (%, R/S)is Lf.d.
Let R, be a @*normal shade of R,[{g',¢'s}], where g’,’s are matrix
units of V9. Then &, ={cE®&(R,/S); xo=x for all xER,} is a subgroup
of ®&(R./S) containing ¥|K.. Hence, as R./R, is Galois and J(F| R, R)=
R,, we obtain R, = J(&,, R), whence @&, is (*)}regular. Now, (15, Lemma]
proves that R, is simple.

Theorem 2.8. If R/S is &-locally Galois, then any (x5)-regular sub-
group of & is f-regular.

Proof. As to notations, we follow the proof of Lemma 2.7. And let
S’ be particularly a &-shade of M{E, {eiss}, {g».s}]. Then, R'/S is Galois
and [R'; H], < o implies [ Vi (S): Va(R")] << oo (Corollary 2.2 and Lemma
1.5). And so, by Conclusion 2.1, we see that R'/HNR, is locally finite,
whence RS§ = R,[ {ei/s}] is a simple subring of R’ left-finite over HNR,
(Lemma 2.7). Accordingly, there exists a finite subset ¥ ={a\, --+, au.' }
of © such that J(§'| RS, RY) =R,. Now, let S. be a G-shade of S'[\U S'sy/,
{gha’s}], where gl..’s are matrix units of V. And, we set R.=Vz(V(S,)).
Then, by the same reason as above, R./S is Galois and [ Vg, (S): Ve, (R)]<
oo, Moreover, B:2 Vp(Va(S's.))=R's:/, whence B,2R! [UR’o-,,,’] Recalling
here that R$ and RSs.' are regular intermediate rings of R,/S, we have
' | RS = 6| RS for some 5, E B(R,/S)=@, by Conclusion 2.1. We set
here § ={ay, =», on}. Then, R,/RS$ being Galois again by Conclusion 2.1
and J(IRS, RS) =R, it follows that J(®,(R,), R,)= R,. On the other
hand, as R,2 {ghe's}, Vi,(Ro) is simple. Accordingly, &,(R,) is a (x)-
regular subgroup of &,. Hence, R,= J(8:(R,), R,) is simple by Corollary 2.7.

The next is a generalization of [9, Lemma 1].

Corollary 2.8. Let R/S be &-locally Galois. If S'is an intermediate
ring of R]S with [S': ST, << oo such that R is S'-R-irveducible, then S' is
a regular subring of R.

Proof. At first, J(®&(S'), R)=S' by Corollary 2.1. As [V:
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Va(J(B(SY), R)], = [V: Va(S)], <o by Lemma 1.5 (i), &(S") is a (x,)-
regular subgroup of & Hence, our assertion is a direct consequence of
Theorem 2.8.

In the rest of this section, we shall assume that R is Galois and locally
finite over S and @ is locally compact. As [R:H]=[V:C]<oo by
Theorem 2.6, there exists a linearly left-independent H-basis {ry, «--, 7.}
of R. We set here S,=S[{ey’s}, {7,’s}], which is evidently a regular
intermediate ring of R/S. And so, by Conclusion 2.1, &= ®&(S,) is the
Galois group of R/S,. Now, under this situation, we shall present a
necessary and sufficient condition that a closed N-regular subgroup of &
is regular.

Theorem 2.9. Let R be Galois and locally finite over S, & locally
compact, and O a closed N-regular subgroup of &. Then, in order that
9 is regular it is necessary and sufficient that (9: (SN D) -/ITLFQ/))< oo,

Proof. Necessity. As T = J(9, R) is a regular intermediate ring of
R/S by Theorem 2.8, R/T is &(T)-locally Galois by Conclusion 2.1. And
so, the closed © coincides with &(R/T) by Theorem 2.5. In virtue of
[8, Theorem 1.1], H[T] is a simple ring as an intermediate ring of
Ve(Ve(T))/T. Hence, we have Vz(I(9)) = Va(Va(T) =H[T]. Now, let R,
be a $-shade (B(R/ T)-shade) of T[S,]. Then, HNR, is evidently outer Galois
and locally finite over HMNT. As moreover [T: HN\T],<oo by Lemma
2.7, we obtain[ HNRy: HNT 1, <[Re: HNT ., =[Ry: T1,- [T: HNT ], <oo,
We have seen therefore that H/N\ R, is outer Galois and finite over HN T.
On the other hand, as ©|H is a Galois group of H/HNT, HNR, is -
normal by [8, Corollary 1.1]. And so, we have (D|H)|HNR,=&HN
R,/JHNT). As R/S, is outer Galois and locally finite, so is R/R, If we
set D, =B (R/Ry) (S &N D), then J(D,|H, H)=HNR, Now, it will be
easy to see that ©,| H= 9 (H/HNR,). Accordingly, co>[HNR,: HN\T] =
(DIH: D H)=(D| H[T]: 9 |H[T])=(D: Do I(D)N=(D: (BN D) I(D)).

Sufficiency. Set again T =J(9, R). Then, $|H is a Galois group of
H/HNT. As £,=©,N9 is a closed subgroup of the outer Galois group
&, =®(R/S,), Ro= J(9u, R) is a simple intermediate ring of R/S, and
®&(R/R,) =9, by [8, Corollary 1.4]. The assumption (9: -@0-@/))< oo
implies evidently #(9|HNR,)<oo. And so, [HNR,: HNT]<® by
Lemma 1.8. As moreover [Ry: HNR,];<<oc by Lemma 2.7, we obtain
eventually [R,: HNT ], <<oo. Noting here that R,2 T2 HNT, there exists
a finite subset § of $ such that J(F|R, Ry)=7. And then, R/HNT
being Galois and locally finite, in virtue of Corollary 2.6 we can find a
Galois group © of R/HN T such that (9[F], R/HNT) is L. f.d. Now, let
ghre’s be matrix units of I(9), and R* an arbitrary é[%]-normal shade
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of R[{ghe's}]. (One should remember [R*: HNT]<<o0.) As G* =
®(R/R*) is (outer and so) compact, it will be easy to see that G(H/ HNR*)
= @*|H. We set here $* = {s € 9; R*s = R*}, which contains evidently
%. Moreover, as R* is Galois and finite over R,, [8, Corollary 1.1] will
yield at once that R* is $,normal. Accordingly, we obtain H* 2 $,[F],
whence it follows that T7C J(9* | R*, R*)C J(9.[F] | R*, R*)=J(F| Ry Ro)=
T. Hence, $*|R* is a Galois group of R*/T.

Next, we shall prove that $*|R* is an N-regular subgroup of ®&(R*/

HNT). To this end, we shall consider

E={a€V; a9}, and

E* = {a* € Vi(S); a*|R* € $*|R*}.
Take an arbitrary ¢* of E*. Then, a*| R* = ¢|R* for some ¢ &€ $*, whence
c|HNR* = g% |HNR* = 1. Hence, ¢| HE @(H/HNR*) =&*|H, that is,
¢|H = :|H for some - &*(C 9,). Accordingly, o-7'€ HN V=E: ¢:'=
a for some a € E. Recalling here that R*s = R*, we obtain

a|R* = ¢:7'|R* = ¢|R* = a%|R¥,
which implies a*a™' € Vi(R*) = C. It follows therefore a*& C[E]=1(9).
As C* = Vipe(R*) = CNR*, it will be evident that I(*|R*)=C* E*]C
I(®), whence it follows 7(9*|R*)C I(D)NR*. As the converse inclusion
is trivial, I($*|R*) coincides with the simple ring I(D)NR*¥(2D {g}-«’s}).
Now, it will be easy to see that $*|R* is an N-regular subgroup of
SR*/HNT).

As a consequence of finite Galois theory (cf. for instance [2, VI, §12]
or [10]), we have I(D) 2 I(D*|R*) = Vr(T). Noting here that R* can be
chosen as large as we want, there holds I(9)2DV:(T), whence I(D) =
Ve(T). Thus, we have proved that & is regular.

Corollary 2.9. Let R be Galois and left algebraic over S. If © is
almost outer then any closed N-regular subgroup © of O is regular.
Proof. At first, R/S is locally finite by [3, Theorem 2]. And so, by
Thenrem 2.6, & is compact and locally finite. We set here T = J (9, R).
Then T'= T[S,9] is evidently a regular intermediate ring of R/S, and
'=HNGR/ TS HNS,. Now, recalling that 9 is locally finite as a
subgroup of &, we have (9: 9’) = #(9|T’)<<oo. Consequently, (D: (5N
&) + /1?5)) Z@:HNG)) = (D: D)< oo, And, our assertion is a direct
consequence of Theorem 2.9,

3. Galois theory for hereditarily Galois extensions. In this sec-
tion, one will penetrate what kinds of properties of extensions are essential
in constructing Galois theory of simple rings. In fact, we shall show that
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all the Galois theories of simple rings and division rings appeared till now
can be concentrated under the assumption that R/S is locally finite and
hereditarily Galois.

Lemma 3.1. Let R/S be Galois, H simple and left-algebraic over S,
and &* a regular Galois group of R|S. If S'is an intermediate ring of
R/S such that R is S'-R-irreducible and [S': S],<<oo, and if [S': HN\S'],
=[V: Vu(S)]., then there holds the following:

(i) Homs (S', R) = (B*|S")R,.

(ii) G|’ = @*|S".

Proof. In virtue of Corollary 1.1, it suffices to prove (i) only. Set
here H'=HM\S'. Then, as H/S is (locally finite by [3, Theorem 2] and so)
(®*| H)-locally Galois, H is H'-H-irreducible by Lemma 1.2. Hence, in
virtue of Theorem 2.2 and Lemma 1.3, it follows that

Homg(H', H) = (&*|H")H, = 3}{@(0:| H')H, for some o, € @*.
We obtain therefore [H': S, =[Homs/(H', H): H,],=s. On the other hand,

as o|H'o,|H'(i5*j), Lemma 1.3 (iv) proves that (¢,|S')R, is not
S,-R,-isomorphic to (¢,]S")R,. And so, we have

SH(ValSHR. = 35 @ (Vi SHR..
Now, by Lemma 1.5 and our assumption, it follows that
(21 (Va|SOR,: R, ], =s-[V: Vi(S")], =[H": S],- [S": H'],=[S": S],,

whence we have 2?@(¥7¢n |ISYR, = Homg, (S, R). We have proved there-
fore (8*|S’) R, = Hom,,(S', R).

Lemma 3.2. Let R be locally finite over a regular subring S. And
suppose that for each regular intermediate ring S' of R/S with [S': S],<
oo, R[S’ is Galois and Vx(Vx(S") is simple.

(i) Let Si be a regular intermediate ring of R|S[{dn.s}] with
[Si:S]li<oo. If H.is an arbitrary subring of H containing H =HMNS,,
then H.[S,] is simple and coincides with H,-S,, H.=HMN\H,-S,, and S, is
linearly disjoint from H,*

(i1) If R, is an arbitrary simple intermediate ring of R/S of capacity
n=[R|R] such that HN\R, is of capacity m=[H|H] then H[R,]is simple
and R, is linearly disjoint from H.

(iii) R/H is locally finite.

Proof. (i) Since Vr(Vx(S)))/S; is locally finite and outer Galois,
H[S,] is simple and Galois over S;, whence we see that H,[S,] is simple
too. Evidently, ®&(S,)|H[S.] is dense in &, = &(H[S,]/S)). Andso, H®,

5) That is, every subset of Si linearly left-independent over S N H: is linearly
left-independent over Hai.
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= H. Moreover, noting that J(®&,|H, H) =H, and &, is compact, one will
readily see that &,| H=&(H/H,).

Now, let{d,, ---, d,} be a linearly independent H,left basis of S;. At
first, we shall prove that {d,, *-, d,} is linearly independent over H. To
this end, it will suffice to prove the next:

ZHdl = Ethkdi = E@h.k,i thkdh
If not, without loss of generality, we may assume that
dud, = 2 umdnd, (anm = K)

is a non-trivial relation of the shortest length. Then, as there exists some
@ny,1, DO contained in KMS,, we can find some s & G(S)) such that any,
%a%wﬂa(e K). Accordingly, we have a non-trivial relation of shorter
length:

0 =dud;—(dudi)e = (@ — nis ) dnedy.
This contradiction proves that for any intermediate ring M of H/H,
(3.1) [M-S: M), = [S;: H].
In particular, if M is an arbitrary & (H/H,)-normal shade then

@(M[SIJ/SJ) = @1‘M[81] = 64”1'1\4 = @(M/H,),

Hence, we have [M[S,]: S,] =[M: H,]. And then, noting that [M[S,]:
M1 -[M:H]=[M[(S]:H].=[M[S]1:S5]1-[S:: Hi],, we obtain

(3.2) [M[S]: M1, =[S:HJ.

Now, by (3.1) and (3. 2), it follows that M-S, = M[S,]. Since the &(H/H,)-
normal shade M can be choosen as large as we want, one will easily realize
the validity of the fact H[S,] = H-S,=>@©Hd,. Next, as &(H,)|H=
®&(H/ H.), it will be easy to see that H,[S,] C J(®,(H.), D Hd,) => @ H.d..
Hence, we have H,[S,]=H.-S,=>@H.d: and H.[SJNH=H, Finally,
recalling that H,= HNS;=H,MNS,, we see that S, is linearly disjoint
from H,.

(ii) Without loss of generality, we may assume that R, 2 {e;/’s} and
{dn's}. And then, R, = \U, S, where S, runs over all the intermediate
rings of R,/S[{ey's}, {dw's}) with [S,: S].<<eo. By (i), each H[S.] is
simple and S, is linearly disjoint from H. Hence, H[R,] =\U\ H[S,] is
simple and R, is linearly disjoint from H.

(iii) Let F be an arbitrary finite subset of R. If we set S, =S[{d..’s},
F], then [H[S]: H], = [S,: HN\S,];<<ee by (i). Hence, R/H is locally
finite. )

Definition. Let S be a regular subring of R. R/S is said to be kere-
ditarily Galois (abbr. h-Galois) if the following two conditions are fulfil-
led:
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(a) For each regular intermediate ring S’ of R/S with [S$': 5], <oo,
R/S' is Galois and Vx(V:(S") is simple.

(b) For any regular intermediate ring R’ of R/H with [R': H], < oo,
R'=Vy(Ve(R")) and [R": H],=[V: Va(R)],.

If a division ring R is Galois over S, R/S is h-Galois by [11. Lemma
2] and {7, Theorem 1]. Concerning simple rings, if R/S is &-locally
Galois then Corollary 2.2, Corollary 2.3, Theorem 2.5 (ii) and Corollary
2.5 show that R/S is h-Galois.

Lemma 3.3. If R/S is locally finite and h-Galois, then for each
regular intermediate ring S' of R|S with [S": S], << oo, H[S'] = Va(Vx(S")
and [V: Ve(S)], = [Va(Va(S) : H, < oo.

Proof. Since R/H is locally finite by Lemma 3.2 (iii), [H[S'}: H],<<oo.
Next, Vx(V(S))/S' is locally finite and outer Galois. And so, V(V:(S")
DH[S]12S yields the simplicity of H[S’], that is, H[S'] is a regular
subring. Hence, by our assumption, it follows that V. (Vx(S)) =
Ve(Ve(H[S'])) = H[S'] and [V:Ve(S)], = [Va(Ve(S)): H, < es.

Corollary 3.1. If R/S is locally finite and h-Galois then so is R]S'
for each regular intermediate rving S' of R/S with [S': 8], <<oo.

Proof. We set H' =Vz(Vr(S). Then R/H is locally finite and
[V:Ve(S)],=I[H'": H],<<oc by Lemma 3.3. And so, for any regular inter-
mediate ring R, of R/H' with [R;: H'|;<<oo, we have [R,: H'],-[H': H],=
[Ri: H],=[V:Va(R)].=[V:Va(SN], [Vr(S):Vi(R)]. by our assumption.
Hence, combining this with [V:V,(S")].= [H': H],, we obtain at once
[Ry: H'],=[Va(S"): Va(R))], The rest of the proof will be almost evident.

Lemma 3.4. Let R/S be locally finite and h-Galois. If ®F is a
regular Galois group of R[S, then &* R, is dense in Homs (R, R), and &*
is dense in &.

Proof. For an arbitrary finite subset F of R, we set S,=S[{e’s},
{dn's}, F]. Then, [S;: SSNH),=[H[S,]: H,={V:V,(S)]. by Lemma 3.2
(i) and Lemma 3.3. And so, (&*|S)R, = Homs‘(S,, R) by Lemma 3.1,
which proves the density of &*R,.. The rest of the proof is an easy
consequence of Corollary 1.1.

For an intermediate ring T of R/S, I'(T/S) will denote the totality
of S-(ring) isomorphisms of T into R. Then, we have the next

Corollary 3.2. Let R/S be locally finite and h-Galois. If R' is an
intermediate ring of R/S[{e's}), then (RRM\H) I'(R'|S)C H.

Proof. For arbitrary a€ HNR', we set S'= S[{e,,’s}, a] (C R').
Then, (B|S)HR, = Homg, (S', R) by Lemma 3.4. Since R is S'-R-irreducible,
by Corollary 1.1 we see that for each - =I'(R'/S) there exists some s =&
such that ¢|S'=¢|S’. Hence, ar =aoc= H.
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Lemma 3.5. Let R/S be locally finite and h-Galois. If R' is a regular
intermediate ring of R[S such that [H[R'): H],<<oo, then H[R'] is outer
Galois and locally finite over R', and Q(H[R')/R)=~GH/HNR') by the
restriction map.

Proof. There exists a simple intermediate ring S’ of R'/S such that
H[R]=H[S'] and [S': S, <<oo. Then, H[R'] (= H{S']) coincides with
the simple ring H'=V (V(S")) by Lemma 3.3. Moreover, as H'/S' is outer
Galois and H'2D R'2 S, H'/R' is outer Galois and locally finite. And,
noting that &' =@®&(H'/S") is the totpological closure of &(S")|H', we
readily see that H®' = H. Now, the required isomorphism will be given
by the restriction map o: GH'/R)De— o |HES®H/HNR'). Here, one
should remark that G(H'/R') is compact and G(H'/R")|H is dense in
&(H/HNR).

Theorem 3.1. (Transitivity Theorem). Let R be locally finite and h-
Galois over S, and R' an intermediate ring of R/S whose capacity coin-
cides with that of R. If H' is an arbitrary intermediate ring of HfS such
that H'/S is Galois, then H'[R'] is outer Galois and locally finite over R’
and S(H'[R']/RY=G(H'/ H'N\R) by the restriction map.

Proof. To our end, it will suffice to prove our theorem for the case
where H'= H(cf.[15,(m)]). And, without loss of generality, we may assume
that R'D{e;’s}. Let &' be the group of all the R’-(ring) automorphisms of
H[R"]. Then, & |[HC®(H/HNR'") by Corollary 3.2. We have H[R']=
\UyR,, where R,=H[{e:/s}, F,]and F, runs over all the finite subsets of R'.
If we set R,=R'NR,(2{ei,’s}), then one will easily verify that R,=H[R',],
R'=\U, R, and R,NH =R'NH. Now, in virtue of Lemma 3.5, &(R./R;)
~@(H/HNR,) =G (H/R'NH) by the restriction map. Hence, for each
-E®(H/R'MH) there exists a uniquely determined extension -,E&(R,/R',)
of -. Accordingly, one will easily see that if R,2 R, then &(R,/R))|R,. =
®&(R,/R;)|H[R,] = ®(R./R,). By the light of this fact, we can define an
extension T € @ of - by the rule 7| R, =-,. We have proved therefore that
®&'\H=8(H/HNR'). Moreover, by the way of the definition of 7, one
will easily see that &'| R, (=®' | H[R',]})= &(R,/R'",). Hence, it follows that
J(&', H[R'])=\U,J(®'|R,, R,) =\U,R",=R', which means that H[R']/R’
is outer Galois and &' = G(H[R']/R"), for V(V(R)) D H[R']2 R'. Now,
as it is easy to see that &' is locally finite, H[R']/R' is locally finite by
[15, (a*)]. Finally, noting that &'| H =®&(H/HNR'), our isomorphism will
be evident.

Lemma 3.6. Let R/S be locally finite and h-Galois, and S' a regular
intermediate ring of R]S with[S':S],<<oo. If H* is an arbitrary inter-
mediate ring of H/HNS' then H*[S'IN\H=H*.
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Proof. Let H, be an arbitrary intermediate ring of H/H' with
[H :H], <o, where H =HNS'. Then, H, = H'[a,] with some a; by
Lemma 1.8, and S'[H;]= S'[a,], which is simple as an intermediate ring
of Va(Va(S")/S'. Here, noting that &(S")|Vx(Vx(S")) and &(S")|H are
Galois groups of V(Vx(S"))/S’' and H/H' respectively, Lemma 1.8 yields
[S'[H]: 8], = #{a/&(S)} =[H,: H],. Accordingly, [S'[H]: H], -
[Hy,:H'],=[S'[H,]:8],-[S': H), yields at once [S'[H,]: H ], =[S":H'];.
In particular, if H,=S'[{dx's}]NH then S,=S'[{d./s}]=S'[H] evi-
dently. Hence, we have [S': H'],=[S,: H,],=1[S,: SNH). =[H[S,]: H],
=[V:Va(S)],=[V:Vx(S)], by Lemma 3.2 and Lemma 3.3. Now, let
H, be again an arbitrary intermediate ring of H/H' with [H,: H'], <co.
As S'[H,] is a regular subring left-finite over S, by the fact proved above,
we have [S'[H,]: S'TH,JNH],=[V:Vx(S'[H])], =[V:V,(S)].=[S": H'],
=[S'[H,]: H,],. Recalling here that H,C S'[H;]N\H, we readily see that
H, =S'[HINH. Evidently, there holds H* =\, H,, where H, runs over
all the intermediate rings of H*/H' with [H,: H'],<oc. Then H*[S'IN
H=(J,H,[S"NNH=\U(H,[S'INH) =\U,H, = H* by the fact cited
just now.

Theorem 3.2. Let R/S be locally finite and h-Galois, and R' an
fregular intermediate ring of R/S.

(i) For any intermediate ring H* of H/ HN\R', there holds H*[R'JN
H=H*,

(i) [R":HNR' L=V :Ve(R"]..

Proof. There exists an intermediate simple ring S’ of K’/S such that
Ve(S)=V(R") and [S': S],<<co. Evidently, Vr(Vx(5")/S’ is outer Galois
and Va(VR(S))2 R'2S’. Accordingly, each intermediate ring of R'/S' is
a regular subring of R.

(i) We have R'=\U,S';,, where S, runs over all the intermediate
rings of R'/S’ with [§,: S"],<<w~. Then, by Lemma 3.6, there holds
H*[R'JNH= (U H*[S'.)NH = U (H*[ S, JNH) = U, H* = H*,

(ii) Let N be a ®(H/S)-normal shade of {d,.'s}. Since H/HNR'is
outer Galois and R'[NJNH=((RNH)[N])[RINH=(R'NH)[N] by
(i), we can easily see that [R'{N]JNH: HN\R'],=[(HNR)[N]: HNR'],
=[N:NNHNR"N],=[N: NN\R'],<e. On the other hand, noting that
Ve(Va(S)2R'[NIDR'DS' and G(R'[N]/R')|N is the Galois group of
N/ NNR!(cf. Lemma 3.5), we obtain [R'[ N]: R'],=[ N: NN\R'],. And so,
it follows that [R'[N]: R'],=[R'[NJNH: R'N\H],<co, Moreover, by
Lemmas 3.5 and 3.2 (i), one will easily see that R'[ N1=(R'[ NINH)[S'].
Hence, we obtain [R'[ N]: R'ININH],=[(R'[NINH)[S']: R'[NINH],
=[H[S']: H],=[V:Vx(S8)],=[V:V(RY)], by Lemma 3.2 (i) and Lemma
3.3. Now, noting that [R'[N]: R'],- [R": RN\H],=[R'[N]: R[NIN\H],-
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[RIININH: RRN\H], and [R[N]:R],=[R'[NINH: RRNH], < oo,
we readily obtain [R’: R'N\H],= [V : Vz(R"].,.

Lemma 3.7. Let R/S be locally finite and h-Galois.

(1) If Riis an intermediate ring of R/H[ {e;/s}] with [R;: H], <eo
then &(H/S)=TI(R,/S)|H.

(ii) If H' is an intermediate ring of H|S, then R|H' is locally finite.

(iii) Let R be Galois over an intermediate ring H' of H|S. If D isa
regular Galois group of R/H' then © is dense in 8(R/H'). If moreover
9 is closed then =G (R/H).

Proof. (i) By Corollary 3.2, it will be easy to see that I'(R,/S)| HC
®&(H/S). Now, we shall prove the converse inclusion. As [V:Va(R)]. <
oo, there exists an intermediate ring S, of R,/S[ {eis's}, {dr's}] such that
[S;:S];<<oo and Vz(R,) = Vx(S;). We set here H, = HN\S,. Then, noting
that R, = Va(Vz(R))) = Vx(Vr(S)), one can readily see that &(R,/S))|H=
®&(H/H,). On the other hand, ®&|H is dense in &(H/S). Accordingly, for
each ¢ € @ (H/S) there exists some - €@ such that ¢|H, = |H,. As evi-
dently s '€ ®(H/H,)) = 8(R,/S:)| H, we obtain eventually e I'(R,/S)|H.

(i) Let R, be an arbitrary intermediate ring of R/H[{e;’s}] with
[R,: H],<< . Then, under the same notations as in the proof of (i), we
set H* = H'[H,]. As H/H' is locally finite, [H*: H']; << o evidently. By
Lemma 3.2 (i), there hold H*[S,]=H*- S, and [H*- S,: H*], =[S:: H,],.<
oo, whence it follows [ H*[S,]: H'], <<oo. On the other hand, R,/S; being
outer Galois and locally finite, R, 2 H*[S,]2S, implies the local finiteness
of R,/H*[S,], whence R,/H' is locally finite. Recalling here that by
Lemma 3.2 (iii) R, can be chosen as large as we want, we readily see that
R/H' is locally finite.

(iii) Let F be an arbitrary finite subset of R, and S, = S[{e;’s},
{dn's}, FJ. We set here H,=S,N\H and H* = H'[ H,]. Then, by Lemma
3.2(1), [Si:H,=[H*[S,]: H*),=[H[S,]: H:= [V : Vz(H[S])]., H*=
H*[S,INH and Vi(H)=V. Hence, we have [H*[S,]: H*[S;1N
Ve(Va(HN ], =[Ve(H): Vo(H*[S,])].. On the other hand, as [H*: H'],<
o by (ii), [H*[S,]: H'],<< . Accordingly, |H*[S,] =& (R/H")|H*[S,]
by Lemma 3.1 and H*[S,] D H'[F], which proves the density of $ in
S(R/H).

Corollary 3.3. Let R/S be locally finite and h-Galois.

(i) If R' is an f-regular intermediate ring of R/S then R/R' is
locally finite.

Gi) If ©is an f-regular subgroup of & then O is dense in G(R/ J(D,
R)). If moreover 9 is closed then =GR/ J(D, R)).

Proof. (i) There exists a simple intermediate ring S’ of R'/S such
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that Vi(R) =V (S} and [S':S];<Coc. Since R/S' is locally finite and
h-Galois by Corollary 3.1 and Ve(V (S 2R’ 2 S, R/R' is locally finite
by Lemma 3.7 (ii).

(ii) In the proof of (i), if we set R'= J(9, R) then our assertion is a
direct consequence of Lemma 3.7 (iii).

Lemma 3.8. Let R/S be locally finite and h-Galois. If Ri2 R, are
intermediate rings of R/H[{ei;/s}] with [R,: H],<<oo, then I'(R,/S) =
I'(Ry/S)|R..

Proof. There exists an in intermediate ring S, of R,/S[{e:,s}] such
that [S.: S]; <<oo and Vz(R,) =V3i(S,). Then, R/S. is locally finite and
h-Galois by Corollary 3.1. Since V(Vx(S,)=R,CR;, &(R./S.)=T(R,/S:) | K.
by Lemma 3.7 (i). On the other hand, I'(R./S)|S.Z (®|S,)R, by Lemma
3.4. And so, by Corollary 1.1, for each & I'(R./S) there exists some
:&® such that ¢|S,=<|S.. We obtain therefore s:™'€ I'(R,/S,) =
D (R/S:)=TI(R,/S,)| R, by Lemma 3.7 (i). Hence we have s €I'(R;/S)|R..

Lemma 3.9. Let R be locally finite and h-Galois over S, and [R: H],
< Ro. If T is an intermediate simple ring of R/ H of capacity n=[R|R]
such that [T: H],<<oo then I'(T/S)=G6|T.

Proof. We may assume [R: H],= X,. Let {d,, d,, --*} be a countable
linearly independent H-left basis of R, and set R,=H [d,, -+, d](k=1, 2, -+*).
Now, let = be an arbitrary element of I'(T/S). Then, as H-=H by Corollary
3.2, there holds co>[T-: Hz],=T:: H],. And so, there exists some #, such
that 7-C R, . Recalling here that[7-|T-]=[T|T]=C[R|R], by Lemma 3.8
there exists some ¢ € I'(R, /S) such that ™' = #|T=. Now, repeating the
same argument for ¢ instead of -, we can find a positive integer %2> 1#,
and -, € I‘(Rkl/S) such that R, o & R, and oV = r,anJo-. Here, one will
easily see that - =;|T and T-C Ii’,LJ - Rk. 1. Repeating the above argue-
ment for z, instead of =, we can find positive integers %k >#k.>>k, and
tzEP(Rk.z/S) such that Ry -yC R, S Ry, z» and -, = =:|Rx . Continuing
the same procedures, we can find inductively positive integers ki, 7, and
© € I'(Ry /S) such that

Ry < by < Ry,
RJ;,_1 T © Rn‘ c Rk{ 71, and
teer = R, (6=2,3,).
Now, we can define an extension 7& I'(R/S) by the rule
TRy, = = (i=1, 2,
Since Rz QUR,L, =R, 7 is evidently an automorphism of R, that is, TEU.

Corollary 3.4. If R is locally finite and h-Galois over S, and
[R: H], < Xy, then &(H/S)=G8|H,



106 Tarkast NAGAHARA and Hisao TOMINAGA

Proof. Set T=H[{eys}]. Then, &(H/S)=rI(T/S)|H=G8|H by
Lemma 3.7 and Lemma 3.9.
The next contains evidently [12, Theorem 4].

Corollary 3.5. If a division ring R islocally finite and quasi-Galois
over S® and [R: H), < R, then R|S is Galois, whence it is h-Galois.

Proof. By [12, Theorem 2], R/H is quasi-Galois, And so, noting
the validity of [12, Lemma 1], we can apply the same arguement as in the
proof of Lemma 3.9 to see that I'(T/S) = &| T for every intermediate ring
T of R/H with [T: H],<<o. Now, as H/S is Galois and I'(T/S)|H =
(I'(H/S)=)&(H/S), we obtain &| H=G&(H/S). Hence, we readily see that
J(®, R)=S.

Theorem 3.3. Let R be locally finite and h-Galois over S, and [R: H],
<X If R'is an f-regular intermediate ring of R/S then R/R' is locally
Finite and h-Galois.

Proof. At first, R/R’is locally finite by Corollary 3.3 (i). Next, we
shall prove that R/R' is Galois. There exists a simple intermediate ring
S" of R'/S such that Vz(R')=Vx(S") and [S':S],<eo. Since R/S’ is
locally finite and h-Galois by Corollary 3.1 and Vx(Vx(S)H2R'2S', we
may assume, from the beginning, that H2 R'2S. And then, R' =
J(B&(H/S)(R"), HY= J(G(R")|H, H) = J(G(R"), R) by Corollary 3.4. If R"
is an arbitrary regular intermediate ring of R/R' with [R": R'],<<oo, then
V =Vx(R'") secures the existence of such a simple intermediate ring S of
R[S that V5(R") =V 4(S") and [S":S],<<eo. And then [V:Vx(R")], =
[V:Va(S")], <o by Lemma 3.3, which means R" is f-regular. Accord-
ingly, the rest of the proof will be easily seen.

Now, combining Theorem 3.3 with Corollary 3.3 (ii), we readily
obtain the following fundamental theorem.

Theorem 3.4 (Fundamental Theorem). If R is locally finite and h-
Galois over S, and [R: H]: < R, then there exists a 1-1 dual correspon-
dence between closed f-regular subgroups of & and f-regular intermediate
rings of R[S, in the usual sense of Galois theory.

Our fundamental theorem yields at once the following principal theo-
rem in [18].

Corollary 3.6 (Walter). If a division ring R is Galois and locally
finite over S, and [R: H], < R, then there exists a 1—1 dual correspon-

dence between closed f-regular subgroup of & and f-regular intermediate
rings of R/S, in the usual sense of Galois theory.

Lemma 3.10. Let R be locally finite and h-Galois over S, and S' a
regular intermediate ring of R|S with [S':S],<<eco. R is S'-R-homogen-

6) See [12, p.67].
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eously completely reducible and the length of tts composition series coin-
cides with the capacity of Vi(S'). In particular, R is S'-R-irreducible if
and only if V(S'") is a division ring.

Proof. Since R/S’ is locally finite and h-Galois by Corollary 3.1, it
suffices to prove our lemma for the case S'=S. Now, let S=315,/;; where
So=Vs({fiy/s}) is a division ring. Then, R = 3R, fi; with R, =V ({fis's})
and, to be easily seen, R,/S, is locally finite and h-Galois. By Lemma 3. 4,
& (Ro/So) Ry. is dense in Homs, (R, R.), whence R, is (&|R,) Ry,-irreducible.
(Here, it will be evident that &(R,/S:) = &|R,.) Accordingly, it will be
clear that R is S, -®R,-irreducible. Hence, for an arbitrary S-R-irreducible
submodule N of R there holds R= >6=® No. As evidently Ngs is S-R-
irreducible, R = >i_, ® No(s:€ @, s<[R|R]) is completely reducible.
Moreover, noting that Viyem.» (S R,) =V, is simple, R is homogeneously
completely reducible, And the rest of the proof is trivial.

Lemma 3.11. Let R/S be locally finite and h-Galois, R, an inter-
mediate ring of R[S with "R,:S],<<oo, and R. a regular intermediate
ring of R[S such that [R.:S),<oo and Vi(R.) is a division ring. If p is
an S-(ring) homomorphism of R, onto R,then p is contained in S|R,.

Proof. By Lemma 3.4, GR, is dense in Homs (R, R). And so, there
holds Homg, (R, R) = (8|R)K, = 3(= ] K) R, with some ¢/s in . Now,
o can be represented as a linear combination of these (| R)’s with coef-
ficients in R,. Without loss of generality, we may assume here that

p= (e R)ae (@ #<0E R)
is a representation of the shortest length. As R is R.-R-irreducible by
Lemma 3.10, if #E R is non-zero then there holds R, pu, R, = p(R.uR). =
pR, 3 p. Thus, we see that
(3.3) pttr & L4y | R)R, if u=0€E R.

In particular, we readily see that a, is a regular element. Accordingly,
we have

pai’y = (a1|Ry) + (o[ Ry) (@iai)r.
Now, for an arbitrary x& R,, there holds
p(xp:a’ —ai' x0)), = %, pai’, —pai's(xay),
= 3o | R) %oy - @ar’ —aiai’ - xay}s.
And so, by (3.3) it follows that xp-a;’ —a;i’xo, =0, which means pait, =

(oy|R)) aii- We have proved therefore p = o,a;'|R,, where g, is evidently
contained in V. Hence, pE @|R,.

Corollary 3.7. Let R/S be locally finite and h-Galois, S, and S,
regular intermediate rings of R|S left-finite over S. If o is an S-(ring)
isomorphism of Sy onto S, then o is contained in &|S,.
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Proof. Let V,=VuS) =S U g% and Vo=V (S;) = T2 U.g5%a

be respective matrix representations of V, and V, over division rings U,
and U,. Here, without loss of generality, we may assume m, =m,. (In
case m,; <m., treat ¢ 'instead of 4.) We consider here the following two
rings:

R, = 3285, + Sig, where g = 301185,

R‘l = ZI"?Szgg"f)q' .
Evidently, R, is an intermediate ring of R/S, with [R,:S],<<eco, K. an
intermediate simple ring of R/S with [R.:S];<<ce, and Vu(R,)=U. a
division ring. As {g{’’s} and {g®,.’s} are linearly independent over
S; and S, respectively, we can define a map p of R, onto R; by

{ (Slg)P =0,

( Zylgs;l)q’ggrl’)u’)/’ = 27" (SS’)Q' ”)g;’)q’s 32’)0’ ES.

Then, one can easily verify that p is a ring homomorphism and ¢=p |S;.
As pE@|R, by Lemma 3.11, s G|S, of course.

Corollary 3.8. Let R be locally finite and h-Galois over S, and
[R:H. < Ro. If R, is an f-regular intermediate ring of R|S whose
capacity coincides with that of R, and & an S<ring) isomorphism of R,
into R, then o is contained in ®|R,.

Proof. Without loss of generality, we may assume that R, 2 {e's}.
There exists an intermediate ring S, of R,/S[{e,’s}] such that Vx(R,) =
Vz(S)) and [S,:S], <oo. As [S,5|S:¢] =[S:|S,]1=[R|R], Sic is a regular
intermediate ring of R/S with [S;6:S);<<co. And so, in virtue of Corol-
lary 3.7, there exists some - & ® such that #|S, =:|S,, whence ¢.7' €
I'(R,/S)). Since R/S, is locally finite and h-Galois by Corollary 3.1 and
H=Va(Va(S)HDR,2DS,, Ryo:"'C H, by Corollary 3.2. Accordingly, we
see that o-7'€ G(H,/S))| R, = (B(R/S) | H))| R, = &(R/S,)| R; by Corollary
3.4. Now, it will be easy to see that s = G| R,.

Theorem 3.5. (Extension Theorem). Let R be locally finite and h-
Galois over S, and [R: H], < R,. And let R, and R, be f-regular inter-
mediate vings of R/S. If s is an S-(ring) isomorphism of R, onto R, then
o is contained in O|R,.

Proof. There exists an intermediate ring S, of R,/S such that [S;: S1.
oo and V(R,) =V (S,). Since TS,0:S],<< oo, there exists a simple inter-
mediate ring S, of R./S,s such that V(R,) =V (S,) and [S,: S],<<ce. And
then, we set S;=S.s"". Evidently, S, is an intermediate simple ring of R,/S,
and Vz(R;) =V(S)). By Corollary 3.7, there exists some -:E® such that
c|S;=7:|S:, whence o' ET'(R,/S,). Since Va(Vi(S)) 2R, 2S,, Ris:™'C
Va(Ve(Rior™) = Va(Va(R)) ™' = Va(Va(S))z™' = Vi(Va(Sioz™) =
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Vez(Ve(Sy), and R is locally finite and h-Galois over S; by Corollary 3.1,
we obtain o-7'€ GV (Vx(S.))/S)| R, =8 (R/S))| R, by Corollary 3.4. Now,
it will be easy to see that s € | R,.

Theorem 3.6. (Normality Theorem). Let R be locally finite and h-
Galois over S, and [R: H1,< R.. And let T be an f-regular intermediate
ring of R|S. If T* is the composite of T ={c€®; To =T} and '17%‘ and
D the group of all S-automorphisms of T, then J(, T) =S if and only if
I* is dense in O,

Proof. At first, we suppose J(, T)=S. Then, as I|T=9 by
Theorem 3.5 and R/T is Galois by Theorem 3.4, it follows that J(T, R)=
S. Hence, I* = 3.V is dense in ® by Lemma 3.4. Conversely, suppose
T* is dense in &. Then, again recalling that R/T is Galois, it follows
that J(Z|T, T)= J(Z* R)= J(T* R)=S.

As an easy consequence of Theorem 3.4, under the assumption that
R is locally finite and h-Galois over S and [R: H],=< X,, an f-regular
intermediate ring T of R/S is ®-normal if and only if &(7) is an invariant
subgroup of &. Moreover, we obtain the next:

Corollary 3.9. Let R be locally finite and h-Galois over S,[R: H:=
Ro, and T an f-regular intermediate ring of R[S that is w-Galois over
S. If either TCHor VCT then T is S-normal.

Proof. 1In case T is contained in H, T/S being outer Galois, for
each tE T there exists a &(7T/S)-normal shade N of {#}. By Theorem 3.6,
N is & ( H/S)-normal, whence G-normal. On the other hand, in case VE7,

weset T={aweE®; Ta = T}. Then, T contains f/- and so ¥ is dense in ©&
by Theorem 3.6. It follows therefore that I |S[t] = &|St] for every
t&T. Hence, t&=¢IC T, which proves evidently T is &-normal.

We shall conclude this section with the following theorem.

Theorem 3.7. Let R be locally finite and h-Galois over S, and
[R:HLZ Ro. If an fregular intermediate ring T of R/S with simple
V2(S) is G-normal then &(T]S) is (algebraically and topologically) iso-
morphic to &/S(T).

Proof. Since &|T =&(T/S) by Theorem 3.5, the restriction map
p:e—a|T is a continuous homomorphism of & onto &(7/S). In what
follows, we shall prove that p is an open map. Now, let S’ be a simple
intermediate ring of 7'/S such that [S’:S];<<oo and Vi (T) =Vx(S'), and
set H'=Vx(V,(S"). For an arbitrary finite subset F of R we set S"" =
S'[{ey's}, FJ, which is evidently a regular intermediate ring of B/S with
[S:S],<<oo. Since R/S' is locally finite and h-Galois by Corollary 3.1,
[R: H]E R, H'2T2S' and T/S' is Galois, we obtain &(T[S"]/S")|T
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=@®&(T/TNS") by Theorem 3.1. And, again by Theorem 3.5, &(7[S'']/S")
=@®(S")| T[S"]. Hence, it follows that &(T/TNS") =G(S") | TS S(F)|T.
As &(T/TNS") is open in G(T/S), the last fact proves that p is open.
Now, our assertion is a direct consequence of this fact.

4, Further results for 8-locally Galois extensions. At first, we
shall prove the next

Theorem 4.1. Let R/S be B-locally Galois. If © is a (%)-regular
subgroup of ® then Ry= J(9, R) is f-regular, R| R, is &(R,)-locally Galois,
and &(R,) coincides with the closure ® of 9.

Proof. At first, 9 is f-regular by Theorem 2.8. There exists a finite
subset F of R, such that Vrx(S[F])=Vx(R,) =V9%. Now for an arbitrary
finite subset F'C R, choose a ®-shade S’ of F\U F'\U{gu s}\U{gre's}U
{ei's}, where gio's are matrix units of Vg. Then, R = Vx(Vx(S))2
Ve(Ve(S[F, F'3)) =V (Va(R,[F'])) 2 R,_F'"_. And moreover, R’ is simple
and [R': H],<<e by Corollary 2.3. It follows therefore that [V, (S):
Ve (R)]<<oo by Lemma 1.5. Since R’ is Galois and locally finite over S
and R, is a regular subring of R/, R'/R, is @ (R'/R,)-locally Galois by Con-
clusion 2.1. And so, there exists a &(R'/R,)-shade of F'. Thus, we have
proved that R/R, is locally Galois. Recalling here that R/R, is Galois, it
is &(R,)-locally Galois by Theorem 2.3. Now, the rest of the proof is clear
by Corollary 3.3 (ii).

Corollary 4.1. Let R/S be ®-locally Galois, and [R: H, < RX.. If R’
is an f-regular intermediate ring of R/S then R/ R' is @(R")-locally Galois.

Proof. Since R/S is h-Galois, R/R' is Galois by Theorem 3.3. Accord-
ingly, R/R'is &(R')-locally Galois by Theorem 4.1,

Now, combining Theorem 3.4 with Theorem 2.8, we obtain

Theorem 4.2. If R/S is ®-locally Galois and [R: H], < X, then
there exists a 1—1 dual correspondence between closed (*;)-regular sub-
groups of & and f-regular intermediate rings of R/S, in the usual sense
of Galois theory.

Corollary 4.2. If R is Galois and locally finite over S, and & is
locally compact, then there exists a 1—1 dual correspondence between closed
(*)-regular subgroups of & and regular intermediate rings of R/S.

Lemma 4.1. Let R/S be locally Galois. If T is an intermediate ring
of R[S with the capacity n= _R|R], then (HN\T)cC H for each a= I'(T/S).
In particular, if an intermediate ring N of HN\T|S is Galois over S, then
No=N.

Proof. There exists an intermediate ring S’ of 7/S with the capacity
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n and [S':S8];<Coo., Let a be an arbitrary element of HMN\ 7. Then, for
each ¢ I'(T/S) there holds [S'[a]s:S]i<<ce and [S'[e]e|S'[ale] =
[S'[a]|1S'Ta]l] =n. And so, if S" is an arbitrary shade of S'[¢]\US'[a]s,
then ¢|S'[¢] = <|S'[a] for some & ®(S"/S). As (HNS"):C H by [8,
Lemma 4.1], we obtain ar& H, which is our first assertion. Next, con-
cerning the second assertion, it will suffice to remark that H is simple and
(outer) Galois over S by Lemma 2.4 and N is &(H/S)-normal by Theorem
3.6.

Lemma 4.2. Let R/S be locally Galois. For each finite subset F of
R, there exists an intermediate smple ring R' of R/ H[F] with [R': H], <
oo such that R']S is Galois (and [V (S): Vi (R")] << o0).

Proof. Let S' be a shade of S[F, {e;’s}, {gsss}], and set R' = H{S'].
Now, let N be an arbitrary &(H/ S)-normal shade of HMN\S'. And then, we
shall prove that N'= N[S'] is Galois (and finite) over S. Choose here a
shade N”' of N'. If we set @' = {r&®(N"/S); S'-=S'}, then for each
rE®" we have N'-:=N_S]-=(N:)[S'] =N[S']=N’' by Lemma 4.1.
Accordingly, noting that N"/S' is Galois and &(S'/S) S &(N"/S)|S!, we
readily see that J(®"| N/, N)=S. And so, V,.{S) being simple, N'/S is
Galois. Moreover, as N'/S' is outer Galois and N®(N'/S)= N again by
Lemma 4.1, it follows that &(N'/S) =& (N/NNS"), whence [N':S'] =
[N: NNS_. And so, [N':S']-[S": NN\S'], = [N': N1, [N: NNS'] yields
at once [N': N],=[S': NNS’],= _S': HN\S'], Now, there holds R'=\U, N,
where N', = N,"S'] and N, runs over all the &(H/S)-normal shades of
HNS'. Since arbitrary finite subset {a,, -**, @..} of R’ is contained in some
N',, R'/S is cvidently locally Galois. And, in particular if {a, ---, a.} is
linearly left-independent over H then 'N'.: N.l, = [S': HN\S'], yields
m<"S": HN\S'];, which proves [R': H], < [S’: HN\S'];<<eo. Accordingly,
[(VeAS): V(RN = [V (H): Vi (R)]<< oo by Lemma 1.5. Hence, R'/S is
Galois by [8, Theorem 4.1].

Now we can prove the next which contains Corollary 2.2 and Corol-
lary 2.3.

Theorem 4.3. Let R/S be locally Galois.

(i) R/H is &(H)-locally Galois.

(i) If S’ is a regular intermediate ring of R|S such that [S': S],<<oo
then Va(Ve(S)) =H[S'] is simple and [Vx(Ve(S)): H],=[V: Vx(8).,<<oo.

Proof. (i) Let F be an arbitrary finite subset of R, Then, by Lemma
4.2, there exists an intermediate simple ring R' of R/H[F] with [R': H],
< oo such that R'/S is Galois and _Vz(S): Vx(R")]<<co. And so, R'/H is
Galois by Conclusion 2.1, whence we see that R/H is locally Galois.
Hence, R/H is ®(H)-locally Galois by Theorem 2.3.
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(ii) As R/S' is locally Galois, H' = Va(V,(S") is simple and outer
Galois over S’. And so, noting that R/H is locally finite by (i), we see
that H[S'] is a regular intermediate ring of R/H with [H[S'}: H]; <oo.
Since R/H is ®(H)-locally Galois, as is noted in §3, R/H is (locally finite
and) h-Galois. Hence, our assertion is clear by Lemma 3.3.

As another consequence of Lemma 4.2, we shall prove the following
generalization of [12, Theorem 4].

Theorem 4.4. If R/S is locally Galois and [R: H],< R, then R/S is
Galois, whence &-locally Galois. (Cf. Theorem 4.5 and Lemmas 4.5—4.7.)
Proof. Let {x;, x., -~} be a countable linearly independent H-left

basis of R. Then, in virtue of Lemma 4.2, we can construct inductively
an ascending chain of simple rings

Rl g RQ_ g R3 escsne

such that R, 2 H[{eiy's}, 1], Ris: 2 Rilxi1], [Ri: H]: < oo, [Vr(S):
Ve(R)]<< oo and that R,/S is Galois. As &(R,/S)C ®&(R...:/S)|R; by Con-
clusion 2.1, we can readily see that @(H/S)=&|H. Combining this with

H=] (V, R)([8, Lemma 4.3]), it will be easy to see that R/S is Galois.

Let R be Galois and finite over S, and T a V-normal intermediate
simple ring of R/S. And let yEV be regular and quasi-regular, If {1, »} is
linearly left-independent over 7, then for arbitrary ¢t& T, vt =1¢'v and
(—Dt="w—1) @, t"€T) yield ¢'—t")v + (#''—¢) = 0, whence it follows
that ! =¢"=¢ Hence, we obtain v € Vx(T). On the other hand, if {1, 2}
is linearly dependent then it will be easy to see that v & 7, thatis, v E
V(S). If V is neither a division ring nor the complete 2 X 2 matrix ring
over GF(2) then we can prove that each element of V is represented as a
finite sum of regular elements which are quasi-regular as well.” And so,
for such V described above, we obtain V= V,(T)+ V,(S). Recalling here
that [V: Vs(R)]<<eo, [1, Lemma 9] yields at once the following:

Lemma 4.3. Let R be Galois and finite over S, and V neither a
division ring nor the complete 2 X2 matrix ring over GF(2). If a regular

intermediate ring T of R]S with simple Vi(S) is V-normal then VST or
TCH.

For the case where V is the complete 2 X 2 matrix ring over GF(2),
the following example shows that Lemma 4.3 is not true: If R is the
complete 2X 2 matrix ring over GF(2) and S= GF(2) then V=R. And
then T={1, 0, e, +e.+eu, €xtente,} is a commutative subfield of V

and V-normal.
Lemma 4.4. Let R/S be locally Galois, T an f-regular intermediate

7) This fact is due to Prof. G. Azumaya.
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ring of R|S with simple Vi(S), and V not the complete 2X 2 matrix ring
over GF(2). IfTis V-normal then VC T or TC H.

Proof. In case V is a division ring, our assertion is clear by [8,
Lemma 3.5]. And so, in what follows, we shall restrict our attention to
the case where V is not a division ring. Assume here that T & H, that is,
there exists an element & T such that tvs%=uv¢ for some v& V. Our present
task is to prove that VC T. Since T is f-regular, there exists a finite
subset E of T such that Vx(T)= V.(S[E]). Let ey,’s, goqo’s and gie's
be matrix units of T, V(T) and V(S) respectively. Now for an arbitrary
subset W of V we consider a shade N of {t, 2}\U {el.;'s} U {gre's} U
{gko's]UE\UW, and set M= TNN. Then, to be easily seen, M, V4(S)
= MNV2(S) and Vy(M)=NNVi(M) are all simple, and M is (%)IN)-
normal by our assumption. Moreover, as v EVy(S) and tEM, MZ
Va(Vx(S)). Finally, if W is sufficiently large, V4(S) (2= W) is neither a
division ring nor the complete 2 X 2 matrix ring over GF(2). Hence, by
Lemma 4.3, we obtain WC V(S)C MC T, which evidently proves our
assertion.

Combining Lemma 4.4. with Corollary 3.9, we obtain at once

Theorem 4.5. Let R/S be locally Galois, [R:H],. < R, and T an
f-regular intermediate ring of RS with simple V(S). Then T is &-normal
if and only if T|S is Galois and either TCH or VCT, provided V is not
the complete 2 X 2 matrix ring over GF(2).

In what follows, 7; be an intermediate ring of R/S. We consider here
the following conditions, where D(T,, R/S') denotes the set of all the
derivations of 7T, into R vanishing on S, and in particular, we write
D(R/S’) for D(R, R/S").

(@*) D(Ty, R/T:N\T.) =0.

(aF) D(T, R/TlmTi‘) =0.

(b*) Every compatible pair® (3, 5®) (4 D(T;, T/S)) has an exten-
sion 4 € D(R/S).

(dl) VR(TlmTZ') = VR(TI)'

(d) Vle(TlmTz) = VH(TE)-

Theorem 4.6. Let R/S be locally Galois, and T an f-regular inter-
mediate ring of R|S. If 6&D(T, R/S) then ¢ can be extended to an inner
derivation 6, induced by an element a of V.

Proof. At first, we shall show that if T is contained in H then 4=0.
Let T=\U, T., where T, runs over all the simple subrings of T finite
over S. Since 4 may be regarded as an S-(left) linear transformation of T

8) Following [1], (3(1), 8®) is said to be compatible if 8| TyN Ta =8| TiN T2
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into R, there exists a shade N, of T.\JT.4. And then, by [1, (xi)], 8|7 =
| T for some b=V, (S)CV =V (H), whence it follows that 4,| T.=0.
We obtain therefore that ¢ = 0.

Now let T be not necessarily contained in H. Then, we can find an
intermediate simple ring S’ of T/S such that V,(S") =V,(T) and [S': S,
< oo. Since R/S is locally Galois, by [1, (xi)], we can find an element
a €V such that ¢|S'=6.|S. Moreover, R/S’ is still locally Galois and
Ve(Ve(S"))2T2S'. Hence, the fact mentioned above will yield at once
0 —(6.]T)=0, thatis, 6=246.|T.

Now, we shall prove the next

Theorem 4.7. Let R be Galois and locally finite over S, and [V: C,)
<oo. If T, and T, are f-regular intermediate rvings of R[S, then (a*) or
(aF) <= (b*) <= (dy) or (do).

Proof. (b*)=>(d) or (d;). Let € D(R/TNTs). Then, by (b*),
there exists a derivation ¢* € D(R/T;) such that 6*|T,=#|T,. Now, é=
0¥+ (6 —0%) and 4 —o*€D(R/T.). Thus, D(R/T\N\T:)=D(R]T,) +
D(R/T,). We consider here an arbitrary element c € Vz(T,N\T,). Since
0. D(R/TiNT,), there holds 4, =4¢'+ 4" with some ¢ D(R/T,) and
o""e D(R/T2). By Theorem 4.6, ¢'= 4, and ¢"" = 4, with some a = Vx(T))
and b€ Vi(T,). We obtain therefore ¢ =a+86+2z for some z& C, which
proves that V(TN Ty) = Vi(T,) + Ve(T,). Recalling here again that T,
and T, are f-regular, by Corollary 2.4 there exists a simple subring H*
containing 7, T: and V such that V.(S) is finite over the center of H*.
And so, there holds (d,) or (d;) by [1, Lemma 9].

(dy) or (d;) => (b*). Suppose V(T .NT.) =V(T) and (5, &%) is
compatible. By Theorem 4.6, there exists an element ¢ €V such that
0V=4,|T,. Since 62| TN To=dP|TiNT:= 6| TN\ T., we obtain 6 —
(641 T2) € D(T,, R/TiN\T,). Hence, again by Theorem 4.6, 6% —4,|T.=
3| T, with some bE V(T.NT,) =V,x(T:). Now, one will readily see that
dasp 18 our desired extension.

(a*) or (af) <= (d,) or (d.). These implications are easy consequences
of Theorem 4.6, too.

Lemma 4.5. Let R/S be locally Galois, [R: H], =¥, and let
SCUCTCR, where T is an f-regular subring of R. If T/U is w-Galois
and TCVrVa(U)) then U is fregular, T is outer Galois and locally
finite over U, and T is &(U)-normal.

Proof. At first, UC TCV,(Ve(U)) implies Vx(U)=V(T). Since
each U-automorphism of T can be extended to an automorphism of R by
Theorem 3.5, U= J(@(U), R) and &(U) is a (*,)-regular subgroup of &.
Hence, U is fregular by Theorem 2.8. Further, V,(Vx(U))/U is outer
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Galois and locally finite by Corollary 3.3. And so, noting that V(V(U))
is @(U)-normal, the rest of the proof is a direct consequence of Theorem
3.6.

Lemma 4.6. Let R/S be locally Galois and [R: H], < R.. And let
T, T' be f-regular intermediate rings of R/S such that T is w-Galois over
U=TNT'". If Ve(U)=V(T) then (T, R|U)=&(T"| T, where &(T, R]U)
means the totality of U-isomorphisms of T onto f-regular intermediate
rings of R/S.

Proof. At first, by Theorem 3.5, there holds &(T, R/U)=G&(U)|T.
And so, to our end, it suffices to prove that &(U)| T =®&(T")|T. Now, as
TCVe(Ve(T))=Ve(Ve(U)), by Lemma 4.5, we see that T is &(U)-normal,
outer Galois and locally finite over the f-regular U. Since there holds
VR (VR(T'[T] )) = VR (VR(T') nVR(T)) = VR(VR(TI) mV}z(U)) =Vg (VR(T’))’
we have T'C T'[T]C Vx(Ve(T"). And so, by Theorem 3.3, we readily
see that the simple ring T/[T] is outer Galois and locally finite over 77,
whence @(T'[T]/T') is compact. Moreover, &(T'[T]/T)=&(TH|T'[T]
by Theorem 3.6 and &(7T’)| T is a Galois group of T/U. Hence, as usual,
we see that &(TH|T=6(T/U)=68(U)|T.

We consider here the following conditions where T, and T, are f-
regular intermediate rings of R/S.

(@) S(T)|T, = (T, R/T, N\ T,).

(@) B(TH| T, = &(T,, R/Tl M Ts).

(b) Every compatible pair® (ay, a;) (6. € & (T, R/S)) has an extension
cEG.

(c) @(TlnTz) = &(T,)-G(T>) (= G(T2)-B(T))).

Lemma 4.7. Let R/S be locally Galois and [R: H], < R,. Then, the
Four conditions (a), (a,), (b) and (c) are equivalent to each other.

Proof. (a)c> (b). Let (61, 02) be compatible. By Theorem 3.5, we
can find some r; € ® such that ;| T, = g;. Thus, y =g’ €&(T,, R/T:N
T,) =®&(Ty)| T, by (a). And so, y=<|T, for some - ®(T,). Now, it is
evident that =z, is our desired extension.

()= (¢). If ¢isin @(TyNT,), then ¢|T,= | T, for some - € S(Ty)
by (b). It follows therefore o= (or™")z and o' € & (T,).

(c)=> (a). By Theorem 3.5 and (c), we obtain &(7,, R/TiNT,) =
@(Tlf\ T,) I T.= @(Tz) ¢ @(T1) | T,= ®(Tl) I 7.

(a) <=> (a,). By the symmetry of the condition (b), this equivalence
will be evident.

We shall conclude our study with the following theorem.

9) Following (1], we say that (g3, 03) is compatible if 01|T1N T2=02T1N Ta.
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Theorem 4.8. Let R be Galois and locally finite over S, [V: Gyl <oo,
and [R: H\. < R If T\ and T, are f-regular intermediate rings of R/S
such that T )TN\ T.(i =1, 2) is w-Galois then (b*) implies (b).

Proof. In virtue of Theorem 4.7, without loss of generality, we
may assume that V,(T'N\T.) =Vx(T,). Then, by Lemma 4.6, we have
&(T)|T,=6(T,, R/T.NT,), which is the condition (a). Hence, our
assertion is a direct consequence of Lemma 4.7.
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Added in proof : Recently, we have seen that Lemmas 1.9 and 1.10
are valid even when R/S is (Galois and) algebraic and 2-algebraic respec-
tively. Moreover, we can prove Theorem 2.1 without assuming the local
finiteness of R/S, and Theorem 3.1 is still true for any regular inter-
mediate ring R’ of R/S (even under a somewhat weaker assumption). The
proofs of these facts will be given in the forthcomming paper “Some
Theorems on Galois Theory of Simple Rings”, to appear in J. Fac. Sci.
Hokkaido Univ., Ser. I.



ERRATA:

ON GALOIS THEORY OF SIMPLE RINGS
(This Journal, Vol. 11, pp. 79-117)

Takasi NAGAHARA and Hisao TOMINAGA

Page 102, line 18.
Page 106, line 6.

Page 108, line 6.

Page 113, line 29.
Page 114, lines 19—21.

For “G(H'/H'MR)” read “G(H'/H'N\R")".

The proof contains a gap. This gap is filled in
“On quasi-Galois extensions of division rings”, J.
Fac. Sci. Hokkaido Univ., Ser. I, 17 (1963), 73—
78.

For “g=3%nl.1 85" read “g=31,, gt

For “D(T,, T/S)” read “D(T, R/S)".

For “By Theorem 4.6, -+« V(TN T) =V (T +
Ve(T:)" read “Now, let S; (=1, 2) be simple in-
termediate rings of T,/S such that [S;: S]i<<co
and Vg(S)=Vx(T), and let N be a shade of
S:[S.] (Theorem 2.4). Then, by Theorem 4.6,
3'| N=6,|/N and ¢"|N=¢,| N with some aE
Vi(S)=Vi(Ty) and bEVx(S)=V(T:). We ob-
tain therefore ¢=a-+b-+2z for some 2&VRx(N)C
Ve(Si[S2]) = Va(T) NV (Ts), which proves that
VR(T1 N Tz) = VR(TI) -+ VR(T2)”'

167



