CORRECTIONS AND SUPPLEMENTS TO THE
PREVIOUS PAPER “ON GALOIS AND LOCALLY
GALOIS EXTENSIONS OF SIMPLE RINGS”

TAKASI NAGAHARA and Hisao TOMINAGA

It has recentiy been found that §3 of our previous paper [5] contained
in its tool lemmas Lemmas 3.2 and 3.3 some errors. Nevertheless we have
been able to prove a notably efficient proposition which enables us to prove
all the theorems cited in [5, §3]. This will be given in §2 of the present
paper. And in $3, we shall see that Theorems 3.1 and 3.2 of [5] are still
valid and that further several interesting facts can be shown as corollaries
to our proposition.

Throughout the present paper, R = >); De;; be a simple ring, where
;s are matrix units and D=V ({e;;'s}) is a division ring. And S be always
a simple subring of R (containing the identiy element 1 of R). Further, we
set C=V,(R), Z=V4(S), V=V ,(S), H=V V), C;=V (V) and K=ZNC=
Vs(R). As to general notations and terminologies used here, we folow [5].

1. Preliminary lemmas.

Lemma 1. Let R be @ separable division algebra over a field ¢ C C
(of finite rank). If an intermediate ving S of R/& is not contained in C
then R=3S x] with some x.

Proof. Let M be a maximal subfield of R such that M/ C is separable.
Then, as is well-known, M =¢v, with some v. And, by [1, Theorem
VII. 12. 3], we can find such an element « of R that R=Clu, v]=#[u, v_.
Since M/ C is separable, there exists only a finite number of intermediate
fields of M/C. Accordingly, T, :--, T, be all the intermediate rings of
R/ M different from R. Here, choose arbitrarily an eleinent ¢S\ C. Then,
without loss of generality, we may assume that eus5ua. As u@& T,(i=1,
-+, @), in virtue of [2, Lemma 1 (i)], there exist at most two elements
¢ € & such that («+c)a(u+c)'eT;. As R~ C implies evidently that
is infinite, there exists some ¢y € # such that a’'= (u+co)a(u+c,) ' & T, for
all i. Hence, R=M a"" =@ld, ¢] =¢[a, (w+c) v(u+c,)) =S[u+
co) to{nco)l.

Lemma 2. Let R be Galois and finile over S, and [S:Z]<<oo. And
let R* = 37 D*e*; be an intermediate simple ving of R[S with matrix
units e*,ys and a division ring D* =V (le*/'s})) such that the center C*
of R* is contained in C,.
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(1) Z[C*]=Z[a] for some non-zero ct in V p(R).

(ii) For each x & D¥\C¥*, there exists a non-zero element y € D¥* such
that D*= C*[x, y] and K[y] D .

Proof. As S[C]=SX,Z[C](CSS x,V), S[C] is a simple ring. And
s0, Va(H)=V =Vx(S[{C]) and [R: C]<oo ([6, Lemma]) yield at once
H=S[C]. Hence, Co=HNV =Vsxzzes(S)=Z[Cl. As C/Z and C/K
are finite dimensional Galois extensions and &(C,/Z) is isomorphic to
®&(C/ K) by the restriction map, one will readily see that Z[C] =Z XC.
Accordingly, as an intermediate field of Cy/Z, Z[ C*] = Z X xC' with some
intermediate field C' of C/K. As C'=K[«a] for some «5=0, we obtain
Z[C¥]=Z[«], where, needless to say, a is contained in V..(R). Next,
we have D*=C*|x, y'] with some y' by Lemma 1. Recalling here that
Kia, »'] is a field finite over K and « is separable over K, Abel’s theorem
proves that K[a, y'] = K| y] with some y50. We have proved therefore
that K[y] D« and C*[x, ¥y]=C*[x, ¥, a;= D*

The next two lemmas may be more or less known, however, for the
same of completeness, we shall give here the proofs.

Lemma 3. Let R be Galois and finite over S, and T an intermediate
ring of R/S. If Ris T-R-irreducible then T is a regular subring of R.

Proof. As Vi(T) is a division ring, &(T) (& = &(R/S)) is a regular
group in Nakayama’s sense. And so, T' = J(&(T), R) is a regular subring
of R and Vx(T)=V.(T" by finite dimensional Galois theory (cf. [1, VI]).
In what follows, we shall prove that T coincides with 7. By [3, Lemma
2], (s]T)R, is T,-R,-irreducible and canonically R,-isomprphic to R, for
each #=®. Next, let (:|T)R, be T,-R,-isomorphic to (¢|T)R.(c, - EG).
If ¢|T© v, |T under the isomorphism, then one will easily see that vEV.
Moreover, v is a regular element of R. Now, it will be easy to see that
-|T=469|T. And, the converse is true as well. We have seen therefore
that (8| T)R, is completely reducible and its homogeneous component is
of the form (VGIT)R,. And moreover, patterning after the proof of 5,
Lemma 1.3], we can prove that [(T7a| T)R,:R,],=[V:Vx(T)].. Now, we
may set Homs (7, R) = (8| T)R, = 3@ (Vo:| T) R, with some a/'s in ®. If
T&T then [(B| TR, : R, ],=[T:S.<[T':5]:=[(B|T"R,: R,],, recall-
ing that E‘f(’ff"mIT’) R, = Zﬁe(va,lT') R, naturally, we see that there
exists some & ® such that |7’ ¢2§Q}(I7mlT’)R,. But, -|TeXi®
(VmIT)R, yields -|T =4,2|T for some j and v V. And so, -(a;0)'=
'€ ®(T), whence we have a contradiction |7’ =</¢;0|T' = a;0|T".

Lemma 4. Let R be Galois and finite over S, and T an intermediate
simple ving of R/S.
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(i) R is T-R-completely reducible.

(i) If T is a regular subring then R is T-R-homogeneously completely
reducible and the length of its composition series coincides with the capa-
city of Vo(T). In particular, R is T-R-irreducible if and only if Vi(T) is
a division ring.

Proof. At first we shall remark that each R,-R,-irreducible sub-
module 9% of Homs,(R, R) =GR, is of the form e R, with some ¢ =® and
&€ R. In fact, if 9t is R,-R,-isomorphic to ¢R, and M Da <+ then x,a =
a(xas), for each x € R, whence (1) (x0) = xa. As T =Homg (R, R) (con-
tains R, and so) is an R,-R,-submodule of Hom (R, R) =QR,, T=231¢
sy R, with some a/s in @ = &(R/S). Now, let N be an arbitrary T-R-
irreducible submodule of R. Then N¥ is T-¥-admissible, whence we have
R = NZ. On the other hand, NI =3 Nou, R, = 3 Noyuy (o0, €
Homrl(R, R)). As one can readily see that every No; u;; is 0 or T-R-irredu-
cible, R is T-R-completely reducible. And the second assertion is an easy
consequence of the fact that Vien e m(Ti* Ry) = V(T)..

Remark. For a subring T=1 of R, R is T-R-irreducible if and only
if R is T[C]-R-irredncible. This fact will be needed in the proof of
Lemma 10,

Lemma 5. If e, RNMNS50(Gi =1, -+, n) then ey, =+, e:n<ES.

Proof. Each S;=e; RMS is a non-zero right ideal of S, and S; + -+
S, =35, --PS,. As the capacity of S never exceeds that of R, we obtain
S+ - +S,=S. Hence, ¢, + -+ +€yn=1=a,+ -+ +a, with some q, € S;.
Recalling here that S;C e R, it follows that ej,=a,=S(i =1, ---, #n).

Lemma 6. Let [R:S]<<co, and T be an intermediate simple ring of
R/S.

(1) If n=2, and T contains a= 2\7de; with d,,50, dyp, =0(i=2)
and u=>\veyu_, then T contains all the e,f's and d.j's.

(ii) Let n=2, and x50 and y given elements of D. If T contains

a=dey+tdeq,+e, and v = xen-+yexn then T contains all the ey's, d,d', x,
and y.

Proof. (i) As u*'au”'=d e is a non-zero element of TN\ e R(k=
1,+, n), TDen, =+, €. by Lemma 5. And so, die,=en a7,
whence it follows dy, = (¥ +d.e.)" €T and d;;; 7. Hence, ¢;,&7. Now,
to be easily verified, e;; = (u+e.) e (u+e,)" " ET and di; = euaey,
eT.

(ii) av = xe,;= ve,, and v are non-zero elements of TM\e;, R and TNl
respectively. And so, 7 Se;, ¢ by Lemma 5. Accordingly, both e, =
enae,, and xe., = enve, are contained in 7, whence x = (g;,+ xe,) e T.
Hence, e €T and y = (e;: + vey)’ = (s + yea)* = T. And, it will be easy
to see that d, d’ are in T, too.
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Lemma 7. Let n=2, y+0 and x given elements of D, and a=
231 cyey (e € D) in R\C.

() There exists a regular element r ER such that ar=3)* dijeq; with
dw=yand d, =0 ({==2).

(ii) If n>2, then there exists a regular element r &R such that a7 =
20 dyey with dyyy=1x, di,=y and d,,=0 (i=2).

Proof. At figst, suppose « is diagonal: a = 317 c,ey. If c,5%=c; for
some A=k, then ab = >} c,ey + (ch—cn)enx for b=1-+e¢,.. If on the other
hand @ =d & D\C, then there exists some d’€ D such that dd' — d'd 0,
and ab=d + (d'd —dd") e,y for b=1+d'e,,. Thus, we may assume, from
1een

Dy ha

trary permutation of 1, .-, » then, to be easily verified, 3" Tijlpp, —
21 xize;(x,E€ D) is a D-(ring) automorphism of R, which is an inner auto-
morphism effected by some regular element of > 7 Ce;,. Accordingly,
without loss of generality, we may assume further that c¢,,0. Now, under
this situation, if £ =(3]7"ei + cren.) (1= Canivt €m) *+ (1— Couciy €20) then
a* = af = 3 c* ey with ¢c*, =1, c¢*,=0(GE=2).

(i) For s=>)1""e;+ y ' e,, we obtain a*s =3)1d, e, with d, =y
and d;,, =0 (i =2).

(ii) Choose such an element x'€ D that ¢*,,_, 4 2’ =x. Then, for
s=(2""ew + ¥ ew) (1— x'e,,1) we obtain a*5 = 317d,,e;; with dy,, =1,
d,=y and d,,=0(G=2).

Lemma 8. Let n=2, and T21 a subring of R. If T contains a =
Y Veyey with ¢, 70 and u= 2%xeq_y with non-zero x;'s in D then R is
T-R-irreducible.

Proof. Let M be an arbitrary non-zero 7T-R-submodule of R. Then,
M contains an element b=>)3d,e;, with d,5<0 for some p. Since M u™ b
=Xy Xpilpln, A p=n, M3b=d. e,..), €., is contained in M, whence
it follows M 3 aenn = > ¥cmer,. Hence, there holds M D u" ™" Ditcmenm =
S ks Xiv1CinCrekstn + Xuncker **° XoCrulu_ram(k =1, ---, n). Recalling
here that ¢,,550, one can see inductively that e.., ¢._,,, ***, e..E M, whence
eventually every ¢,; & M. Now, it will be easy to see that M= R.

the beginning, that « is non-diagonal. In general, if ( ) is an arbi-

Lemma 9. Let R be a simple algebra over a field ¢ C C (of finite
rank) withn=2, and f(1)= > —di—d’" a polynomial of C_«]. If x, y are
non-zero elements of D such that f(y 'x)5=0 then &[de,+d'e, e, xey+
vex]M De, 50,

Proof. We set a=de,+d'e, +e., v=xe,-+ye,s. Then, it will be
easy to see that va = (xd + yd') e, + xe.. and (va)’ = (x°d +xyd') e, +x°es.
Now, let g(:)=3> "¢, .'!e#[:] be a minimal polynomial of ¥(¢c,=1, ¢,.,5<0).
As v ="'y =y xe. + ylen(i=1), we obtain ¢ [a, v] D g0) =¢, +
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Sime v xey + S5 ci v e = ey — ¥ 'xe,. And one will easily verify that
¢la,v. 3 wa) gw) = {(x"d+xyd e+ x7ern} (en—y ' xen) = —xy{(y'2)" —
d(y'x)—d'}e,#0.

Lemma 10. Let R be Galois and finite over S, and [S: Z]<<oo. And
let R* = 3.7 D*e*,; be an intermediate simple ring of R|S with matrix
units e*;’s and a division ring D¥ =V ({e*:ys}) such that Vx(R*) is a
division ring and Z[ C*]= Z[«| with some a« EVx(R), where C* is the
center of R*.

(1) Let w*=2, and a= >1"di;e*;(dyy, E D*) be an element of R*. If
dip50, dix=0 (i=2), K[d\». Da and D*= C*[{d./s}] then there exists
some b e R* such that R*=Z[a, b].

(ii) Let n*= 2, and a=de*,+d'e*, +e*. be an element of R*. 1If
D*=C*(y, d, d'] and K[y] >« for some non-zero y & D*¥ then R*¥=
Zla, ye*,l.

(iii) Let #n*=2, and a =de*;+d'e*y+e*. be an element of R* with
d,d'e C* If x, y are non-zero elements of D* such that K[yl Da, D*=
Ct[x, y] and (y'x)—d(y 'x) —d'5<0, then R*= Z[a, xe*, + ye*u].

Proof. (i) We set «*=>"e¢*;_, and T=2Z[a, u*]. Then, by Lemma
8, R* is T-R*-irreducible, whence T [«]-R*-irreducible. Since R*2 T [a] 2
Zla] DC* R*/C* is Galois and [R*: C*] <o by our assumption and [6,
Lemma), T[«] is a simple ring by Lemma 3. And so, in virtue of Lemma
6 (i), Tlal2Z[{e*ys}, {diss}, al =Z[C*] [{e*/s}, {dy/s}]= R* that
is, T[a) = R*. As V,(R¥) is a division ring, R is T [«]-R-irreducible by
Lemma 4. Accordingly, as is noted in Remark, R is T-R-irreducible.
Further, to be easily verified, V(Z) =V (Z[C]) is a simple ring, whence
R is Galois and finite over Z. And so, T is a simple ring again by Lemma
3. Hence, Lemma 6 (i) vields T2 Z[{e*.,/s}, {d,,/s}] = Z[{e*,'s}, {diss}],
a]=R* thatis, T = R*

(ii) We set T=Z[a, ye*,]. By Lemma 8, R* is T-R*-irreducible,
whence T [«]-R*-irreducible. And so, at in the proof of (i), we see that
T[a] is simple. Accordingly, in virtue of Lemma 6 (ii), we have T{«]
2 Z[{e*, s}, d, d', y, «]l= R*, that is, Tla]= R*. And, again as in the
proof of (i), we see that T is simple. Hence, in virtue of Lemma 6 (ii), it
follows that T D Z[{e*,,'s}, d, d', y]=Z[{e*,/s}, d, d', v, a] = R*, that is,
T = R*,

(iii) We set T=Z[a, xe*;;+ye*.,]. Then, noting that [R: K1=[R: C]
-[C: K]<<eo by [6, Lemma]l, we obtain TN\ D*¢*,5~0 by Lemma 9, whence
R* is T-R*irreducible by Lemma 8. And the rest of the proof will proceed
just as in that of (ii).
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2. Fundamental proposition.
Now, we can prove the following fundamental proposition,

Proposition. Let R be Galois and finite over S, and [S:Z]<<oo.
And let R* = 201" D*e*,; be an intermediate simple ring of R|S with
matrix units e*y’s and a division ring D¥* =V w({e*/'s}) such that V(R*)
is a division ring and the center C* of R* is contained in C,.

(1) If R*=C* then R* = Z[«] for some a.

(i) If @ is in R*\C* then R* =Z[a, b] for some b.

Proof. (i) R*=C*=Z[C*¥]= Z[a] for some « by Lemma 2 (i).

(ii) At first, by Lemma 2 (i), we can find some non-zero element o €
Vin(R)(S C) such that Z[ C*] = Z[«]. In case #*=1, Lemma 2 (ii) enables
us to see that there exists some b € D*(= R*) such that D¥*= C*[q, b] and
K[b]> «, whence Z[a, b]= Z[a, b, «]= Z[C*¥][a, b= D*. And so, in
what follows, we may, and shall, restrict our attention to the case n*=2.
We may remark here the following which will be refered sometimes in the
sequel: Let r be a regular element of R*¥, Then, Z7 and C,7 coincide with
the center of S# and the center of V(S7?) respectively, ZrMNC=K and
Z7[C¥]= Zr[a], whence we shall see that R, R*, and S7 yet satisfy the
assumptions in our proposition. Now the rest of the proof will be completed
by distinguishing three cases:

Case 1. D* =C*. By Lemma 7 (i), there exists a regular element
r € R* such that ar = 3)7"d,,e*,, with dyx =« and dux=0(;=2). And so,
by the remark mentioned above and Lemma 10 (i), there exists some 5’
such that R* = Zr[ar, b']= (Z7[a7, b'))¥ ' = Z[a, b'r~"].

Case 1. D*2C* and n*>2. By Lemma 2 (ii), we can find some
non-zero ¥, y & D* such that D¥= C*[x, y] and K[y]3a. And, by Lemma
7 (ii), there exists some regular element » € R* such that a7 = X 7 di,e™,
with dipov =%, dimw=y, dir=1y, di.-=0({=2). And so, again by the
remark mentioned above and Lemma 10 (i), there exists some b' & R* such
that R* = Z#[ar, b']=Z[a, b'7™"].

Case 1II. D*22C* and n*=2. By Lemma 7 (i), there exists a re-
gular element » € R* such that a7 =de*;, +d’e*.,+e*,. If one of d and d’
is not contained in C*, then we can find a non-zero element y € D* such
that D* =C*[y, d, d'] and K[y] 3« by Lemma 2 (ii). And so, by the
remark mentioned above and Lemma 10 (ii), we see that R*= Z7[a7, ye*ux]
= Z[a, (ye*.))7 "*]. On the other hand, if both 4 and 4’ are contained in
C*, then in any rate we can find some x € D*\C* and some non-zero y €
D* such that D¥*= C*[x, y] and K[y]3« by Lemma 2 (ii). We set here
Fy=2r—di—d', z=y"x. If f(y'x)=F&) =0 and f(y ' (x+1) =
f(z4+y™") =0, then by a brief computation we see that f(y '(x-+3) =
FEH3y =f+y N+ @E—-D{fle+y ) —f(@}—pA—-3y*=—pA -y
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for arbitrary 8 K. Recalling here again D*22 C*, it will be clear that Kis
infinite. And so, we can find some 3&: K such that f(y~'(x+3))5=0. Thus,
we may assume, from the beginning, that f(y 'x)%0. Consequently,
again by the remark cited above and Lemma 10 (iii), it follows R*= Z7r[ar,
xe*y+ ye*o]=Z[a, (xe*y+ yetn)r ']

3. Consequences.

Lemma 11. Let T31 be a subring of R with minimum condition for
left ideals. If R=T-Cthen T is a simple ring.

Proof. For an arbitrary non-zero ideal N of T, N-C is evidently a
non-zero ideal of R = T- C, whence N-C= R. Now, let N,, N. be ideals of
T with N, N.=0. Then, 0=(N,-C)-(N.-C), whence it follows N,=0
or N.=0. We have proved therefore that 0 is a prime ideal of T, that is,
T is simple.

Now, as a first application of Proposition, we can prove the following
theorem which contains evidently Lemma 1.

Theorem 1. Let R be a separable simple algebra over a field + S C
(of finite rank). If a is an element of R\C then R =@ [a, b] for some b.

Proof. Our poof will be completed by distinguishing four cases:

Case 1. n=1. In this case, our theorem is Lemma 1 itself.

Case II. n>2. As D is a separable division algebra over ¢, D=
& [x, y] with some non-zero elements x, y& D by Lemma 1. In virtue of
Lemma 7 (ii), there exists a regular element » € R such that ar =>1dey
with dix-y =%, din=y and di, =0 (=2). Now, let = 2 %ey_;, and set
T=d¢[a?,u], T*=T-C. Then, by Lemma 8, R is T-R-irreducible, whence
T*-R-irreducible. Accordingly, noting that R is inner Galois and finite
over C, we see that T* is simple by Lemma 3. Hence, by Lemma 6 (i),
T*2D0[{eiss}, {difs}12?[{ey's}, x, y]=R, thatis, T*=R. As evidently
T is a ring with minimum condition for left ideals, Lemma 11 enables us
to see that T is simple. It follows therefore, again by Lemma 6 (i), 72
@[ {eiys}, {diy's}12P[{eis's}, x, yY]=R, whence we obtain R=T=T7"'=
ola, ur ~1].

Case III. D = C. Let C be an extension field of C such that C is
Galois and finite over #. Then, the complete # X# matrix ring Rover C
may be assumed to be 317 Cey;. As evidently, C is contained in the center
C of R, Vz(R) is the field C, and R is Galois and finite over @, R, R and &
satisfy the assumptions of Proposition. Accordingly, our assertion is a
direct consequence of Proposition.

Case IV. n=2 and D C. As D=~ C, it will be evident that ¢ is
infinite. In virtue of Lemma 7 (i), there exists a regular element » € R
such that qr = de;;+d’es+e;,. If one of 4 and d' is not contained in C,
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then we can find some non-zero element y €D such that D=¢[d, d', y] by
Lemma 1. We set here T = ?[ar, ye,], T*=T-C, Then, by Lemma 8, K
is T-R-irreducible, whence T*-R-irreducible. Accordingly, as R/C is Galois,
T* is simple by Lemma 3. And so, Lemma 6 (ii) implies T* 2D # [{e,'s},
d,d', y]=R, thatis, T*= R, whence T is simple by Lemma 11. Hence,
again by Lemma 6 (ii), T2¢[{e,s]), d,d', y]=FR. We obtain therefore
R=T=T7"'=*[a, (ves)7"']. On the other hand, if both d and d' are con-
tained in C, then by making use of the same argument as in Case III of
the proof of Proposition we can find some non-zero elements x, y € D such
that D=%[x, y] and (y 'x)’—d{(y~'x) —d'5=0. We set here T =®[ar, xe,+
yesn], T*=T-C. As TN\ De,50 by Lemma 9, R is T-R-irreducible by
Lemma 8. And so, as in the previous case, Lemma 3 and Lemma 6 (ii)
enables us to see that 7%= R, whence 7 is simple by Lemma 11. Hence,
again by Lemma 6 (ii), T2¢[{ey,’s}, x, y]=R, and eventually T=77 "'=
#la, (xexn+ ye.)7 ~'].

In general, for a ring A =1 which is left-finite over a simple subring
B>31, if A= Bla,, -, a,] for some a,, -, a,€ A(>0) and if A=
B[a'y, -, a@';] (s>0) always implies £<s then (the uniquely determined)
£ will be denoted as #(A/B). Needless to say, n(A/B)=1 means that A
can be generated over B by only one element. In case R is Galois and
finite over S, recalling that V is finite over Z, n, = Max n(W/Z) is finite,
where W runs over all the intermediate rings of V/Z. Now, we shall prove
that [5, Theorem 3.1] is certainly true.

Theorem 2. Let R be Galois and finite over S, and V commutative.
If T is an arbitrary intermediate ring of R|S, then n(T/S)=1.

Proof. At first, T is a simple ring by [5, Lemma 1.4]. As our as-
sertion for the case [S: Z] = oo is given in [5, Corollary 2.1], it suffices
to prove our theorem for the case [S: Z]<<co. If SCV,(T), then SC T =
Vr(S)CV. And so, recalling that V/S is (Galois and so) separable, we
have T = S[¢] for some . AsV, (T)CV=C, R, T and S satisfy the as-
sumptions of Proposition. And so, if SZ V(T) then for each a = S\V(T)
Proposition enables us to see that there exists some & T such that T =
Zla, t1=S[t].

Next, we shall prove the following:

Theorem 3. Let R be Galois and finite over S, S2Z, and T an in-
termediate ring of R}S. Then, n(T/S)=1 provided TC Hor T2V.

Proof. For the case TC H, our assertion is clear by Theorem 2. If
TDV, then V(T)CV,(S[V]) =VNH=C,. Hence, Vo(T) is a field.
Moreover, to be easily seen, R/S[V] is Galois and V,(S[V])= C, is a field.
And so, by [5, Lemma 1.4], T is a simple ring. Again by [5, Corollary
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2.1], it suffices to prove our assertion for the case [S:Z]<Coc. Noting
here that Vo (T)C V(T)C C;, it will be clear that R, T and S satisfy the
assumptions of Proposition. Now, let ¢ be an arbitrary element of S\Z.
Then, @ being in T\V,(T) of course, there exists some ¢ such that 7 =
Z[a,t]=S[t] by Proposition.

As an easy consequence of Theorem 3, we obtain [5, Theorem 3.2]:

Corollary 1. Let R be Galois and finite over S, S27Z, and V a divi-
stonring. If Tisa V-normal intermediate ring of R|S then n(T]S)= 1.

Proof. By [5, Lemma 3. 5], there holds TC H or T2V. And so,
our assertion is a direct consequence of Theorem 3.

Moreover, we can prove the following theorem.

Theorem 4. Let R be Galois and finite over S, V a division ring,
and T a V-normal intermediate ving of R|S. Then, n(T[S)=1 if and
only if T=V(T)or SZV.(T).

Proof. As the only if part is trivial, we shall prove the if part only.
For the case where S22 7, our theorem is Corollary 1 itself. While, if T
is commutative then we have TCV,(T)C V. Noting here that TC H or
VCT by [5, Lemma 3.5], we readily see that 7C H in either cases. Hence,
n(T/S)=1 by Theorem 2. Thus, it remains only to prove that if S=Z and
SZV(T) then n(T/S)=1. As Vx(S[C])=V =V ,(H) and [R: C]< o by
[6, Lemma], H coincides with the field S[C]. And so, TC H implies a
contradiction SC T = V,(T), whence we have VC T by [5, Lemma 3.5].
Accordingly, there holds V. (T)CV,(V)CTH=C,. Hence, R, T and S
satisfy the assumptions of Proposition. If s is an arbitrary element of
- S\Vz(T), then there exists some ¢ such that 7= Z[s, t]= S[#] by Pro-
position.

As another easy consequence of our proposition, we obtain the next,
which is however of enough interest for itself.

Theorem 5. Let R be Galois and finite over S. If ais in R\C then
R=S[a, b] with some b.

Proof. Again by [5, Corollary 2.1], it suffices to prove our theorem
for the case [S: Z]<Coo. Applying Proposition for R* =R, we obtain at
once our assertion.

And, Theorem 5 yields at once the following, which ia an affirmative
answer to the question stated in [5, p. 150].

Corollary 2. Let R be Galois and finite over S. n(R|S)=1 if and
only if R=C or SZC. .

If R is Galois and finite over S, R= S[a, ] with snme conjugate
(with respect to an inner automorphism) @, b by [7, Theorem 1]. And so,
combining this fact with Corollary 2, we readily see that [5, Corollary
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3.5] holds good. Moreover, it will be easy to see that all the results cited
in [5, §3] except [5, Lemmas 3.2 and 3.3] are yet true.

Next, as a partial correction of [5, Lemma 3.3], we shall prove the
following:

Lemma 12. Let R be Galois and finite over S,V a division ring, and
T an intermediate ring of R/S. If v is an arbitrary element of V:(S),
then there exists some t €T such that S[t1Dv and T =V.(Z)[t].

Proof. At first, any intermediate ring of R/S is a simple ring by
[5, Lemma 1.4]. By [5, Corollary 2.1], it suffices to prove our lemma
for the case where [S: Z]<<oo. And so, let {x;, >+, x,} be a linearly in-
dependent Z-basis of S. In virtue of [6, Lemma], T is inner Galois and
finite over the center C’ of T. Accordingly, Vz(V4(S)) = V,(V.(C'[S])) =
C'[S]1=Sx:Z[C'NES % V), whence V(S[V(S)])=V(S)NV2(V(S)) =
Vix,zwen(S)=Z[C']. Hence, we see that V(Z)=V,(Z[C])=S[V.,(S)]=
Sx 2V(S). As T is Galois and finite over V,(Z) and V,(V.(Z))=Z[C"]C

o~

Vy(Z), T is Z-isomorphic to ¥ by [4, Theorem 3], where T =
S(T/VAZD)-Vi(Z),= ﬁ()’] » V2(Z),. Now, we can choose a linearly in-
dependent C'-basis {zi, .-, 2} of Z[C'] from Z. Then, again by [4,
Theorem 3], we have =319z Vx(Z),. If T2t < 1=T under the
isomorphism mentioned above, then {#'z,, ---, #'Z,} is evidently a linearly
independent V{(Z)-right basis of T and T =V,(Z) [#"]. In what follows,
we may assume that v550. There holds 1=31('2)u', with ", € V,(Z) =
S X,V (S). Here, in the representations ', =>)?2',x, with v/;;EV.(S)(i =
1, ---, g), without loss of generality, we may assume that »’,5%0, Setting
here ¢ =1"2';,v7", it will be easy to see that {¢z,, --+, #2,} is still a linearly
independent V,.(Z)-right basis of T (whence T =V,(Z)[¢]) and 1=
Stz) us (. € Vi (Z)) with uy = vx, + 022, + + + vp2, @, EV(S)). As
[T:V:(Z)]=[S[t]: Vsa(Z)] by [5, Lemma 3.1], {t2,, -, 2.} (S S[])
is also a linearly independent V., (Z)-right basis of S[t], which proves
that every u, is contained in S[#]. Now, let ¢ be an arbitrary element of
&(R/S[x,]). Then, u,=1u,0 =vc+x,+v:5+ %2+ +>+ +v,0 - x,. And so, recal-
ling that ve, v,6 €V and S[V]=SX,V, it follows at once v = v, that is,
v& S[u,]. We have proved therefore v& S[«,] C S[t].

As an application of Lemma 12, we shall prove the following theorem.

Theorem 6. Let R be Galois and finite over S, and V a division
ring. For any intermediate ring T of RS, n(T]S)<n,=Max n(W/Z),
where W runs over all the intermediate rings of V] Z.

Proof. If [S: Z]= oo, there is nothing to prove by [5, Corollary 2.1].
And so, we may restrict our proof to the case [S: Z]<<oo. And, in this
case, as was shown in the proof of Lemma 12, V,(Z)=5Sx;V;(S). Now,
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let V.(S)=Z[v,, -, vs], where s=n(V;(S)/Z). Then, s=n. of course
and V,(Z) = S[v, -+, vs]. As there exists some ¢ such that T = V. (2)[t]
and S[t]= v, by Lemma 12, we obtain T = S[¢#, v, ---, v5], which proves
our assertion #(7/S) <s <.

To be easily seen Theorem 2, that is, [5, Theorem 3.1], is a direct
consequence of Theorem 6, too.

Finally, in the proof of [5 Theorem 4.1], we should remark that
G| M C G5 if M, D M,, which will be easily seen by [5, Corollary 1.1].
And, by the way, we may remark here that the last part of the proof can
be omitted. In fact, it is cleat that ¢ is an automorphism of R,
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