ON ALGEBRAIC GALOIS EXTENSIONS
OF SIMPLE RINGS

TAxASI NAGAHARA*

Throughout the present paper, R will be a simple ring, S a simple
subring of R (with common 1). And V, C, and Z represent Vi(S), Vx(R)
and V(S) respectively. If M is a unitary R-left (right) module, [M|R],
([M|R],) will denote the uniquely determined number (finite or infinite)
of irreducible direct summands of M. When R is Galois over S, we denote
by & the Galois group of R/S. And, as to notations and terminolgies used
in this paper, we follow the previous one [4]. The writer is grateful to
Dr. H. Tominaga for his kind advices.

In case R is a division ring, we proved that if R is Galois, left algeb-
raic and of bounded degree over a division subring S then R is finite over
S [3, Theorem 4]. Afterwards, in case S is a central simple algebra of
finite rank, this result has been extended to simple rings [4, Theorem
5.2]. One of the purposes of this paper is to present the complete extension
of [3, Theorem 4] to simple rings:

Theorem 1. If R is Galois, left algebraic and of bounded degree
over S then R is finite over S.
Next, we shall prove a theorem which is a partial extension of [3,

Theorem 3] and [4, Theorem 5.1]:

Theorem 2. If R is Galois and left algebraic over S then R islocally
finite over S, provided the Galois group S of R/S is almost outer (, whence
® is locally finite).

For the proofs of our principal theorems, several lemmas will be
needed. At first we shall prove the following :

Lemma 1. Let S be a division subring of R. N a Z-right submodule
of R with [N:Z],<<oo. If [S:Z]= oo then for each positive integer q
there exist q non-zero elements sy, -, S, &S such that >3 Ns; = 25D
Ns..

Proof. Patterning after the latter half of the proof of [4, Lemma 6.6]
or the proof of [2, Lemma 3] according as S is algebraic or transcendental
over Z (V should be replaced by Z), one will easily obtain our lemma.

And so, the details may be left to readers.
Lemma 2. Let R/S be Galois, S' an intermediate ring of R/S such
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that R is S'-R-irreducible, and let M50 be an S-S'-submodule of R.

(i) (¢IM)R, is S.-R.-irreducible and R,-isomorphic to R, for each
PI=ICR

(il) For any subset B of ®|M, B is linearly independent over R, if
and only if so it is over V..

(iii) (@|M)R, possesses a subset of &| M as a linearly independent
R,-basis, and B S|M is a linearly independent R.-basis of (3| M)R,
if and only if it is a linearly independent V,-basis of (&|M)V,.

Proof. (i) Let x be an arbitrary non-zero element of R. Then,
by our assumption, there holds S’.(s|M) xR, = (¢|M)(S's xR), = (¢ | M)
{(S' x67'R)o},=(s| M)R,, whence our assertion is clear.

(ii) Let a subset B of &|M be linearly dependent over R, and let
Siifed M)z, =0 (x, R) be a non-trivial relation of the shortest length.
Then, by (i), we obtain ¢,| M =3}!%, (6;| M)y, for some y, & R, Here, by
making use of the standard argument, one can easily see that each y; is
contained in V. Hence, we have proved that B is linearly dependent over
V.. And the converse is trivial.

(iii) This is an easy consequence of (i) and (ii).

By the validity of Lemma 2, we can prove the following useful
inequalities.

Lemma 8. Let R/S be Galois, and S' an intermediate ring of R[S
such that R is S'-R-irreducible. If M is an S-S'-submodule of R with
[M|S),<< oo then for each a=M there holds

m-[a®V, | V], < mm'+m' - [M]S],
where m=[S|S] and m'=[V|V] are the capacities of S and V respec-
tively. In particular, if S is a division ring, we have

?—’l?[a(&VTIV],.<1+[M:S],

Proof. By Lemma 2 (i) and (ii), there holds
m-[aBV, V], <m- -[(GI M)V V. ], =mm' - [(&|MV,:V,],=
mm'-[(S|M)R,: R,],. Thus, to complete our proof, it suffices to prove the
nxet:
m-[(B|MR,: R ], <m+ [M|S].

Now, we can find a S-left submodule M’ of R such that [M'] S];<m,‘
M*= M+ M =M@M', and that M* possesses a linearly independent
S-left basis. Then, by Lemma 2 (i), we obtain

[ M*: ST, =[Homs(M* R):R,], = [(&|M)R,: R,]..
Consequently, there holds [M|S],+m>[M|S], + [M'|S], =
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m-[(S| MR, : R, ],

Now, we shall prove the following lemma which will play an essential
role in our present study.

Lemma 4. If R/S is Gealois, left algebraic and of bounded degree
then [R:S]<<oo, provided there exists an intermdiate ring S' of R/S
with [S': ST, << oo such that R is S'-R-irreducible.

Proof. At first, we shall remark that V is finite over Z. For, noting
that S[V]= S x ;V, we readily see that V is an algebraic algebra over Z
and of bounded degree, and so [V :V,(V)]< oo by [1, Theorem 7-11-17.
Moreover, V/Z being Galois, it will be easy to see that V,(V) is finite
over Z. Hence, it follows [V : Z]<<eco,

Let S= 337 Sofi, where fi's are matrix units and S, = V({fis’s})
is a division ring. Then, as is well-known, S'=3) 72, S;fi; and R = >} }.,
Rofi; for Sy =V ({fi,s}) and the simple ring R, =V ({f,,’s}). Here, one
will easily see that R,/ S, is Galois, left algebraic and of bounded degree,
and that R, is Ss-R,-irreducible. Further, our assertion for the case
[S: Z]<<oo has been proved in [4, Theorem 5-2]. Thus, in what follows,
we may, and shall, restrict our proof to the case where S is a division
ring and [S:Z] = oo, 4

Let S’=Su;,+ «-+ & Su, and s=Max,exz{[S[x]:S)}. And let ¢ be an
integer such that f =1 + ps. Now, we suppose that [R:S],=c. As, to
be easily verified, ®R, is two-sided simple, if [@R,: R,],<cc then one
can easily see that [R:S]<Coo. This contradiction shows that [®R,: R,],
=oo, And so, there exist some g, -**, c:E® such that {4, ***, #,} is linearly
independent over R,. If xis an element of K, SxS'=Sx(Su,+ -+ +Su,)C
SlxJuy+ -+ - S[x]u, yields

(1) [SxS': 8], < sp.

Here, choose an arbitrary S-S’-submodule M, of R with [ Mp: S],<<eo. If
[3% (o] MR, : R,]. <t (cf. Lemma 2 (i)), then there holds a non-trivial
relation: >).%, (0| Mya, =0 (e, € R). Since a=}% ¢an 50, there
exists some b, € R such that b,«5=0. We set here M;= M, S5,S’. Then,
by (1) we have [M,: S]i<<oo. And M50 implies [ 3%, (0| Mo)R,: R,.],
<[3&4 (o] MR, : R,.],. Thus, repeating the same procedures, we can
find eventually an S-S'-submodule M =S8d, + :-- + Sd, of R such that t=
[S2i(e:|M)R,: R,].. Recalling the fact [V:Z]<<oo remarked at the
opening, we see that N =23, ; (d;s)V is right-finite over Z. And so, by
Lemma 1, there exist some non-zero s, **, s, S such that

(2) ZjilNSj = Ejl]@ NSJ.
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We set here a =32, d;s; (EM). If 2t(as)v.=0 (»,&V), then 3%
(dy)s; = aa! = 204L; (@o)v, =0, where o =3t (a0 M)v,,. Noting that
dy' €N, there holds d;a'=0(j=1, -, g) by (2). And this implies Ma'
=233,2,5(d;a') = 0, thatis, 0=o =3Li(e:| M)v,,. Since {m| M, -+, a:| M}
is. linearly independent over V,, we have v,=0 (i =1, -, ). We have
proved therefore that aey, -+, @o, is linearly independent over V. Accord-
ingly, by (1) and Lemma 3 we obtain

14+ ps=1-+[SaS': S],.> nil, [a®V, V] = [Sit(ao)V : V], =1,

where m' is the capacity of V. But this contradicts ¢ =1 + ps, and our
proof is complete.

Lemma 5. Let R/S be Galois and left algebraic. If & is almost
outer and S' is an intermediate ring of R|S with [S':S],<<oo such that
R is S"-R-irreducible then for each x € S' we have 3£ {x®)} < oo,

Proof. Since ® is almost outer, i.e. (V*: C*)(the group index of the
multiplicative group C* of non-zero elements of C in the multiplicative
group V* of regular elements of V)<Coo, V is finite or V= C by [6, Lemma
17. In virtue of Lemma 2 (i), we have

co>[S': S],=[Homs(S". R): R.1, = [(®|SR.: R]..

And so, we can set (B|S)R, =3} ,a(s:|S)R, with some ¢ & ®. Then,
by Lemma 2 (iii), {s:|S, -, |S’} is a linearly independent V,-basis
of (B|SHWV,: (®|S"V, =t @la:|S)V,. If V is finite, our assertion is clear
by the last representation. Thus, in what follows, we may, and shall
restrict our proof to the case V=C. Now, let s be an arbitrary element of
. Then ¢|S'=>L1(a: ]S, (v,€ V). And so, for each xE S’ we have
(@SN xa), =20 ii(a: | SN (wi(xa)), = 20 li(a: | SH((xa)01)s,
eriL(O'z | S, = Eiél(di IS')((JCO':)Uz)r-
Hence, we obtain3),l,(a:|S){(xs—xa:)v:}, =0, whence it follows (x¢—xa:)v
=0 (i=1, -+~ ). Noting that some of v,'s, say »,, is non-zero, we see that
xo=xs. We have proved therefore that x&={xqa, -+, xa,}.

Now, let R be represented as >3, -, De;; with matrix units e;;’s and a

division ring D=V 3({e;/s}). If n>>1 and S contains an elementa =3}, }.,
¢isy; With ¢,, 550 for some p5=q then, for an arbitrary permutation

1 2« n—1n
(p] pz ces pn—l p")

1) For any E, #(E) will signify the cardinal number of E.

(s |Sh ={
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such that py=p and p,=gq, ‘¢'; =e,,, can be _adopted as new matrix units
of R and e, = e,, Accordingly, without loss of generality, we may assume
that ¢,,=0. On.the other hand, if #>>1 and every element of S is diagonal,
it is clear that all ey €V. Hence, V= >li-:ipe;V. If moreover V is a
simple ring, the last fact means [V |V] = [R|R]. Since [Vl V1< I[R|R]
trivially, [V|V]=[R|R]. Accordingly, if V = 3} ;. E'e';; with matrix
units e;,’s and a divisior. ring E'= Vi({eiy’s}), then R=3], }..D'¢’i; with the
division ring D'=Vz({ei,/s}). Thus, to prove our principal theorems, it
will suffice to restrict our subsequent consideration to the following three
cases:

Casel. n=1.

Case Il. n>1 and S contains an element a =3 ;o1Ci58i; With 1, 5=0.

Case lll. n>1 and SSD.

Lemma 6. Let Case 11 happen.

. 12--n—1 . .
(i) Let ( " " ) be an arbitrary permutation snch that p,=1
pl Pz pal—l 1)7.
and p, = n, and X, -, %p arbitrary non-zero elements of D. If r=

SisXiepy,_, then Ris S [r]-R-irreducible.

(ii) If D5~ GF(2) then R=S[F], where F is the set of elements R
such that R is S[r]-R-irreducible.

Proof. (i) If we set e;; = ¢s», then em=ey, and r = D}y xen_,. And

so, without loss of generality, we may assume that the permutation is
identical. Let M be an arbitrary non-zero S[»]-R-submodule. Then, M
contains an element b=>}2, d.e;. with d,==0 for some p. Since M > r*"?b
=%, Xpdpem (f p=n, M3b=d.e.), ew is contained in M, whence
it follows M D ae,, = Di™cnewm. Hence, there holds M3 " * 3 2 iciin =

Et——-'_‘x'n—!Hi * X1 41CmCn—bvin — Kook 21" XeClalrmi+1u (k=1, oy n). Recalling that
¢, =0, one can see inductively that ¢,,, €,-1., -, €.,€ M, whence even-
tually ¢;;& M. Now, it will be easy to see that M =R.
B 12« n—1n
(ii) Let ( ) be an arbitrary permutation such that p,=1
pl Pz P -1 n
and p,=n, and let x be an arbltrary non-zero element of D. Then, by (1)
F3rui=¢yp  + " + %6y  + = +ep, (2=i<n). Since there exists

an element z & D different from 1 and 0, S[F]| 27, —7.-11= €rp,_, =<t
= #). Further for arbitrary y € D different from 1 and O we obtain S[F]>

714 —F1-y4 = Yey,p,_,(2=i=<n). Hence, noting that xe., = xem, 164102 €m,

we see that S[F] D De,; 1<j<<n), Dey(1<<is=j<<n)and Deg (1<<i<n).
Consequently,
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SLF12(X4 fscises)Cinxen
= ConCin' X+ DiimaCulrixen + xey, Lk <n).

(3)

Since for n>%k>1 S[F] contains e (> fmiciers)cimden= dew(d € D), it
will be easily seen that S[F] D3 icwcin xew. Hence, from (3), we obtain
xen& S[F] (1<k<u), in particular, ¢,, & S[F]. And so, S[F] contains
e.. = 1—2> 1 eney too, whence it follows ey, = citen (. 5=iCse)en ESLF].
Thus, we have proved that ¢;; € S[F] (1=<j<#). Since e, €S[F] (1=
i<n), ey €S[F]and DCS[F].

Lemma 7. Let Case Il happen, R[S be left algebraic and ST C
(whence DZ Vby D2S).

(i) For an arbitrary x&€D\V, if r= "0 u+ Xen then R is
S[7]-R-irreducible. '

(ii) R=S[F], where F is the set mentioned in Lemma 6 (ii).

Proof. (i) Thers exists an element y € S wihth xy=~ yx. Since »'=
Sy + 27 ' € S[7], S[#] contains 7" (r—yry Ny t—yr -ty Yy =
(x—yxy™)(x*—yx" 'y De,;. Noting that (x—yxy™') (x"'—yx~'»7") is a non-
zero element of S[»]MD, it follows that e, S[»] (i, j=1, -+, n). Now
the S[7]-R-irrducibility of R will be easy.

(ii) By (i), it is clear that e, (¢, j=1, **-, n) and arbitrary x& D\V
are contained in S[F] (and so x~'& S[F] as well). On the other hand,
if ¢ is a non-zero element of DMV then xc € S[F] for arbitrary x €D\V,
whence it follows ¢ & S[ F']. Consequently, we obtain R=317,.,De;,=S[F.

Now we can prove our principal theorems.

Proof of Theoremm 1. For Case I, R being S-R-irreducible, our asser-
tion is a direct consequence of Lemma 4. Next, for Case Il it is easy by
Lemma 6 (i) and Lemma 4. And finally, our asserion for Case III is con-
tained in [4, Theorem 5. 2] provided SCC, and for the case remained it
is clear by Lmma 7 (i) and Lemma 4.

Proof of Theorem 2, If D= GF(2), our assertion is trivial, For case
1, noting that R is always S[7]-R-irreducible for r € R, ® is locally finite
by Lemma 5. Similaily, for Case II and Case III, by making respective
use of Lemma 6 and Lemma 7 together with Lemma 5 we see that © is
locally finite provided D~ GF(2) and S Z C respectively. Finally, if n>1
and SC C then V = R is finite by [6, Lemma 1] (for, ® is almost outer).

From Lemma 5, Theorem 2 and [5, Theorem 1.1 and Theorem 3. 1]
we obtain the following :

Corollary 1. If R/S is left algebraic and outer Galois then, for any
finite subset E of R,
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(i) ={EG®} is finite,

(ii) the ring S[E] generated by E over S is a simple ring which is
finite over S,

(iii) S[E] = S[a] for some ac€ S[E].

By Corollary 1, it will be easy to see that the infinite Galois theory
of division rings [1, VII, § 6] of N. Jacobson can be extended to simple
rings under the same assumptions such that R/S is left algebraic and outer

Galois as in [1, VII, §6]. The following corollary® is one of those exten-
sions.

Corollary 2. If R/S is left algebraic and outer Galois then there
exists a 1—1 dual corrvespondence between closed subgroups of & and
intermediate vings of R|S, in the usual sense of Galois theory.
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2) This is a restatent of the latter part of [4, Corollary 1,4].



