ON ALGEBRAIC GALOIS EXTENSIONS OF SIMPLE RINGS

TAKASI NAGAHARA*

Throughout the present paper, R will be a simple ring, S a simple subring of R (with common 1). And V, C, and Z represent $V_R(S)$, $V_R(R)$ and $V_S(S)$ respectively. If M is a unitary R-left (right) module, $[M|R]_t$ ($[M|R]_r$) will denote the uniquely determined number (finite or infinite) of irreducible direct summands of M. When R is Galois over S, we denote by $\mathfrak G$ the Galois group of R/S. And, as to notations and terminolgies used in this paper, we follow the previous one [4]. The writer is grateful to Dr. H. Tominaga for his kind advices.

In case R is a division ring, we proved that if R is Galois, left algebraic and of bounded degree over a division subring S then R is finite over S [3, Theorem 4]. Afterwards, in case S is a central simple algebra of finite rank, this result has been extended to simple rings [4, Theorem 5.2]. One of the purposes of this paper is to present the complete extension of [3, Theorem 4] to simple rings:

Theorem 1. If R is Galois, left algebraic and of bounded degree over S then R is finite over S.

Next, we shall prove a theorem which is a partial extension of [3, Theorem 3] and [4, Theorem 5.1]:

Theorem 2. If R is Galois and left algebraic over S then R is locally finite over S, provided the Galois group \mathfrak{G} of R/S is almost outer (, whence \mathfrak{G} is locally finite).

For the proofs of our principal theorems, several lemmas will be needed. At first we shall prove the following:

Lemma 1. Let S be a division subring of R. N a Z-right submodule of R with $[N:Z]_r < \infty$. If $[S:Z] = \infty$ then for each positive integer q there exist q non-zero elements $s_1, \dots, s_q \in S$ such that $\sum_{i=1}^q Ns_i = \sum_{i=1}^q Ns_i$.

Proof. Patterning after the latter half of the proof of [4, Lemma 6.6] or the proof of [2, Lemma 3] according as S is algebraic or transcendental over Z (V should be replaced by Z), one will easily obtain our lemma. And so, the details may be left to readers.

Lemma 2. Let R/S be Galois, S' an intermediate ring of R/S such

^{*} Yukawa Fellow of Osaka University in 1961.

that R is S'-R-irreducible, and let $M \neq 0$ be an S-S'-submodule of R.

- (i) $(\sigma|M)R_r$ is S'_r - R_r -irreducible and R_r -isomorphic to R_r for each $\sigma \in \mathfrak{G}$.
- (ii) For any subset \mathfrak{B} of $\mathfrak{G}|M$, \mathfrak{B} is linearly independent over R_r if and only if so it is over V_r .
- (iii) $(\mathfrak{S}|M)R_r$ possesses a subset of $\mathfrak{S}|M$ as a linearly independent R_r -basis, and $\mathfrak{B}\subseteq \mathfrak{S}|M$ is a linearly independent R_r -basis of $(\mathfrak{S}|M)R_r$ if and only if it is a linearly independent V_r -basis of $(\mathfrak{S}|M)V_r$.
- *Proof.* (i) Let x be an arbitrary non-zero element of R. Then, by our assumption, there holds $S'_r(\sigma|M)x_rR_r = (\sigma|M)(S'\sigma xR)_r = (\sigma|M)$ $\{(S'x\sigma^{-1}R)\sigma\}_r = (\sigma|M)R_r$, whence our assertion is clear.
- (ii) Let a subset \mathfrak{B} of $\mathfrak{S}|M$ be linearly dependent over R_r , and let $\sum_{i=1}^t (\sigma_i|M) x_{ir} = 0$ ($x_i \in R$) be a non-trivial relation of the shortest length. Then, by (i), we obtain $\sigma_1|M = \sum_{i=1}^t (\sigma_i|M) y_{ir}$ for some $y_i \in R$. Here, by making use of the standard argument, one can easily see that each y_i is contained in V. Hence, we have proved that \mathfrak{B} is linearly dependent over V_r . And the converse is trivial.
 - (iii) This is an easy consequence of (i) and (ii).

By the validity of Lemma 2, we can prove the following useful inequalities.

Lemma 3. Let R/S be Galois, and S' an intermediate ring of R/S such that R is S'-R-irreducible. If M is an S-S'-submodule of R with $[M|S]_i < \infty$ then for each $a \in M$ there holds

$$m \cdot [a \otimes V_r \mid V]_r < mm' + m' \cdot [M \mid S]_t$$

where m = [S|S] and m' = [V|V] are the capacities of S and V respectively. In particular, if S is a division ring, we have

$$\frac{1}{m'}[a \otimes V_r | V]_r < 1 + [M:S]_t$$

Proof. By Lemma 2 (i) and (ii), there holds $m \cdot [a \otimes V_r | V]_r \le m \cdot [(\otimes | M) V_r | V_r]_r = mm' \cdot [(\otimes | M) V_r : V_r]_r = mm' \cdot [(\otimes | M) R_r : R_r]_r$. Thus, to complete our proof, it suffices to prove the nxet:

$$m \cdot \lceil (\Im \mid M) R_r : R_r \rceil_r < m + \lceil M \mid S \rceil_t$$

Now, we can find a S-left submodule M' of R such that $[M'|S]_i < m$, $M^* = M + M' = M \oplus M'$, and that M^* possesses a linearly independent S-left basis. Then, by Lemma 2 (i), we obtain

$$[M^*:S]_i = [\operatorname{Hom}_{S_i}(M^*, R):R_r]_r \ge [(\Im M)R_r:R_r]_r.$$

Consequently, there holds $[M|S]_i + m > [M|S]_i + [M'|S]_i \ge$

 $m \cdot \lceil (\mathfrak{S} \mid M) R_r : R_r \rceil_r$

Now, we shall prove the following lemma which will play an essential role in our present study.

Lemma 4. If R/S is Galois, left algebraic and of bounded degree then $[R:S] < \infty$, provided there exists an intermdiate ring S' of R/S with $[S':S]_l < \infty$ such that R is S'-R-irreducible.

Proof. At first, we shall remark that V is finite over Z. For, noting that $S[V] = S \times_z V$, we readily see that V is an algebraic algebra over Z and of bounded degree, and so $[V:V_r(V)] < \infty$ by [1, Theorem $7 \cdot 11 \cdot 1]$. Moreover, V/Z being Galois, it will be easy to see that $V_r(V)$ is finite over Z. Hence, it follows $[V:Z] < \infty$.

Let $S = \sum_{i,j'=1}^m S_0 f_{ij}$, where f_{ij} 's are matrix units and $S_0 = V_{\mathcal{S}}(\{f_{ij}'s\})$ is a division ring. Then, as is well-known, $S' = \sum_{i,j'=1}^m S_0' f_{ij}$ and $R = \sum_{i,j'=1}^m R_0 f_{ij}$ for $S_0' = V_{\mathcal{S}'}(\{f_{ij}'s\})$ and the simple ring $R_0 = V_{\mathcal{R}}(\{f_{ij}'s\})$. Here, one will easily see that R_0/S_0 is Galois, left algebraic and of bounded degree, and that R_0 is $S_0' - R_0$ -irreducible. Further, our assertion for the case $[S:Z] < \infty$ has been proved in [4], Theorem [5:Z]. Thus, in what follows, we may, and shall, restrict our proof to the case where S is a division ring and $[S:Z] = \infty$.

Let $S' = Su_1 + \cdots + Su_p$, and $s = \text{Max}_{x \in \mathbb{R}} \{ [S[x] : S]_i \}$. And let t be an integer such that $t \geq 1 + ps$. Now, we suppose that $[R : S]_i = \infty$. As, to be easily verified, $\mathfrak{G}R_r$ is two-sided simple, if $[\mathfrak{G}R_r : R_r]_r < \infty$ then one can easily see that $[R : S] < \infty$. This contradiction shows that $[\mathfrak{G}R_r : R_r]_r = \infty$. And so, there exist some $\sigma_1, \dots, \sigma_t \in \mathfrak{G}$ such that $\{\sigma_1, \dots, \sigma_t\}$ is linearly independent over R_r . If x is an element of R, $SxS' = Sx(Su_1 + \dots + Su_p) \subseteq S[x]u_1 + \dots + S[x]u_p$ yields

$$[SxS':S]_i \leq sp.$$

Here, choose an arbitrary S-S'-submodule M_0 of R with $[M_0:S]_i < \infty$. If $[\sum_{t=1}^t (\sigma_t \mid M_0)R_r: R_r]_r < t$ (cf. Lemma 2 (i)), then there holds a non-trivial relation: $\sum_{t=1}^t (\sigma_t \mid M_0)a_{tr} = 0$ ($a_t \in R$). Since $\alpha = \sum_{t=1}^t \sigma_t a_{tr} \neq 0$, there exists some $b_1 \in R$ such that $b_1 \alpha \neq 0$. We set here $M_1 = M_0 + Sb_1S'$. Then, by (1) we have $[M_1:S]_t < \infty$. And $M_1\alpha \neq 0$ implies $[\sum_{t=1}^t (\sigma_t \mid M_0)R_r: R_r]_r < [\sum_{t=1}^t (\sigma_t \mid M_1)R_r: R_r]_r$. Thus, repeating the same procedures, we can find eventually an S-S'-submodule $M = Sd_1 + \cdots + Sd_q$ of R such that $t = [\sum_{t=1}^t (\sigma_t \mid M)R_r: R_r]_r$. Recalling the fact $[V:Z] < \infty$ remarked at the opening, we see that $N = \sum_{t=1}^t (d_j\sigma_t)V$ is right-finite over Z. And so, by Lemma 1, there exist some non-zero $s_1, \cdots, s_q \in S$ such that

$$\sum_{i=1}^{q} Ns_i = \sum_{j=1}^{q} \bigcap Ns_j.$$

We set here $a = \sum_{j=1}^{q} d_j s_j$ ($\subseteq M$). If $\sum_{i=1}^{t} (a\sigma_i)v_i = 0$ ($v_i \in V$), then $\sum_{j=1}^{q} (d_j\alpha')s_j = a\alpha' = \sum_{i=1}^{t} (a\sigma_i)v_i = 0$, where $\alpha' = \sum_{i=1}^{t} (\sigma_i \mid M)v_i$. Noting that $d_j\alpha' \in N$, there holds $d_j\alpha' = 0$ ($j = 1, \dots, q$) by (2). And this implies $M\alpha' = \sum_{j=1}^{q} S(d_j\alpha') = 0$, that is, $0 = \alpha' = \sum_{i=1}^{t} (\sigma_i \mid M)v_i$. Since $\{\sigma_1 \mid M, \dots, \sigma_t \mid M\}$ is linearly independent over V_i , we have $v_i = 0$ ($i = 1, \dots, t$). We have proved therefore that $a\sigma_1, \dots, a\sigma_t$ is linearly independent over V. Accordingly, by (1) and Lemma 3 we obtain

$$1 + ps \ge 1 + [SaS': S]_t > \frac{1}{m'} [a \otimes V_r | V]_r \ge [\sum_{i=1}^t (a\sigma_i)V: V]_r = t,$$

where m' is the capacity of V. But this contradicts $t \ge 1 + ps$, and our proof is complete.

Lemma 5: Let R/S be Galois and left algebraic. If \mathfrak{B} is almost outer and S' is an intermediate ring of R/S with $[S':S]_i < \infty$ such that R is S'-R-irreducible then for each $x \in S'$ we have $\#\{x\mathfrak{B}\} < \infty^{1}$.

Proof. Since \mathfrak{G} is almost outer, i. e. $(V^*: C^*)$ (the group index of the multiplicative group C^* of non-zero elements of C in the multiplicative group V^* of regular elements of $V) < \infty$, V is finite or V = C by [6, Lemma 1]. In virtue of Lemma 2 (i), we have

$$\infty > [S':S]_i = [\operatorname{Hom}_{S_i}(S',R):R_r]_r \ge [(\mathfrak{G}|S')R_r:R_r]_r.$$

And so, we can set $(\textcircled{S}|S')R_r = \sum_{i=1}^t \bigoplus (\sigma_i|S')R_r$ with some $\sigma_i \in \textcircled{S}$. Then, by Lemma 2 (iii), $\{\sigma_1|S', \cdots, \sigma_t|S'\}$ is a linearly independent V_r -basis of $(\textcircled{S}|S')V_r$: $(\textcircled{S}|S')V_r = \sum_{i=1}^t \bigoplus (\sigma_i|S')V_r$. If V is finite, our assertion is clear by the last representation. Thus, in what follows, we may, and shall restrict our proof to the case V = C. Now, let σ be an arbitrary element of S. Then $\sigma|S' = \sum_{i=1}^t (\sigma_i|S')v_{ir}$ ($v_i \in V$). And so, for each $x \in S'$ we have

$$x_{r}(\sigma \mid S') = \begin{cases} (\sigma \mid S')(x\sigma)_{r} = \sum_{i=1}^{t} (\sigma_{i} \mid S')(v_{i}(x\sigma))_{r} = \sum_{i=1}^{t} (\sigma_{i} \mid S')((x\sigma)v_{i})_{r}, \\ x_{r} \sum_{i=1}^{t} (\sigma_{i} \mid S')v_{ir} = \sum_{i=1}^{t} (\sigma_{i} \mid S')((x\sigma_{i})v_{i})_{r}. \end{cases}$$

Hence, we obtain $\sum_{t=1}^{t} (\sigma_t | S') \{ (x\sigma - x\sigma_t) v_t \}_r = 0$, whence it follows $(x\sigma - x\sigma_t) v_t = 0$ $(i=1, \dots, t)$. Noting that some of v_i 's, say v_i , is non-zero, we see that $x\sigma = x\sigma_i$. We have proved therefore that $x = \{x\sigma_i, \dots, x\sigma_t\}$.

Now, let R be represented as $\sum_{i,j=1}^{n} De_{ij}$ with matrix units e_{ij} 's and a division ring $D=V_R(\{e_{ij}'s\})$. If n>1 and S contains an element $a=\sum_{i,j=1}^{n} c_{ij}e_{ij}$ with $c_{pq}\neq 0$ for some $p\neq q$ then, for an arbitrary permutation

$$\binom{1 \quad 2 \quad \cdots \quad n-1 \quad n}{p_1 \quad p_2 \quad \cdots \quad p_{n-1} \quad p_n}$$

¹⁾ For any E, #(E) will signify the cardinal number of E.

such that $p_1 = p$ and $p_n = q$, $e'_{ij} = e_{p_i p_j}$ can be adopted as new matrix units of R and $e'_{in} = e_{pq}$. Accordingly, without loss of generality, we may assume that $c_{1n} \neq 0$. On the other hand, if n > 1 and every element of S is diagonal, it is clear that all $e_{ii} \in V$. Hence, $V = \sum_{i=1}^n \oplus e_{ii} V$. If moreover V is a simple ring, the last fact means $\lceil V \mid V \rceil \geq \lceil R \mid R \rceil$. Since $\lceil V \mid V \rceil \leq \lceil R \mid R \rceil$ trivially, $\lceil V \mid V \rceil = \lceil R \mid R \rceil$. Accordingly, if $V = \sum_{i,j=1}^n E'e'_{ij}$ with matrix units e'_{ij} 's and a division ring $E' = V_V(\{e'_{ij}\})$, then $R = \sum_{i,j=1}^n D'e'_{ij}$ with the division ring $D' = V_R(\{e'_{ij}\})$. Thus, to prove our principal theorems, it will suffice to restrict our subsequent consideration to the following three cases:

Case I. n=1.

Case II. n>1 and S contains an element $a=\sum_{i,j=1}^{n}c_{ij}e_{ij}$ with $c_{1n}\neq 0$. Case III. n>1 and $S\subseteq D$.

Lemma 6. Let Case II happen.

- (i) Let $\binom{1}{p_1} \binom{2}{p_2} \binom{n-1}{p_{n-1}} \binom{n}{p_n}$ be an arbitrary permutation such that $p_1 = 1$ and $p_n = n$, and x_2, \dots, x_n arbitrary non-zero elements of $p_n = n$. If $p_n = n$ then $p_n = n$ is $p_n = n$ then $p_n = n$ is $p_n = n$.
- (ii) If $D \neq GF(2)$ then R = S[F], where F is the set of elements R such that R is S[r]-R-irreducible.
- *Proof.* (i) If we set $e'_{ij} = e_{p_i p_j}$ then $e'_{in} = e_{1n}$ and $r = \sum_{i=2}^n x_i e'_{ii-1}$. And so, without loss of generality, we may assume that the permutation is identical. Let M be an arbitrary non-zero S[r]-R-submodule. Then, M contains an element $b = \sum_{i=p}^n d_i e_{in}$ with $d_p \neq 0$ for some p. Since $M \ni r^{n-p}b = x_n \cdots x_{p+1} d_p e_{nn}$ (if p = n, $M \ni b = d_n e_{nn}$), e_{nn} is contained in M, whence it follows $M \ni ae_{nn} = \sum_{i=1}^n c_{in} e_{in}$. Hence, there holds $M \ni r^{n-k} \sum_{i=1}^n c_{in} e_{in} = \sum_{i=1}^k c_{n-k+i} \cdots x_{i+1} c_{in} e_{n-k+i} \cdots x_2 c_{1n} e_{n-k+1n}$ ($k = 1, \dots, n$). Recalling that $c_{1n} \neq 0$, one can see inductively that e_{nn} , e_{n-1n} , \cdots , $e_{1n} \in M$, whence eventually $e_{ij} \in M$. Now, it will be easy to see that M = R.
- (ii) Let $\binom{1 \ 2 \cdots n-1 \ n}{p_1 \ p_2 \ p_{n-1} \ p_n}$ be an arbitrary permutation such that $p_1=1$ and $p_n=n$, and let x be an arbitrary non-zero element of D. Then, by (I) $F\ni r_{x,i}=e_{p_np_{n-1}}+\cdots+xe_{p_ip_{i-1}}+\cdots+e_{p_2p_1} \ (2\le i\le n)$. Since there exists an element $z\in D$ different from 1 and 0, $S[F]\ni r_{z,i}-r_{z-1,i}=e_{p_ip_{i-1}} \ (2\le i\le n)$. Further for arbitrary $y\in D$ different from 1 and 0 we obtain $S[F]\ni r_{1,i}-r_{1-y,i}=ye_{p_ip_{i-1}} \ (2\le i\le n)$. Hence, noting that $xe_{n-1}=xe_{nn-1}e_{n-1n-2}\cdots e_{21}$, we see that $S[F]\supset De_{nj} \ (1\le j< n)$, $De_{ij} \ (1< i\ne j< n)$ and $De_{i1}^{-1} \ (1< i\le n)$. Consequently,

(3)
$$S[F] \Rightarrow (\sum_{i,j=1}^{n} c_{ij}e_{ij})c_{1n}^{-1}xe_{nk} \\ = c_{nn}c_{1n}^{-1}xe_{nk} + \sum_{i=1}^{n-1} c_{in}c_{1n}^{-1}xe_{ik} + xe_{1k} (1 \leq k < n).$$

Since for n > k > 1 S[F] contains $e_{ki}(\sum_{i, j=1}^{n} c_{ij}e_{ij})c_{1n}^{-1}de_{nk} = de_{kk}(d \in D)$, it will be easily seen that $S[F] \ni \sum_{i=2}^{n-1} c_{in}c_{1n}^{-1}xe_{ik}$. Hence, from (3), we obtain $xe_{ik} \in S[F]$ ($1 \le k < n$), in particular, $e_{1i} \in S[F]$. And so, S[F] contains $e_{nn} = 1 - \sum_{i=1}^{n-1} e_{i1}e_{ii}$ too, whence it follows $e_{1n} = c_{1n}^{-1}e_{1i}$ ($\sum_{i, j=1}^{n} c_{ij}e_{ij}$) $e_{nn} \in S[F]$. Thus, we have proved that $e_{1j} \in S[F]$ ($1 \le j \le n$). Since $e_{i1} \in S[F]$ ($1 \le i \le n$), $e_{ij} \in S[F]$ and $D \subseteq S[F]$.

Lemma 7. Let Case III happen, R/S be left algebraic and $S \not\subset C$ (whence $D \not\subset V$ by $D \supseteq S$).

- (i) For an arbitrary $x \in D \setminus V$, if $r = \sum_{i=2}^{n} e_{i-1i} + xe_{n1}$ then R is S[r]-R-irreducible.
 - (ii) R = S[F], where F is the set mentioned in Lemma 6 (ii).
- *Proof.* (i) There exists an element $y \in S$ with $xy \neq yx$. Since $r^{-1} = \sum_{i=2}^{n} e_{ii-1} + x^{-1}e_{in} \in S[r]$, S[r] contains $r^{n-i}(r-yry^{-1})(r^{-1}-yr^{-1}y^{-1})r^{-(n-j)} = (x-yxy^{-1})(x^{-1}-yx^{-1}y^{-1})e_{ij}$. Noting that $(x-yxy^{-1})(x^{-1}-yx^{-1}y^{-1})$ is a non-zero element of $S[r] \cap D$, it follows that $e_{ij} \in S[r]$ $(i, j=1, \dots, n)$. Now the S[r]-R-irrducibility of R will be easy.
- (ii) By (i), it is clear that e_{ij} $(i, j = 1, \dots, n)$ and arbitrary $x \in D \setminus V$ are contained in S[F] (and so $x^{-1} \in S[F]$ as well). On the other hand, if c is a non-zero element of $D \cap V$ then $xc \in S[F]$ for arbitrary $x \in D \setminus V$, whence it follows $c \in S[F]$. Consequently, we obtain $R = \sum_{i,j=1}^{n} De_{ij} = S[F]$. Now we can prove our principal theorems.

Proof of Theorem 1. For Case I, R being S-R-irreducible, our assertion is a direct consequence of Lemma 4. Next, for Case II it is easy by Lemma 6 (i) and Lemma 4. And finally, our asserion for Case III is contained in [4, Theorem 5.2] provided $S \subseteq C$, and for the case remained it is clear by Lmma 7 (i) and Lemma 4.

Proof of Theorem 2. If D = GF(2), our assertion is trivial. For case 1, noting that R is always S[r]-R-irreducible for $r \in R$, \mathfrak{G} is locally finite by Lemma 5. Similarly, for Case II and Case III, by making respective use of Lemma 6 and Lemma 7 together with Lemma 5 we see that \mathfrak{G} is locally finite provided $D \neq GF(2)$ and $S \not\subset C$ respectively. Finally, if n > 1 and $S \subseteq C$ then V = R is finite by [6], Lemma 1 (for, \mathfrak{G} is almost outer).

From Lemma 5, Theorem 2 and [5, Theorem 1.1 and Theorem 3.1] we obtain the following:

Corollary 1. If R/S is left algebraic and outer Galois then, for any finite subset E of R,

- (i) $\#\{E(S)\}\$ is finite,
- (ii) the ring S[E] generated by E over S is a simple ring which is finite over S,
 - (iii) S[E] = S[a] for some $a \in S[E]$.

By Corollary 1, it will be easy to see that the infinite Galois theory of division rings [1, VII, § 6] of N. Jacobson can be extended to simple rings under the same assumptions such that R/S is left algebraic and outer Galois as in [1, VII, § 6]. The following corollary²⁾ is one of those extensions.

Corollary 2. If R/S is left algebraic and outer Galois then there exists a 1-1 dual correspondence between closed subgroups of \mathfrak{G} and intermediate rings of R/S, in the usual sense of Galois theory.

REFERENCES

- [1] N. JACOBSON, Structure of rings, Providence (1956).
- [2] T. NAGAHARA. On generating elements of Galois extensions of division rings IV, Math. J. Okayama Univ., 8 (1958), 181-188.
- [3] T. NAGAHARA, On generating elements of Galois extensions of division rings V, Math. J. Okayama Univ., 10 (1960), 11-17.
- [4] T. NAGAHARA and H. TOMINAGA, On Galois and locally Galois extensions of simple rings, Math. J. Okayama Univ., 10 (1961), 143—166.
- [5] H. TOMINAGA, Galois theory of simple rings II, Math. J. Okayama Univ. 6 (1957), 153-170.
- [6] H. TOMINAGA, A note on conjugates II, Math. J. Okayama Univ., 9 (1959), 1-3.

DEPARTMENT OF MATHEMATICS,

OKAYAMA UNIVERSITY.

(Received January 24, 1962)

²⁾ This is a restatent of the latter part of [4, Corollary 1,4].