ON GENERAL CONNECTIONS II

ToMINOSUKE OTSUKI

In a former paper [12],” the author investigated the tensor culculus
of spaces with general connections and showed several formulas which are
natural generalizations of ones in the spaces with classical affine connec-
tions,

In the present paper, he will investigate on the development of curves
in spaces with general connections which satisfy a certain condition. In
the classical theory, a curve in a space with an affine connection is deve-
loped into a curve in the affine space of the same dimensions and the deve-
loped curve become a straight line, if the curve is a geodesic. When a
general connection I" is regular, that is P=(I")” is regular, we can follow
this idea of the development of curves by means of the contravariant part®
of I" which is a classical affine connection. But we shall fail in the same
trial when I is not regular.

As spaces into which curves are developed, taking not only the affine
space but also some spaces with general connections which may be con-
sidered as relatives of the affine space, he will show that the above
mentined idea can be permitted so as developments of geodesics become
geodesics in such spaces.

y 1. Pseudo-affine spaces.”

Let A" be an n-dimensional affine space and a*, 1 =1, 2, ---, 1, be an
affine coordinate system of A”. We call a space X with a general connec-
tion I' such that A" is the underlying manifold of ¥ and out of the
components (P, I'h.) of I" with respect to x*, the second components I},
=0, a pseudo-affine space of n dimensions. This definition does not
depend on the choice of affine coordinate systems of A”, by virtue of (2. 27)
of [12]. Inthe following, we denote the first components P} of connections
of pseudo-affine spaces by F}.

When rank (F%) = n, we say that pseudo-affine spaces are regular.
when F) = constant, we call them special pseudo-affine spaces.

In a pseudo-affine space, the covariant differential of a contravariant
vector field V* is given by

1) The numbers in square brackets show the numbers of the references at the
end of the present paper.

2) See [12], § 2.

3) See [12], § 3.

4) In the present paper, we deal with only manifolds, mappings with suitable
differentiabilities for our purpose.
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DV* = FAdV~ (1.1)
Since we have
A
P — (1.2)
ox

for the space, the covariant differential of a covariant vector field W, is
given by

6F;
ox”

DW, = FXd W+ W, dx* = d(F\W,). (1. 3)

Hence, we have immediately

Lemma 1. 1. In a pseudo-affine space, in order that a contravariant
vector field V and a covariant vector field W defined along a curve C:
) =x*(t) are covariantly constant, it is necessary and sufficient that
dV/dt and W are transformed to the zero vector and a constant vector
respectively under the homomorphism F of the tangent bundle T(A")
which is defined by the components Fh.

By the lemma, any constant contravariant vector, that is, with
constant components with respect to affine coordinates, is covariantly
constant also in any pseudo-affine spaces. .

Now, by means of (4. 4) of [12], a geodesic in the pseudo-affine space
is such a curve that x* = x*(¢) satisfy the equations :

(i) = v R

with a function «» of £. By (1.1), these equations can be written as

d2 A d A ’
Pl (1. 4)
FAV* = 0.

Therefore, we have

Theorem 1. 2. [In a pseudo-affine space, for any field of null direc-
tion V*: FyV* =0, there exists a geodesic which passes through a given
point and has a given tangent direction at the point, and at each point
of which it osculates to the tangent plane spanned by the tangent direction
and the null direction.

Remark. In general, if two field of null directions of F are different
from each other, then the geodesics through the same point and with the
same tangent direction at the point, corresponding to them, are different
curves. When the pseudo-affine space is regular, geodesics are straight
lines in the ordinary sense, since there exists no null direction of F' at any
point,
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§ 2. Normal tensor fields of type (1, 1).

Let ¥ be a differentiable manifold of » dimensions. We say that any
tensor field P of type (1, 1) is normal, if the homomorphism defined by P
on the tangent space at each point of X is an isomorphism on its image of
the tangent space and

dim P(T.(X)) = m, x & X, 2.1)
is constant. If U isa simply connected open neighborhood of ¥, we can
choose a field of frame {V,. Vi}, a =1, -, n, A=m-+1, - n, such that

{Vy, -+, Vu} is a base of P(T.(¥)) and { V41, -+, V,} is a base of the
space of tangent vectors transformed to the zero vector under P at each
point x = U. Then we have®

P Vn =V Wg, Wg 0;
{ (Vo) =V, | WE| @.2)
P(VA) = 0.
Let {U® U*} be the dual base of {V,, V,}, thatis,
<V, U*>=4% 2.3)

If we denote the dual mapping of P on the cotangent space Tx(¥X) at
x by the same notation, we have

P(UP = WU,
P(U? = 0.
Let #' be local coordinates defined on U and P!, V3, U} be the com-

ponents of P, V,, U respectively. Then, the ‘above equations are written
as

(2.4)

PV =ViWE, P{Vi=0, 2.5)

ViUt = &% (2. 6)
and

PiU% =WEU{, P/Uj=0. 2.7
We get easily from them

P =ViWiU;. (2.8)
If we put

(S2) = (Wo)™, (2.9)

then we can define a tensor field @ of type (1. 1) by

5) The indices run as follows:
A, Ry Y, ey By Jy By e = 1,2,
@, B, Y, =12, m,
A, B C, v =m+1,, n
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Qi =VisStUs. (2.10)

The tensor field @ is clearly independent of the choice of the base { V,, V.,}.
It is the inverse of P on P(T.(X)), and has the same kernel as P at each
point x, We get easily

1Qt = QiPr =ViUt = Al. (2.11)

Hence, at each point x=U, A= PQ=@QP is the projection of T.(¥X), onto
P(T.(%X)) and we have

A*=A, AP=PA=P, AQ=QA=Q. (2.12)

§3. Developments of curves.

Let I" be a general connection® of ¥, which is written as
I =0u, @ (Pid*uw’ + I'}du’ @ du®) (3.1)
with respect to local coordinates #! of X.

Definition. For a curve C: #«'=u'!(t) in X, if there exists a curve C:
x* = 2*(#) in the affine space A" and a field of frame { X{} of T'(¥) along C
such that

dx* _ . du | a9 o

a = Yiar -2
. il k »

P;%;é - P}(P,A"d)f—* + I f——‘g—;—) =0, (3.3)

where {Y}} is the dual base of { X}}, then C is called a development of C.
In this definition, C is considered as a curve in a pseudo-affine space,
whose general connection’s components F} satisfy the condition

F,=Y'PiX] on C. (3. 4)

But we have to restrict this intention to suitable subarcs of C, when C has
double points. It is easily seen that when C is a development of C, its
image under any affine transformation of A" is also a development of C.

A general connection I" is called normal, when the tensor field P =
A(I") with local components P! is normal.

Theorem 3. 1. Let C be a curve in a space X with a normal general
connection such that dim P(T.X))= m, then C has a development which
depends on n{n—m) arbitrary functions of the parameter of C.

Proof. 1t is sufficient to prove that there exist »* functions X of ¢

6) See §2 of [12].
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such that they satisfy (3. 3), | Xi| =0 and any initial condition.
we may take a field of frame { V., V,} as in §2 in a neighborhood of
C. Putting

X =ViEL,
we write the equations (3. 3) by means of the unknown functions £, that
is

P; DX{=Pj { Pld(Vi &) + I'hVi Eidu}
=Pi{PIVidi + (P3LdVi + DLV du)ER}
= P{{ P{Vidty +~ DV]EX} = 0.
Multiplying @@} and contracting with respect to i/, we get the equations
Vades + ALQSDV] &4
= Va(dEX+ UL Q5D VIEY) = 0,
hence
dd—’:'f + Us Q% IZIY‘{

by (2.11) and (2. 12), which are equivalent to (3. 3) by virtue of the pro-
perties of P, @ and A described in §2. Putting

&=0

3
ke = vz Ve 3.5)
dt
which are known functions of ¢, £; must satisfy the equations
dEX | Kagr = 0. (3.6)

dt

Therefore, we take any n{(n%—m) auxiliary functions K7 of ¢ and consider
the following equations

A
%+ Kigt =0 (3.7)
to be added to (3. 6). Then we can obtain a solution {£% (#)} satisfying the

equations (3. 6) and (3.7) which is uniquely determined for given initial
values

Ef(to) = cf, |C$f| 0.

It is easily seen that this solution depends on the initial values and the
functions K#. The proof is finished. q.e. d.

Let C be the curve in Theorem 3.1. If we extend the »*® functions
FX = Y} P! X} considered as defined on C on the whole space A", then C
is a curve in the pseudo-affine space whose connection’s components are
F). Now, we calculate the covariant derivative of the tangent vector of C.
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By virtue of (2. 11), (2.12), we have
Ddx* _ adix" _ ad ndut
dt dt F dt* F"dt(Y dt
d*u’ " dYtdu )
dff ' Tdt dt
_ v pifdiut _ dX, .du”
Yil (dt‘ dt RL “dt

_.I“ (Yﬂ

a(Dde! Ly dutdd L dX . dud”
Natar =10 ar ar —P0dr Yo dt)
and
;4 Xy — A )AdX;L " (E
Py gyt Yo gy = Alegt i,
ipt L_(lX”. “—(!£
Pebe Tt iy
DXE du du
= QI plL{ LA i "
QiPu(B — iy xi H)y A
= — Al " ditdih
Ae Loy
Hence we have the formula :
Ddx* _ }.{lej_ Y kdu’cl__u"}
di dt Y; di dt i—Ad I'n ar dil’ (3.8)

Theorem 3. 2. Let I' be a normal general connection as in Theorem
3. 1. Developments of a geodesic in X are geodesics also in pseudo-affine
spaces respectively.

Proof. Let C: u' = u'(l) be a geodesic in %, that is, #'(¢) satisfy the
equations ;

D du' _ cdu’

atdr ~ g
with a suitable function «r of ¢, and C be a development of C. Then, we
get by (3. 8) the equations :

A
Ddr _ yyipide + 3o —an (Pt LU yprde
du
—yRyis,

that is

2 Cay) = v
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This shows that C is a geodesics in the corresponding pseudo-affine space.

§ 4. Developments into special pseudo-affine spaces.

Let I" be a normal general connection as in Theorem 3. 1. Then, any
curve C in X is developable into a suitable pseudo-affine space. Using the
same notations in $3 and putting

Y= U,
we have
LA
Di_ pKi=0 4.1)

Then, we have
LEy = L PX) = L GAUTPIVALD
= & oawsed

drh dES dW
— G7a Wra ;5 5 2”’“ ©° 4\ A : =)
dt FreWeTgy £

= KiWRER — yaWEKEEL -+ f,;‘id}jgﬁ
= p{(Kswi - wi ks + & ws) ek - Wi K e
+ s KaWg EL.

Hence, in order that F A are constants along C, it is necessary and suffi-
cient that

( Ky Wi — Wy K} + % s =0, (4.2)
|

VKS =0, (4.3)
K2 = 0. (4.4)

We rewrite these equations in intrinsic forms, Firstly, we have
KWy — We K} + % W

DV}
T dt

J
= vt 2V wy—wyuri 2 - S p v
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— (3 1 JdVl; ]gdu y— aDVﬂ , Iu J
= s @y(PrYt + ravi S wy — vz 2V - L(uz pyvy)
- Us dV"W”+U“’Q,P Vé‘f;;
U“(P‘dV‘" + Il Vi ‘2‘;)
dUi 8% de - @ 1dVﬁ
L vimi+vrilivirur pty
= U? (dPJ +Q,crmP;‘Z; },.‘ii’;)vﬁ = 0.

Since | Wg| = 0, the last equations are equivalent to

13
vs Pz (Lhi+ qirs pAY - r;,L%’;—)szg

du"

= U‘”(P”dP’P’+P Py pyde

— PIT}, P} dt )V,,

— JJ% q P p b jdun q
—U +(P¢P111 P‘F'MPQ)W Vﬁ

_Up(dt — P? ‘qndt)Vq—O

where 4}, are the covariant derivatives of the Kronecker’s 4t Furthermore,
by means of (2.8), these are equivalent to the intrinsic eqations

13
p,z(Ddfj ‘"I()ﬁ" Pi=o0. (4.5)
Nextly, since
DV) DbV)
= [JB O erry 4
Ui gy = 5vUJ dt’
(4. 3) is equivalent to
«DVL
UVitgr =0
and hence
«DV] _
Pi=2 =0

by virtue of (2. 8). The left hand side of the last equation can be written
as

k
py(PLVE + rpvide
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L(pivy + Py Vs
= P}tk Vf‘fi’;
= —(I'} PL— Pi4d) Z:‘fl“t
-2

Accordingly, (4.3) can be replaced with the intrinsic equations :
Dof 1 _ .
R Vi=o0. (4.6)
Thus, we obtain the following theorem.

Theorem 4.1. In order that a curve Cin X with a normnal general
connection I' has a development C in a special pseudo-affine space, it is
necessary and sufficient that it holds good that .

h
i) P): Dd.l;k — h. Dak) PJ i 0

i) if PiV?I =0, then Z‘zf V=

along C and we put the auxiliary functions Kg of t as
Ki=0 A=m+1, - ,n;, a=1,+-, m

Theorem 4. 2. In order that any curve in X with a normal general
connection I' is developable into one and the same special pseudo-affine
space, it is necessary and sufficient that it holds good that

Pi(Ptoe —Pl6iaP5=10 4.7
and
if PyV'=0, then é&5,V’ =0. (4. 8)

§5. Developments of vector fields.

Let C: u'= #'(t) be a given curve in X with a normal general connec-
tion I' and C be a development of C in a pseudo-affine space. For a con-
travariant vector field and a covariant vector field with local components
V* and W; respectively defined along C, we call the contravariant vector
field and the covariant vector field defined along C by

V=1V (5. 1)
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and
WA X W, (5. 2)
their developments along C.
Using the notations in §3, we have
DV* = Frdv*
=Y PiX{(YhdV* + dye v
= Yf‘(P} dv’ — Pidx]yevn
DVt —r Vdu®) — YNDX! ey — I'iVidu®)
= YiDV'— Y)DX YLV*

= YiDV' — YNA} + (3} — A))DXI V™

By means of (2.11) and (3. 3), since we have
ASDX] = QiPiDX, =0
and
IDXIV* = UNP{dXE + Tl X du®) V7
UirhLvidu
= U{(PldV*'+ PHVidy®) = UsDV’,
the above equations can be written as
DV* = Y}DV' — Y}VIUADX! V*

=Yi(DV' - VIUADVY)

= Yo — VIUNDV’ = YAA DV,
hence we have the formula :

DV ,DVJ
dt = Y4 dt

Then, we have analogously
DW, = d(FtW,)
= d(Xi P} W)
= dXiPIW, + Xid(P{W))
= DX} — I'th XXdu" W, + X{DW, + I't,W,du")
=DX{W, + XDW,
= DX{(A! + (3! — AW, + XiDW,
=DXi(0! — AOYW, + X} DW,

(5.3)

Since
DXi(o! — A) = DX} UV
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= (Pid Xt + IMa XFdu) ULV

= X, du UV
and
DU = d(UfP) — UfThdu" = — Ui 'l du?, (5.4)
we obtain the formulas :
DW, _ (DW. DU,
dt X *( dt dt Vi W’)). (.5)

Definition. A general connection I' is called proper, if any covariant
vector field transformed to zero under P = ;(I") is covariantly constant,
that is,

if UyP; =0, then DU, =0.
From the formula (5. 3), we obtain the following theorem.

Theorem 5. 1. The development of a covariantly constant contra-
variant vector field defined along a curve C in X with a normal general
connection I' is also covariantly constant along the development C of C
in the pseudo-affine space.

From the formula (5. 5), we obtain the following theorem.

Theorem 5. 2. The development of a covariantly constant covariant
vector field defined along a curve C in X with a normal general connec-
tion T' is also covariantly constant along the development C of C in the
pseudo-affine space, if I' is proper or the vector field is invariant under
the projection A of T(X).
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