SPECTRAL THEORY OF OPERATOR ALGEBRAS II

MINORU TOMITA

This paper is a continuation of the preceding "Spectral Theory of Operator Algebras I" in this journal and consists of the latter three chapters.

Chapter 3. Extensions of Kaplansky Density Theorem and Gelfand-Naimark Representation Theory.

- § 1. An extension of Kaplansky Density Theorem.
- (a). C*-algebra in general Banach space.

In what follows we consider C^* -algebras whose underlying spaces are not generally Hilbert spaces. Then we first define a C^* -algebra in a general Banach space.

Definition 1.1. A topologico-algebraic homomorphism of a C^* -algebra A in an operator algebra in a certain Banach space $\mathfrak B$ is said to be a representation of A in $\mathfrak B$.

An operator algebra A on a Banach space \mathfrak{B} is said to be a C^* -algebra on \mathfrak{B} if A is isometric and isomorphic to a C^* -algebra.

The above definition is compatible with the ordinary definition of C^* -algebra whenever the underlying Banach space $\mathfrak B$ is a Hilbert space. In fact, let A be an operator algebra in a Hilbert space $\mathfrak D$ which contains the identity, where we do not need to assme that A is self-adjoint. If A is isometric and isomorphic to another C^* -algebra, then A is a uniformly closed self-adjoint algebra in the Hilbert space.

Proposition 1.1. If a C*-algebra A is represented in a Banach space \mathfrak{B} , then the representative algebra $A\mathfrak{B}$ is topologico-algebraically isomorphic to a C*-algebra. If the representation $A \rightarrow A\mathfrak{B}$ satisfies $|A\mathfrak{B}| \leq |A|$, where $|A\mathfrak{B}|$ is the operator norm of $A\mathfrak{B}$ in \mathfrak{B} , then $A\mathfrak{B}$ is a C*-algebra on \mathfrak{B} .

To prove the proposition we prepare the next lemma.

Lemma 1. 1. Let A be an element of A, and put $B = (A^*A)^{\frac{1}{2}}$. Then two sequences $\{U_n\}$ and $\{V_n\}$ in A can be so chosen that $|U_n| \leq 1$, $|V_n| \leq 1$, $|U_nA-B| \to 0$ and $|V_nB-A| \to 0$.

Proof. Assume that the uniform closure $\mathfrak{U}(A)$ of the set $(UA: U \in A)$

¹⁾ Kaplansky 8).

and $|U| \leq 1$) does not contain \mathfrak{B} . Then a functional $f \in A$ and a number $\delta > 0$ can be so chosen that $\Re e f(B) + \delta \leq \Re e f(UA)$ for every $U \in A$ with $|U| \leq 1$. Consider a positive linear functional p on A with $f \in L^2(p)$ and a partially isometric operator $U_o \in A_p''$ in $L^2(p)$ such that $B = (A^*A)^{\frac{1}{2}} = U_o A$. U_o is contained in the strong closure of the unit ball of A_p , and $f(B) = (Bf, p)_p = (U_o Af, p)_p$ hold. It is incompatible with the above Klein-Smulian's inequality. Then $\mathfrak{U}(A)$ contains B. Similarly $\mathfrak{U}(B)$ contains A. Q. E. D.

Proof of Proposition 1.1. Let $A \to A\mathfrak{B}$ be the representation of A in A_B. Then a number k can be so chosen as $|A\mathfrak{B}| \leq k |A|$. Consider an ideal $N = (A \in A; A\mathfrak{B} = 0)$ of A. Then $|A\mathfrak{B}| \leq \inf_{B \in \mathbb{N}} k |A - B| = |A/N|$. It is well-known that A/N is a C*-algebra. Then to prove the proposition it is sufficient to show the inequality $k |A\mathfrak{B}| \geq |A/N|$. Let A be a fixed element of A, and put $B = (A^*A)^{\frac{1}{2}}$. By Lemma 1.1 we have $k |B\mathfrak{B}| \leq |A\mathfrak{B}| \leq k^{-1}|B\mathfrak{B}|$, and k = 1 implies $|B\mathfrak{B}| = |A\mathfrak{B}|$. The smallest C*-sub-algebra R of A which contains I and B is an abelian algebra. Let \mathcal{Q} denote the spectrum of the quotient algebra $R/(N \cup R)$. \mathcal{Q} is the totality of maximal ideals of R which contains $N \cap R$. And $|X/(N \cap R)| = \sup_{X \in \mathcal{Q}} |X/\lambda|$ holds for $X \in R$. On the other hand, $R/N \cap R$ is a normed algebra with the norm $||X/N \cap R|| = |X\mathfrak{B}|$. By the Gelfand-Silov's Theorem we have $|X\mathfrak{B}| \geq |X\mathfrak{B}|^{\frac{1}{n}} \to \sup_{X \in \mathcal{Q}} |X/\lambda| = |X/(N \cap R)| \geq |X/N|$.

Thus we have $|A/N| = |B\mathfrak{B}| \leq k|A\mathfrak{B}|$, from which the proposition follows.

(b). A generalization of the Kaplansky Density Theorem.

Consider a fixed C^* -algebra A and its left ideal N. The quotient space A/N is a Banach space with the quotient norm $|A/N| = \inf_{B \in \mathbb{N}} |A - B|$, and A is represented as an operator algebra A_N , so called the regular representation algebra of A, in A/N. The represented operator A_N of $A \in A$ is an operator in A/N with $A_N x = AX/N$, where $x = X/N \in A/N$. By Proposition 1. 1 A_N is a C^* -algebra on A/N.

A/N is a Banach space, and the strong topology is defined in the totality of bounded operators in it. Consider the strong closure H of the totality of Hermitian elements in A_N and the set $A_N^{\ q} = (X + iY : X, Y \in H)$ of bounded operators in A/N. If $A = X + iY(X, Y \in H)$ belongs to $A_N^{\ q}$, the operator $A^* = X - iY$ is called the *adjoint* of A.

As we shall observe below, A_N^q is a C*-algebra on A/N. The Q^* -topology is defined as the self-adloint strong topology in A_N^q . A Q^* -neighbourhood (a quotient strong neighbourhood) of an $X \subseteq A_N^q$ is a set

 $U(X: x_1, x_2, \dots x_n: \varepsilon) = (Y \in A_N^q: \max_{1 \le i \le n} (|(X-Y)x_i|, |(X^*-Y^*)x_i|) < \varepsilon),$ where $x_1, x_2, \dots x_n$ are a fininite number of elements in A/N and ε is a positive number. A Hausdorf topology of A_N^q , whose open base is the totality of Q^* -neighbourhoods of elements of A_N^q , is said to be the Q^* -topology (quotient strong topology) of A_N^q divided by N. And a Q^* -closed *-sub-algebra of A_N^q is said to be a Q^* -sub-algebra of A_N^q .

An $urtra-Q^*-neighbourhood$ (a quotient urtra-strong neighbourhood) of an $X \in A_N^q$ is a set $\mathfrak{U}(X : \{x_i\}, \varepsilon) = (Y \in A_N^q : \sup (|(X-Y)x_i|, |(X^*-Y^*)x_i|) < \varepsilon)$, where $\{x_i\}$ is a uniformly convergent sequence in A/N and ε is a positive number. A Hausdorff topology of A_N^q , whose open base in the totality of urtra- Q^* -neighbourhoods of elements of A_N^q , is said to be an $urtra-Q^*$ -topology (quotient urtra-strong topology) of A_N^q devided by N.

The next Theorem 9 is a generalized Kaplansky Density Theorem relative to these Q^* - and urtra- Q^* -topologies. The extension problem of v. Neumann Density Theorem shall be dealt with in the next chapter.

Theorem 9. (Generalized Kaplansky Density Theorem). Let A be a C^* -algebra, N its left ideal and A_N the representative algebra of A in A/N by the regular representation. Then A_N^{α} is a C^* -algebra on A/N, and

- (1). The Q*-closure and the urtra-Q*-closure of a C*-sub-algebra of A_{N}^{q} are an identical C*-algebra.
- (2). Let R be a C^* -subalgebra of A_N^q and R^q be its Q^* -closure. Then the urtra- Q^* -closure of the unit ball of R is the unit ball of R^q .

To prove the theorem, we need to prepare four sub-lemmas. The totality S(N) of states on A which vanish on N is a regularly convex subset of the dual space \overline{A} of A, and we have $|A/N| = \sup_{p \in S(N)} ||Ap||_p$. If s is a state in S(N) and t is a state in $L^2(s)$, then t belongs to S(N) (cf. Lemma 4.1, 4.2 in Chapter 2), and the left ideal $N(s) = (A \in A: s(A^*A) = 0)$ contains the ideal N.

The dual space of A/N is the totality $\Phi(N)$ of functionals \in A which vanish in N. We define the product of $f \in \Phi(N)$ and $x \in$ A/N as follows: Let x = A/N (where $A \in$ A). Then xf = Af. xf is uniquely determined because x = A/N = B/N imply Af = Bf. If X is a bounded operator in A/N and if $A \in$ A, then we define X(A) = X(A/N).

Sub-lemma 1. Let X be an operator in the unit ball of A_N^q and p a state in S(N). Then an operator X_p in $L^2(p)$ is determined in such a way that $X_pAp = X(A)p$ ($A \in A$) and belongs to A_p'' .

Proof. First we assume that p is a finite dimensional state in S(N). $A_{p'}$ is a finite dimensional algebra. By Lemma 4.2 in Chapter 1 E_{p} is a finite dimensional projection, and p is a linear sum of finite number of pure states in S(N).

By Proposition 2.1 in Chapter 2, E_p is a regular projection in A_p'' and $A/N(p) \leftrightarrow Ap$ is an isomorphism between A/N(p) and $L^2(p)$. Hence, given any $x \in L^2(p)$, we can choose an $A \in A$ with x = Ap.

By the assumption, X belongs to the unit ball of A_N^q . Then $|X(A)| \le |A/N|$. Since A_N^q is contained in the strong closure of the regular representation A_N of A, $A \in N(p)$ implies $|X(A)| \in N(p)/N$ and $|X(A)/N(p)| \le |A/N(p)|$. A bounded operator X_p in A/N(p) is so chosen as $X_p(A/N(p)) = X(A)/N(p)$, and its operator norm is ≤ 1 . By the isomorphism between $L^2(p)$ and A/N(p), X_p is regarded as a bounded operator in $L^2(p)$ with $X(A)p = X_pAp$ (for every $A \in A$) and belongs to A_p . In fact, given any A_1p , A_2p , ..., $A_np \in L^2(p)$ and any $\varepsilon > 0$, we can choose a $B \in A$ with $|(X(A_i) - B(A_i))/N| < \varepsilon$. Then $|(X_p - B)A_ip|_p < \varepsilon$, and X_p belongs to the strong closure of A_p .

We shall show that the norm of X_p , as an element of A_p'' , is ≤ 1 .

The state p is extended to that of A_p'' with $p(A) = (Ap, p)_p$ (for $A \subseteq A_p''$). Consider a left ideal $N''(p) = (X \subseteq A_p''): p(X^*X) = 0$) of the algebra A_p'' . The algebra A_p'' is faithfully represented on an operator algebra on $A_p''/N''(p)$ by the regular representation. The operator norm of $A \subseteq A_p''$ and the norm of X_p in $L^2(p)$ are the norms as operators in $A_p''/N''(p)$. Since $A_p''/N''(p) = A_p/N(p)$ holds, the norm of X_p , as an element of A_p'' , is that of X_p as an operator in $A_p/N(p)$ and satisfies $|X_p| \leq 1$.

We shall now define the operator $X_p \in A_p$ " for every state p in S(N). If p is of finite dimensional, then, as we already observed, X_p belongs to A_p " and $|X_p| \leq 1$ holds. Notice that S(N) contains finite dimensional states everywhere dense in it. Then we obtain

$$p(X(A)^*X(A)) \le p(A^*A)$$

and

$$X(A)p(B^*) = (X(A)p, Bp)_p = (Ap, X^*(B)p)_p = X^*(B)p(A)$$

for every $p \in \mathcal{S}(\mathbb{N})$ and $A, B \in \mathbb{A}$. Now X_p is an operator in $L^2(p)$ such that $|X_p| \leq 1$ and $X_p(Ap) = X(A)p$ for $A \in \mathbb{A}$. Then it is sufficient to show the relation $X_p \in \mathbb{A}_p''$. Consider a state p in $\mathcal{S}(\mathbb{N})$ and a definite Hermitian operator $K \in \mathbb{A}_p'$ with Kp(I) = 1. Then q = Kp belongs to $\mathcal{S}(\mathbb{N})$ and

$$(X_p(KAp), Bp)_p = (KAp, X^*(B)p)_p$$

= $(Aq, X^*(B)q)_q = (X(A)q, Bq)_q$
= $(KX_p(Ap), Bp)_p$.

Hence $X_pK = KX_p$ and $X_p \in \mathbf{A}_p$ ".

Sub-lemma 2. A_N^q is a C*-algebra in A/N.

Proof. Consider a product space $\mathfrak{H} = \sum_{p \in \mathcal{S}(N)} L^2(p)$. Each $X \in \mathbf{A_N}^q$ is represented as an operator $\Sigma \oplus X_p$ on \mathfrak{H} , where $|X| = \sup_{p \in \mathcal{S}(N)} |X_p|$ is the operator norm of $\Sigma \oplus X_p$ and the representation $X \to \Sigma \oplus X_p$ is isometric. Then $\mathbf{A_N}^q$ is a C^* -algebra.

Sub-lemma 3. Let R be a C^* -sub-algebra of A_N^q , R^q its Q^* -closure and X an Hermitian element in the unit ball of R^q . Then X belongs to the Q^* -closure of the unit ball of R^q .

Proof. R° is a C^* -algebra, and the smallest C^* -subalgebra of R which contains X and I is abelian. Then $Y = X(I + (I - X^2)^{\frac{1}{2}})^{-1}$ is an Hermitian element in the unit ball of R°, and $X = 2Y(I + Y^2)^{-1}$ holds. If B is an Hermitian element of R, $C = 2B(I + B^2)^{-1}$ belongs to the unit ball of R and we have

$$X-C = 2C(B-Y)X + 2(I+B^2)^{-1}(Y-B)(I+Y^2)^{-1}$$

Notice that $|C| \le 1$ and $|(I+B^2)^{-1}| \le 1$. Then when B converges to Y in the Q^* -topology, C converges to X and X belongs to the Q^* -closure of the unit ball of \mathbb{R}^q .

Sub-lemma 4. Consider a C^* -sub algebra R of A_N^q , and for each state p in S(N) let R_p denote the representative algebra $(X_p: X \in R)$ of R in $L^2(p)$. If X is an element of A_N^q with $|X| \leq 1$ and each X_p belongs to the strong closure $R_p^{"}$ of R_p , then X belongs to the urtra- Q^* -closure of the unit ball of R.

Proof. The totality $\mathbb C$ of uniformly convergent suquences in A/N is a Banach space, where the norm of $x = \{x_i\} \in \mathbb C$ is $|x| = \sup |x_i|$. If $x = \{x_n\}$ is an element of $\mathbb C$, we put $x_\infty = \lim x_n$. The dual Banach space $\mathbb C$ of $\mathbb C$ is determined as follows: Consider a sequence $\{f_n\}(n = \infty, 1, 2, \cdots)$ of elements in the dual space $\Phi(N)$ of A/N with $\sum |f_i| < \infty$. Then $f(x) = \sum f_i(x_i) + f_\infty(x_\infty)$ is a bounded linear functional on $\mathbb C$. $\mathbb C$ is the totality of these functionals, and the norm of $f \in \mathbb C$ is $|f| = |f_\infty| + \sum |f_i|$.

Consider the product space $\mathbb{C}^2 = \mathbb{C} \times \mathbb{C}$ and its dual space $\overline{\mathbb{C}}^2 = \overline{\mathbb{C}} \times \overline{\mathbb{C}}$, where the norm of $(x, y) \in \mathbb{C}^2$ is max (|x|, |y|) and the norm of $(f, g) \in \overline{\mathbb{C}}^2$ is |f| + |g|. Consider moreover the unit ball $U(\mathbb{R})$ of \mathbb{R} and a fixed

element $x = \{x_i\}$ of \mathbb{C} . Then $(Xx, X^*x)(Xx = \{Xx_i\}, X^*x = \{X^*x_i\})$ is an element of \mathbb{C}^2 , and $\mathfrak{W} = (Bx, B^*x) : B \in \mathfrak{U}(\mathbb{R})$ is a convex sub-set of \mathbb{C}^2 .

Now the sub-lemma is reduced to prove that (Xx, X^*x) belongs to the uniform closure, or rather, the weak closure of $\mathfrak B$ in $\mathbb C^2$. Then it is sufficient to show that, for any given (f,g) (where $f=\{f_i\}, g=\{g_i\}(i=\infty, 1,2,\cdots)$) in $\overline{\mathbb C}^2$ and for any given positive number ε , a $B\in \mathfrak U(R)$ can be so chosen that $|f(Xx-Bx)|<\varepsilon$ and $|g(X^*x-B^*x)|<\varepsilon$.

The absolute variations $p_i = f_i^{*v}$ and $q_i = g_i^{*v}$ of f_i^* and g_i^* belong to $\Phi(N)$ and satisfy:

$$|f| = \sum_{1 \le i \le \infty} |f_i| = \sum_{1 \le i \le \infty} p_i(I) < \infty, \quad |g| = \sum_{1 \le i \le \infty} |g_i| = \sum_{1 \le i \le \infty} q_i(I) < \infty.$$

Then

$$p = \sum_{1 \le i \le \infty} \alpha(p_i + q_i)$$
, (where $\alpha^{-1} = |f| + |g|$)

belongs to S(N). Choose definite self-adjoint operators K_i and L_i in A_p with $p_i = K_i^2 p$ and $q_i = L_i^2 p$, and choose partially isometric operators U_i and V_i in A_p such that

$$f_i^* = U_i p_i = U_i K_i^2 p, \quad g_i^* = V_i q_i = V_i L_i^2 p$$

respectively. Then

$$\sum_{1 \le i \le \infty} (\|K_i p\|_p^2 + \|L_i p\|_p^2) = \sum_{1 \le i \le \infty} (p_i(I) + q_i(I)) = |f| + |g| < \infty,$$

and for every $B \in \mathfrak{U}(R)$ we have

$$|f(Xx - Bx)| \leq \sum_{1 \leq i \leq \infty} |((X_p - B_p)A_i p, U_i K_i p)_p|$$

$$\leq (\leq \|K_i p\|_p^2)^{\frac{1}{2}} (\sum_{1 \leq i \leq \infty} \|(X_p - B_p)A_i K_i p\|_p^2)^{\frac{1}{2}}$$

$$|g(X^*x - B^*x)| \leq (\sum_{1 \leq i \leq \infty} \|L_i p\|_p^2)^{\frac{1}{2}} (\sum_{1 \leq i \leq \infty} \|(X_p^* - B_p^*)A_i L_i p\|_p^2)^{\frac{1}{2}}.$$

By the assumption of the sub-lemma, X_p belongs to R_p " and consequently to the urtra-strong closure of the unit ball of R_p . If we choose a suitable $B \in \mathfrak{U}(R)$, |f(Xx - Bx)| and $|g(X^*x - B^*x)|$ are smaller than the given $\varepsilon > 0$, and (Xx, X^*x) belongs to the uniform closureof \mathfrak{W} .

Proof of Theorem 8. Let \mathfrak{U}_1 denote the urtra- Q^* -closure of $\mathfrak{U}(R)$, \mathfrak{U}_2 the totality of $X \in A_N^q$ with $|X| \leq 1$ and $X_p \in R_p''$, \mathfrak{U}_3 the unit ball of the Q^* -closure R^q of R, \mathfrak{U}_4 the Q^* -closure of $\mathfrak{U}(R)$ and \mathfrak{U}_5 the unit ball of the urtra Q^* -closure of R. \mathfrak{U}_3 , \mathfrak{U}_4 and \mathfrak{U}_5 contain \mathfrak{U}_1 and are contained in \mathfrak{U}_2 respectively. By Sub-lemma 2, \mathfrak{U}_2 is contained in \mathfrak{U}_1 . Then they are identical with each other. Q. E. D.

We shall now observe some examples of Q^* -topologies.

Example (1). Let A be a C^* -algebra and N the 0-ideal. Then the Q^* -topology divided by N is the uniform topology of A in the ordinary sense.

- (2). Let N be a maximal left ideal of A. Then the quotient space A/N is the Hilbert space $L^2(p)$, where p is a suitable pure state of A. The Q^* -topology divided by N is the self-adjoint strong topology in the total operator algebra on $L^2(p)$.
- (3). Let A be a C^* -algebra in a Hilbert space \mathfrak{D} , B the total operator algebra on \mathfrak{D} , E a certain one-dimensional projection in \mathfrak{D} and N(E) a left ideal $N(E) = (A \subseteq B : AE = 0)$ of B. The quotient space B/N(E) is the Hilbert space \mathfrak{D} and the Q^* -closure of A is the W^* -closure of A in the ordinary sense.
- (4). Consider a C^* -algebra A in a Hilbert space \mathfrak{F} . Let R be a C^* -algebra which contains A and a projection E and N(E) be a left ideal N(E) = $(A \subseteq R : AE = 0)$ of R. The Algebra B^q is regarded as a C^* -algebra in the space \mathfrak{F} (See the next sub-section (c)) and the Q^* -topology of B^q is weaker than the uniform topology but stronger than the self-adjoint strong topology. Let A_o and A'' denote the uniform and the strong closures of the algebra A. Then $A_o \subseteq A^q \subseteq A''$.

Roughly speaking, these examples show that a Q^* -topology has an intermediate strength between the uniform topology and the self-adjoint strong topology.

(c). Quotient space of a C*-algebra devided by a projection.

Consider a C^* -algebra A in a Hilbert space \mathfrak{D} , a projection E in \mathfrak{D} and the uniform closure A/E of the set $(AE:A \subseteq A)$. A/E is said to be the quotient space of A divided by E.

A is represented in an operator algebra in A/E. The represented operator of $A \subseteq A$ in A/E: $X \subseteq A/E \to AX \subseteq A/E$ is said to be the regular representation of A. The represented operator algebra of A in A/E is a C^* -algebra on A/E.

Lemma 1. 1. Consider a C^* -algebra A in a Hilbert space \S and a projection E in \S . Let \S , denote the subspace of \S generated by E. (Namely, \S , is the smallest unifomly closed linear set which contains the set $(AEx: A \subseteq A, x \subseteq \S)$). Then the representative algebra of A in A/E is the induced algebra A_E of A in \S .

Consider the totality B(A/E) of bounded operators X in the space \mathcal{D}_o such that $B \in A/E$ implies XB, $X^*B \in A/E$. B(A/E) is a C^* -algebra and contains the regular representation A_E of A in A/E. Now the Q^* -topology is defined in B(A/E).

A Q^* -neighbourhood of an $A \in B(A/E)$ is a set

$$U(A: X_1, X_2, \cdots X_n; \varepsilon)$$

$$= (B \in B(A/E): \max(|(A-B)X_i|, |(A^*-B^*)X_i|) < \varepsilon),$$

where X_1 , X_2 , \cdots X_n are a finite number of elements in A/E and ε is a positive number. A Hausdorff topology of B(A/E) whose open base is the totality of Q^* -neighbourhoods of elements of A/E is said to be the Q^* -topology of B(A/E) divided by E.

An urtra- Q^* -neighbourhood of an $A \in B(A/E)$ is a set

$$U(A: \{X_n\}, \varepsilon) = (B \in B(A/E): \sup_{i} (|(A-B)X_i|, |(A^*-B^*)X_i| < \varepsilon),$$

where $\{X_n\}$ is a uniformly convergent sequence in A/E and ε is a positive number. A Hausdorff topology of B(A/E) whose open base is the totality of urtra- Q^* -neighbourhoods of elements of B(A/E) is said to be the urtra- Q^* -topology of B(A/E) divided by E.

Lemma 1. 2. Let A be a C*-algebra in a Hilbert space \S , E a projection in \S and $A \cup E$ the smallest C*-algebra which contains A and E. Consider a left ideal $N(E) = (A \in A \cup E : AE = 0)$ of $A \cup E$, the algebra B = B(A/E) and a left ideal $N_B(E) = (A \in B \cup E : AE = 0)$ of $B \cup E$. Then

$$(A \cup E)/E = (B \cup E)/E = (A \cup E)/N(E) = (B \cup E)/N_{R}(E).$$

Proof. $B \cup E$ is the smallest uniformly closed linear set which contains those operators $Y = B_1 E B_2 E \cdots B_{n-1} E B_n$ with $B_i \in B$. $B \in B$ implies $BE \in A/E$, and $Y \in B \cup E$ implies $YE \in (A \cup E)/E$. Then $(B \cup E)/E = (A \cup E)/E$. On the other hand $A \cup E$ contains the projection E. Then

$$|A/N(E)| = \inf_{B \in B(E)} |A-B| = |AE|$$
 (for every $A \in A \cup E$).

Identifying A/N(E) with AE, we have $(A \cup E)/N(E) = (A \cup E)/E$ and similarly $(B \cup E)/N_B(E) = (B \cup E)/E$. Q. E. D.

The algebra B = B(A/E) has two kinds of underlying Banach spaces. One is B/E = A/E, another is $(B \cup E)/N_B(E) = (A \cup E)/E$ and then two Q^* -topologies are defined in B. The Q^* -topology of B as an operator algebra on A/E is said to be an $E-Q^*$ -topology, and the Q^* -topology of B as an operator algebra on $(A \cup E)/E = (B \cup E)/N_B(E)$ is said to be an $N_B(E)-Q^*$ -topology.

Proposition 1.2.(a). Consider a C^* -algebra in a Hilbert space \mathcal{D} and a projection E in \mathcal{D} . Then the algebra B = B(A/E) is $N_B(E)$ - Q^* -closed as an operator algebra in $(A \cup E)/E = (B \cup E)/N_B(E)$.

(b). If R is a *-sub-algebra of B, then E-Q*-closure of R is identical with the $N_R(E)$ -Q*-closure of R.

Proof. (a). It is sufficient to show that, if A is an operator in the $N_B(E)$ - Q^* -closure of B with $|A| \leq 1$, then $A \in B$.

If A is such an operator, A is an operator in the space $(A \cup E)/E$ and belongs to the $N_B(E)$ -Q-*closure of the unit ball U(B) of B. Then, given any $X_1, X_2, \dots X_n \in A \cup E$ and any $\varepsilon > 0$, an operator $B \in U(B)$ can be so chosen as $|(A-B)X_iE| < \varepsilon$.

U(B) is a set of bounded operators in the Hilbert space \mathfrak{D} . Its weak closure is weakly compact and contains A. Then A is a bounded operator in \mathfrak{D} and belongs to B(A/E) = B.

(b). $N_B(E)$ - Q^* -topology (the Q^* -topology of B as an operator algebra in $(A \cup E)/E$) is clearly stronger than the E- Q^* -topology of B. Then, to prove (b), it is sufficient to show that, if K is an Hermitian element in the unit ball of the E- Q^* -closure Q of the given C^* -sub-algebra R, then it belongs to the $N_B(E)$ - Q^* -closure of R.

Let K be such an Hermitian element in the unit ball of Q. Q^* is a C^* -algebra, and an Hermitian element T in Q is so chosen that $K = 2T(I + T^2)^{-1}$. Then $T = K(I - (I - K^2)^{\frac{1}{2}})^{-1}$ belongs to the unit ball of Q). Consider a filter of Hermitian elements A in R which converges to T in the $E - Q^*$ -topology. Then $B = 2A(I + A^2)^{-1}$ converges to K because $|(I + A^2)^{-1}| \le 1$, $|B| \le 1$ and

$$K-B = 2(I+A^2)^{-1}(T-A)(I+T^2) + 2B(A-T)K.$$

Since $|B| \le 1$, K belongs to the $E-Q^*$ -closure of the unit ball of R. Let $U(K: X_1, X_2, \cdots X_n, \varepsilon)$ be any $N_B(E)-Q^*$ -neighbourhood of K, where X_i are elements of $(A \cup E)/E$ and ε is a positive number. For each $X_i \in (A \cup E)/E$, a Y_i with $|X_i - Y_i| < \varepsilon/3$ can be so chosen that Y_i is a sum of finite number of operators $B_1EB_2E\cdots B_{n-1}EB_nE$ with $B_iE \in A/E$. K belongs to the $E-Q^*$ -closure of the unit ball U(R) of R, and an operator B in U(R) can be so chosen that $|(B-K)Y_i| < \varepsilon/3(1 \le i \le n)$. Then

$$|(K-B)X_i| \leq (|K|+|B|)|X_i-Y_i|+|(K-B)Y_i| < \varepsilon$$
 and $B \in U(K; X_1, X_2, \dots X_n, \varepsilon)$. Hence K belongs to the $N_B(E)$ - Q^* -closure of R . Q , E , D .

By Proposition 1.2, the Kaplansky Density Theorem is preserved in any subalgebra of B(A/E).

Theorem 10. Consider a C^* -algebra A in a Hilbert space \mathfrak{D} , a projection E in \mathfrak{D} , and a C^* -sub-algebra R of B(A/E). Then the urtra E- Q^* -closure of the unit ball of R is the unit ball of the E- Q^* -closure R^q of R.

The unit ball of the E-Q*-closure ($N_B(E)$ -Q*-closure) of R is the urtra-E-Q*-closure of the unit ball of R.

The urtra-E-Q*-topology is weaker than the urtra- $N_B(E)$ -Q*-topology

but stronger than the E-Q*-topology. Then the theorem follows.

§ 2. Abelian representations of C*-algebras.

Consider a C^* -algebra A in a Hilbert space \mathfrak{D} . A projection E is said abelian¹⁾ relative to A if the reduced algebra EAE is abelian.

Definition 2.1. A representation of A in a Hilbert space \mathfrak{D} with a fixed generative abelian projection E is said an abelian representation of A.

If $A \to A_{\lambda}$ is an abelian representation of A whose representative algebra is A_{λ} and the related abelian projection is E, then we call it an abelian representation $(A_{\lambda}, E): A \to A_{\lambda}$.

A compoundly cyclic representation of a C^* -algebra is an abelian representation (cf. Lemma 4.9 in Chapter 1), and there is a one-one correspondence between the totality of distributions in the total state space $\mathcal S$ and the totality of compoundly cyclic representations up to the unitary equivalence. We shall assert that there is a one-one correspondence between the totality of compact subset of $\mathcal S$ and the totality of abelian representations up to the algebraic equivalence².

(a). Continuous vector fields in a compact set of states.

We use the notations and terms in Chapter 2.

Definition 2. 2. A vector field x in a compact set \mathcal{W} of states on A is said to be *continuous* on \mathcal{W} if it is a weakly continuous A-valued function on \mathcal{W} such that its norm function $\|x_{\omega}\|_{\omega}$ of the variable ω is bounded and continuous in \mathcal{W} .

If x is a vector field in \mathcal{W} , we define its norm by $\|x\|_{\mathcal{W}} = \sup_{\omega \in \mathcal{W}} \|x_{\omega}\|_{\omega}$. Notice that A, C, and K are C^* -algebras of operator fields in \mathcal{S} . Then A \mathcal{W} , C \mathcal{W} and K \mathcal{W} denote the restrictions of those algebras A, C and K in the space \mathcal{W} respectively.

Theorem 11. Let W be a compact set of states on A. If x and y are continuous vector fields, then x + y is continuous. The totality \mathcal{F}_{Y} of continuous vector fields on W is a Banach space relative to the norm $\|x\|_{W}$. It contains the set $(K_{\omega}: K \subseteq K)$ uniformly dense everywhere.

Proof. Consider the smallest uniformly closed linear set \mathfrak{C} of vector fields on \mathfrak{W} which contains $(fA\omega: f \in \mathbb{C}, A \in \mathbb{A})$ relative to the norm $\|x\|_{\mathcal{W}}$. Then \mathfrak{C} contains $(K\omega: K \in \mathbb{K})$ everywhere dense in it, and every field in \mathfrak{C} is continuous. Hence it is sufficient to observe that \mathfrak{C} contains $\mathfrak{F}_{\mathcal{W}}$.

¹⁾ Def. 2.3 in Chapter 2.

²⁾ Def. 2.3 in this Chapter,

Consider a fixed continuous vector field x in \mathcal{W} , a positive number ε and a distribution μ in the set \mathcal{W} . The coordinate field ω is cyclic in $L^2(\mu)$ relative to the algebra K (cf. Proosition 1.2 in Chapter 2), and $y = \sum f_i A_i \omega$ (, where $f_i \in \mathbb{C}$, $A_i \in A$) can be so chosen that

$$\|x-y\|_{\mu}^{2}=\int \|x_{\omega}-y_{\omega}\|_{\omega}^{2} d\mu(\omega)<\varepsilon^{2}.$$

A numerical function of the variable ω :

$$||x_{\omega} - y_{\omega}||_{\omega}^{2} = ||x_{\omega}||_{\omega}^{2} - 2 \operatorname{\Re}e(\sum f_{i}(\omega)x_{\omega}(A_{i}^{*})) + \sum_{i} \sum_{j} f_{i}(\omega)f_{j}(\omega)\omega(A_{j}^{*}A_{i})$$

is a continuous function in \mathcal{W} . The set $\mathfrak{B} = (\|x_{\omega} - y_{\omega}\|_{\omega}^2 : y \in \mathfrak{F})$ is a subset of the totality $C_{\mathcal{W}}$ of continuous functions on \mathcal{W} . The weak closure of \mathfrak{B} and consequently the uniform convex span of \mathfrak{B} in $C_{\mathcal{W}}$ contain the function 0 because the dual space of $C_{\mathcal{W}}$ is linearly spanned by distributions in \mathcal{W} .

Given any positive number ε , we can choose $y_1, y_2, \dots y_n \in \mathfrak{F}$ and numbers $a_1, a_2, \dots, a_n \ge 0$ with

$$\sum a_i = 1$$
 and $\sum a_i \|x_\omega - y_{i\omega}\|_{\omega}^2 < \varepsilon^2$.

Using the Schwarz's inequality, we have

$$||x_{\omega} - (\sum a_{i} y_{i\omega})||_{\omega}^{2} \leq (\sum a_{i} ||x_{\omega} - y_{i\omega}||_{\omega})^{2}$$

$$\leq (\sum (a_{i}^{\frac{1}{2}})^{2}) (\sum a_{i}^{\frac{1}{2}} ||x_{\omega} - y_{i\omega}||)^{2})$$

$$\leq \sum a_{i} ||x - y_{i}||^{2} < \varepsilon^{2}.$$

Then x belongs to \mathfrak{C} , and we have $\mathfrak{C} = \mathfrak{F}_{qy}$.

Consider a compact set $\mathcal W$ of states on A, a distribution μ on $\mathcal W$ and a summable and regularly weakly measurable field t^* on $\mathcal W$. t^* satisfies $\int \|t^*_{\omega}\|_{\omega} d\mu(\omega) < \infty$ and is weakly continuous removing an open set of any small mass from $\mathcal W$. Then

$$t(x) = \int (x_{\omega}, t^*_{\omega}) d\mu(\omega) = (x, t^*)_{\mu}$$

is a bounded linear functional on $\mathcal{F}w$. The functional t is denoted by

$$t=\int t_{\omega}\,d\mu(\omega).$$

Theorem 12. Consider a compact set W of states on A and the Banach space \mathfrak{F}_{W} of vector fields on W. Then every bounded linear functional t in \mathfrak{F}_{W} is a weak integral

$$t=\int t_{\omega}\,d\mu(\omega),$$

where μ is a distribution in W, t^* is a summable and regularly and weakly measurable field in W with $t^*_{\omega} \neq 0 (\omega \in W)$ and

$$|t|_{\mathcal{G}\mathcal{V}} = \int ||t^*_{\omega}||_{\omega} \ d\mu \ (\omega)$$

is the functional-norm of t.

The distribution μ and the field t^* are essentially uniquely determined up to those equivalent weak integral representations

$$t=\int s_{\omega}d\nu(\omega),$$

where $d\mu(\omega) = \varphi(\omega)d\nu(\omega)$, $s_{\omega} = \varphi(\omega)t_{\omega}$ and $\varphi > 0$.

Proof. Consider a functional f on \mathfrak{F}_{W} such that there is at least a distribution μ in W with

$$|f(x)| \leq \int ||x_{\omega}||_{\omega} d\mu(\omega) \quad (x \in \mathfrak{F}_{q,p}).$$

The totality $\mathfrak E$ of such functionals f on $\mathfrak F_{\mathfrak W}$ consists of a bounded regularly convex subset of the unit ball $\mathfrak U$ of the dual space of $\mathfrak F_{\mathfrak W}$. Consider a state $\lambda \in \mathcal W$, a functional $y \in L^2(\lambda)$ with $\|y\|_{\lambda} \leq 1$, and the functional y^* in $\mathfrak F_{\mathfrak W}$ with $y^*(x) = (x_{\lambda}, y)_{\lambda}(x \in \mathfrak F_{\mathfrak W})$. Then $\mathfrak U$ is the smallest regularly convex set in the dual space of $\mathfrak F_{\mathfrak W}$ which contains all those functionals $(y^* : \|y\|_{\lambda} = 1, \ \lambda \in \mathcal W)$. Let $\hat{\sigma}_{\lambda}$ be the point mass distribution on $\mathcal W$ which distributes its total mass 1 at $\lambda \in \mathcal W$. Then we have

$$|y^*(x)| \leq \int ||x_{\omega}||_{\omega} d\delta_{\lambda}(\omega),$$

and y^* belongs to \mathfrak{E} . Now we have $\mathfrak{U} \subseteq \mathfrak{E}$, and every functional f in the unit ball \mathfrak{U} of \mathfrak{F}_{W} has at least one distribution μ in \mathfrak{W} such that

$$|t(x)| \le \int ||x_{\omega}||_{\omega} d\mu(\omega) \le (\int ||x_{\omega}||_{\omega}^{2} d\mu(\omega))^{\frac{1}{2}}.$$

We consider a functional t on $\mathcal{F}_{\mathcal{W}}$ with the functional norm 1 and a distribution μ on \mathcal{W} which satisfies the above inequality. Then a vector field t^* in $L^2(\mu)$ can be so chosen that

$$t(x) = (x, t^*)_{\mu} = \int (x_{\omega}, t^*_{\omega})_{\omega} d\mu(\omega).$$

t* is regularly and weakly measurable, and

$$|t(fx)| = |\int f(\omega)(x_{\omega}, t^*_{\omega})_{\omega} d\mu(\omega)|$$

$$\leq \int |f(\omega)| ||x_{\omega}||_{\omega} d\mu(\omega) \quad \text{(for every } f \in \mathbb{C}\text{)}.$$

Then we have $|(x_{\omega}, t^*_{\omega})_{\omega}| \leq ||x_{\omega}||_{\omega} (x \in \mathcal{F}W)$ and $||t^*_{\omega}||_{\omega} \leq 1$ almost everywhere.

On the other hand, the functional norm of f is 1, and

$$|t(x)| = |\int (x_{\omega}, t^*_{\omega})_{\omega} d\mu(\omega)|$$

$$\leq \int ||x_{\omega}||_{\omega} ||t^*_{\omega}||_{\omega} d\mu(\omega) \leq ||x||_{\mathcal{W}} \int ||t^*_{\omega}||_{\omega} d\mu(\omega).$$

Then we have $\int \|t^*_{\omega}\|_{\omega} d\mu(\omega) \ge 1$ and $\|t^*_{\omega}\|_{\omega} = 1$ almost everywhere.

The uniqueness of the integral representation is shown as follows.

Let μ be a distrinution in \mathcal{W} and t^*_{ω} be a summable and regularly and weakly measurable vector field in \mathcal{W} such that $t(x) = \int (x_{\omega}, t^*_{\omega})_{\omega} d\mu(\omega)$ vanishes on $\mathfrak{F}_{\mathcal{W}}$. We can assume without loss of generality that $||t^*_{\omega}||_{\omega}$ is a constant in the carrier of μ . Then t^* belongs to $L^2(\mu)$ and

$$(K\omega, t^*)_{\mu} = \int (K\omega, t^*_{\omega})_{\omega} d\mu(\omega) = 0 \text{ for every } K \subseteq K.$$

By Proposition 1.3 in Chapter 2, t^* vanishes almost everywhere. Hence if we assume $||t^*_{\omega}||_{\omega} = \text{const}$ almost everywhere, the distribution μ and the field t^* are essentially uniquely determined.

Proposition 2. 1. Consider a compact set W of compact states and a convex subset X of Y_W . A continuous field x belongs to the uniform closure of X if and only if x belongs to each uniform closure of X in $L^2(\mu)$ such that μ is a distribution in W whenever we regard X as a subset of $L^2(\mu)$.

Proof. Assume that x does not belong to the uniform closure of \mathfrak{X} . Then a functional t in \mathfrak{F}_{qy} and a positive number δ can be so chosen as

$$t(x) \ge \delta + t(y)$$
 (for every $y \in \mathfrak{X}$).

t is a weak integral $t(x) = \int (x_{\omega}, t^*_{\omega})_{\omega} d\mu(\omega)$, where t^* belongs to $L^2(\mu)$ and satisfies $||t^*_{\omega}||_{\omega} = \text{const.}$ almost everywhere. $(x, t^*)_{\mu} \geq \delta + (y, t^*)_{\mu}$ implies that x does not belong to the uniform closure of $\mathfrak X$ in the Hilbert space $L^2(\mu)$. Thus the proposition follows.

Lemma 2. 1. Let U and W be compact spaces of states such that $U \subseteq W$, \mathfrak{M} a closed linear subspace of \mathfrak{F}_{W} such that $x \in \mathfrak{M}$ and $f \in C$ imply $fx \in \mathfrak{M}$ and \mathfrak{M}_{QJ} the totality of restrictions of fields in \mathfrak{M} as being in U. Then \mathfrak{M}_{QJ} is a closed subspace of \mathfrak{F}_{QJ} .

¹⁾ Def. 1.2, Chap. 2.

Proof. The set $\mathfrak{N} = (x \in \mathfrak{M} : x_{\omega} = 0 \text{ for } \omega \in \mathcal{U})$ is a closed linear subspace of \mathfrak{M} , and we have

$$||x||_{\mathcal{U}} = ||x/\mathfrak{N}||_{\mathcal{W}} = \inf_{y \in \mathfrak{N}} ||x - y||_{\mathcal{W}}.$$

In fact, if x is a field in \mathfrak{M} and f is a function \mathfrak{W} such that

$$f(\omega) = 0 \text{ if } \|x_{\omega}\|_{\omega} \le \|x\| U$$

$$f(\omega) = 1 - \|x\| U / \|x_{\omega}\|_{\omega} \text{ for } \|x_{\omega}\|_{\omega} > \|x\| U.$$

then $fx \in \Re$, $1 \ge f(\omega) \ge 0$, and

$$||x/\Re||w \le ||x - fx||w \le ||x||v$$
.

Hence

$$||x/\Re||_{\mathcal{W}} = ||x||_{\mathcal{V}}.$$

 \mathfrak{MV} is therefore isometric and isomorphic to the quotient Banach space $\mathfrak{M/N}$. Then it is closed in \mathfrak{FV} . D. E. D.

Now the next Lebesgue Extension Theorem of continuous fields follows.

Theorem 13. Let U and W be compact sets of states on A with $U \subseteq W$. Then every continuous field f in U is extended to a continuous field in W with $||f||_{U} = ||f||_{W}$.

For each $\omega \in \mathcal{W}$ and each $x_0 \in L^2(\omega)$ there exists a continuous field x in \mathcal{W} with $x_{\omega} = x_0$ and $||x|| ||w|| = ||x_0||_{\omega}$.

The reduced set $(\mathfrak{F}_{qy})_{qJ}$ of \mathfrak{F}_{qy} in U contains $(X\omega:X\subseteq K)$ and is closed in \mathfrak{F}_{qJ} . Then we have $\mathfrak{F}_{qJ}=(\mathfrak{F}_{qJ})_{qy}$.

Proposition 2.2. Let W be a compact set of states and \mathfrak{M} be a closed linear set of continuous fields on W such that $x \in \mathfrak{M}$ and $f \in \mathfrak{C}$ imply $fx \in \mathfrak{M}$. Then \mathfrak{M} contains every continuous field x in W such that $x_{\omega} \in \mathfrak{M}_{\omega} = (y_{\omega}: y \in \mathfrak{M})$ for each $\omega \in W$.

Proof. Let x be a continuous field in \mathcal{W} with $x_{\omega} \in \mathfrak{M}_{\omega}(\omega \in \mathcal{W})$. To see $x \in \mathfrak{M}$, it is sufficient to show that x belongs to the uniform closure of \mathfrak{M} in the space $L_2(\mu)$ whenever μ is a distribution in \mathcal{W} . Let μ be any distribution in \mathcal{W} and E the projection in $L^2(\mu)$ whose range is the uniform closure of \mathfrak{M} in $L^2(\mu)$. Then z = x - Ex is orthogonal to the space \mathfrak{M} and $z_{\omega} = x_{\omega} - (Ex)_{\omega}$ belongs to \mathfrak{M}_{ω} almost everywhere (\mathfrak{M}_{ω} is closed). Now for every $y \in \mathfrak{M}$ and every $f \in \mathbb{C}$ we have $fy \in \mathfrak{M}$ and

$$(fy, z)_{\mu} = \int f(\omega)(y_{\omega}, z_{\omega})_{\omega} d\mu(\omega) = 0$$

for each fixed $z \in \mathfrak{M}$. Then $(y_{\omega}, z_{\omega})_{\omega}$ vanishes almost everywhere. Since z is weakly continuous removing an open set of any small open mass from W and z_{ω} is orthogonal to \mathfrak{M}_{ω} almost everywhere, we have z = 0. Hence

x belongs to the uniform closure of $\mathfrak M$ in $L^2(\mu)$.

(b). Abelian representation of C^* -algebra and an extension of the Gelfand-Naimark Theorem.

Definition 2.3. Consider a compact set \mathcal{W} of states on A. An operator field X on \mathcal{W} (Definition 1.1 in Chapter 2) is said to be *continuous* if X and its adjoint field X^* are bounded operators in the space $\mathcal{F}_{\mathcal{W}}$.

The reduced algebras $A_{\mathcal{W}}$, $C_{\mathcal{W}}$ and $K_{\mathcal{W}}$ of A, C and K in the space \mathcal{W} are C^* -algebras of continuous operator fields.

Lemma 2.2. The totality of continuous operator fields in \mathscr{W} is a C^* -algebra in $\mathscr{G}_{\mathcal{Y}}$, and the norm of a continuous operator field X is $|X| \cdot w = \sup_{\omega \in \mathscr{Y}} |X_{\omega}|_{\omega}$.

On the other hand, given any $\omega \in \mathcal{W}$ and any $x_0 \in L^2(\omega)$ with $||x_0||_{\omega} = 1$, a continuous field x in \mathcal{W} can be so chosen that $||x||_{\mathcal{W}} = ||x_0||_{\omega} = 1$ and $x_{\omega} = x_0$. Then $k \geq ||Xx||_{\mathcal{W}} \geq ||X_{\omega}x_0||_{\omega}$ and $k \geq ||X_{\omega}||$ for every $\omega \in \mathcal{W}$. Hence $k \geq \sup ||X_{\omega}|| = ||X||_{\mathcal{W}}$.

Lemma 2.3. Consider a compact set W of states on A and the coordinate projection field P: on W. Then (Aw, P) determines an abelian representation of A. (Namely, $Aw \cup P$ is regarded as a suitable C^* -algebra in a Hilbert space and P is a generative abelian projection relative to A).

C_W is the carrier algebra^D of P, and the primitive operator J_A^{D} of $A \in A$ is the primitive function $J_A(\omega) = \omega(A)$ of A in W.

Proof. P is an operator field in \mathcal{W} with $P_{\omega}x = (x_{\omega}, \omega)_{\omega} \omega(x \in \mathcal{Y} \cdot \mathcal{W})$. Then

$$(PAP)_{\omega} = (A\omega, \ \omega) \ P_{\omega} = J_{A}(\omega) P_{\omega}$$

and $PAP = J_{A}P$. P is therefore abelian, and J_{A} is the primitive operator of A. Notice that $C_{\mathscr{W}}$ (the totality of continuous functions on \mathscr{W}) is the smallest $C^{\mathbb{F}}$ -algebra which contains those primitive functions $(J_{A}: A \subseteq A)$. Then $C_{\mathscr{W}}$ is the carrier algebra of P in the sense of Definition 4.6 in Chapter 1.

Proposition 2.3. Let \mathcal{W} be a compact set of states on A. Then $X_{\mathcal{W}} \leftrightarrow XP \ (X \subseteq A_{\mathcal{W}} \cup P)$

determines an isometric isomorphism between the space Eq. and the

¹⁾ Definition 1.1 in Chapter 2.

²⁾ and 3). Definition 4.6 in Chapter 1.

⁴⁾ Definition 1.1 in Chapter 2.

quotient space $(A \oplus V \cup P)/P$.

Proof. $\mathcal{F}_{(y)}$ is the uniform closure of $(X_{\omega}: X \in A \cup P)$, and every $X \in A \cup P$ satisfies $(PX^*XP)_{\omega} = (X^*X_{\omega}, \omega)_{\omega}P$. Then

$$\mid XP\mid_{\mathcal{C}_{\mathcal{V}}^{2}}=\mid PX^{*}XP\mid_{\mathcal{C}_{\mathcal{V}}}=\sup_{\omega\in\mathcal{C}_{\mathcal{V}}}\left(X^{*}X\omega,\,\omega\right)=\parallel X\omega\parallel_{\mathcal{C}_{\mathcal{V}}^{2}}^{2},$$

and $X\omega \leftrightarrow XP$ is an isometry between $\Im \omega$ and $(A \cup P)/P$.

Definition 2. 4. Consider two abelian representations $(A_{\lambda}, E): A \rightarrow A_{\lambda}$, and $(A_{\nu}, F): A \rightarrow A_{\nu}$ of A. These two representations are said to be algebraically equivalent if the correspondences

$$A_{\lambda} \leftrightarrow A_{\nu}$$
 (for $A \in A$) and $E \leftrightarrow F$

determine an algebraic isomorphism between algebras $A_{\lambda} \cup E$ and $A_{\nu} \cup F$.

Theorem 15. If $(A_{\lambda}, E): A \to A_{\lambda}$ is an abelian representation of A, then it is algebraically equivalent to a representation $(A_{\mathcal{W}}, P)$ whose \mathcal{W} is a suitable compact set of states on A. The space \mathcal{W} is uniquely determined and is the spectrum of the carrier algebra C_E of E. The algebraic equivalence determines an isometric isomorphism between these spaces $(A \cup E)/E$ and $\mathcal{F}_{\mathcal{W}}$.

Proof. Consider the carrier algebra C_E and the algebra $K_E = A \cup C_E$. If $A \in A$, then its primitive operator J_A belongs to C_E and satisfies $J_A E = EAE$. C_E is the smallest C^* -algebra which contains all those J_A . Consider the spectrum \mathcal{W} of C_E and let ω_E denote a state on A with $\omega_E(A) = \omega(J_A)$ for each $\omega \in \mathcal{W}$. Notice that any two points in \mathcal{W} are separated by a suitable J_A , then the weakly continuous mapping $\omega \in \mathcal{W} \to \omega_E$ is a homeomorphism. Identify each $\omega \in \mathcal{W}$ with the state ω_E on A, then \mathcal{W} is a compact set of states on A, and the carrier algebra C_E is represented as the totality $C_{\mathcal{W}}$ of continuous functions on \mathcal{W} .

If X is an operator $X = \sum A_i F_i$ with $A_i \in A$ and $F_i \in C_E = C_W$, then we denote by X_W a field in W with

$$X_{\omega} = \sum F_{i}(\omega) A_{i}\omega$$
.

Then

$$|XE|^{2} = |EX^{*}XE| = |(\sum F_{j}^{*}F_{i}J_{A_{j}^{*}A_{i}})E|$$

$$= \sup_{\omega \in \mathcal{U}}(X\omega, X\omega) = ||X\omega||_{\mathcal{U}}^{2}.$$

The correspondence $XE \leftrightarrow X_{\mathcal{W}}$ is extended to an isometry between the quotient spaces K_E/E and $\mathfrak{F}_{\mathcal{W}} = K_{\mathcal{W}}/P$. The isometry determines a spatial isomorphism between algebras K_E and $K_{\mathcal{W}}$. Then the reminder of the theorem is reduced to prove the next lemma.

Lemma. Consider two abelian representations $(A_{\lambda}, E): A \rightarrow A_{\lambda}$

and (A_{ν}, F) : $A \to A_{\nu}$. Assume that the correspondences $A_{\lambda} \leftrightarrow A_{\nu}$, $J_{A_{\lambda}} \leftrightarrow J_{A_{\nu}}$ are extended to an algebraic isomorphism $X_{\lambda} \leftrightarrow X_{\lambda}$ between algebras K_{E} and K_{F} , and assume $|X_{\lambda}E| = |X_{\nu}F|$ for every $X \in K_{E}$. Then these two representations are algebraically equivelent.

Proof of the lemma. The algebra $K_{\varepsilon} \cup E$ is the uniform closure of the set $(X_0 + X_1E + EX_2 : X_i \in K_{\varepsilon})$. Then $(K_{\varepsilon} \cup E)/E = K_{\varepsilon}/E = (A_{\varepsilon} \cup E)/E$ and $(K_{\varepsilon} \cup F)/F = K_{\varepsilon}/F = (A_{\varepsilon} \cup F)/F$.

Consider two elements:

 $W_{\lambda} = X_{\lambda} + Y_{\lambda}E + EZ_{\lambda} \in \mathbf{K}_{E} \cup E \text{ and } W_{\nu} = X_{\nu} + Y_{\nu}E + EZ_{\nu} \in \mathbf{K}_{F} \cup F$ such that X_{λ} , Y_{λ} , $Z_{\lambda} \in \mathbf{K}_{E}$ and X_{ν} , Y_{ν} , $Z_{\nu} \in \mathbf{K}_{F}$. Then

$$W_{\lambda}E \in K_{E}/E$$
, $W_{\lambda}F \in K_{F}/F$ and $|W_{\lambda}E| = |W_{\lambda}F|$.

The isometry $W_{\lambda}E \leftrightarrow W_{\lambda}F(W_{\lambda} \in K_{E} \cup E)$ determines a spatial isomorphism between algebras $K_{E} \cup E$ and $K_{F} \cup F$ as operator algebras on K_{E} / E and K_{F} / F . The same spatial isomorphism determines the isomorphism between their subalgebras $A_{\lambda} \cup E$ and $A_{\nu} \cup F$. The lemma and the theorem are thus proved.

Corollary 1. Consider an abelian representation $(A_{\lambda}, E): A \to A_{\lambda}$ of A and the spectrum W of the carrier algebra C_E .

If U is a compact subset of W, then $N(U) = (X \in A_{\lambda} \cup E : \omega(J_{x^*x}))$ = 0 for every $\omega \in U$ is a left ideal of $A_{\lambda} \cup E$ which contains the left ideal $N(E) = (X \in A_{\lambda} \cup E : XE = 0)$.

Conversely, any left ideal N of $A_{\lambda} \cup E$ which contains N(E) is a left ideal N = N(U), where U is a suitable compact subset of W.

Proof. We can assume without loss of generality that the given abelian representation is (Aqw, P) and E is the projection field P. Let N be a left ideal of $Aqw \cup P$ which contains $N(P) = (X \in Aqw \cup P) : AP = 0$. The reduced algebra PAqwP is a subalgebra of $Aqw \cup P$, and $N \cap PAqwP$ is an ideal of PAqwP. The induction $f \in Cqw \to fP \in PAqwP$ is an isomorphism between Cqw and PAqwP. Then $\mathfrak{M} = (f \in Cqw) : fP \in N \cap PAqwP)$ is an ideal of Cqw. Consider a compact subset

$$\mathcal{U} = (\omega \in \mathcal{W}: f(\omega) = 0 \text{ for } f \in \mathfrak{M})$$

of \mathcal{W} . Then $f \in C_{\mathcal{W}}$ and $X \in A_{\mathcal{W}} \cup P$ imply

$$\mathfrak{M} = (f \in \mathbb{C} \mathscr{W} : f(\omega) = 0 \text{ for } \omega \in \mathcal{U}),$$
$$|f/\mathfrak{M}| = \inf_{\omega \in \mathfrak{M}} |f - g| = \sup_{\omega \in \mathcal{U}} |f(\omega)| = |f| \mathcal{U}$$

and

$$|X/N|^2 = \inf_{Y \in \mathbb{N}} |(X - Y)P|^2 = \inf_{Y \in \mathbb{N}} |P(X^* - Y^*)(X - Y)P|$$

$$\geq \inf_{z \in \mathbb{N}} |PX^*XP - PZ| = |PX^*XP/(\mathbb{N} \cap PA \otimes P)|$$

$$= \sup_{\omega \in QJ} (X^*X\omega, \ \omega)_{\omega} = ||X\omega||_{QJ}^2.$$

Couversely

$$\|X_{\omega}\|_{\mathcal{Q}} = \inf (\|(1 - f(\omega))X_{\omega}\|_{\mathcal{W}}: 0 \leq f \leq 1, f \in C_{\mathcal{W}} \text{ and}$$

$$f(\omega) = 0 \text{ for } \omega \in \mathcal{Q})$$

$$= \inf (|(I - F)XP|: 0 \leq FP \leq I, FP \in \mathbb{N} \cup PA_{\mathcal{W}}P)$$

$$\geq \inf_{P \in \mathbb{N}} |X - Y| = |X/\mathbb{N}|.$$

Hence we obtain

$$|X/N(U)| = |X\omega| |U| = |X/N| \text{ (for } X \equiv AU \cup P)$$

and $N(\mathcal{U}) = N$. Q. E. D.

When the algebra A is an abelian C^* -algebra, the identity I is an abelian projection. Apply the corollary to the algebra $A \cup I = A$ and the ideal $N(I) = \{0\}$. Then we obtain the well-known correspondence between ideals of A and closed subspaces of the spectrum of A.

§ 3. Non-commutative extension of the Stone-Weierstruss Theorem.

If a property of an abelian repesentation of A is invariant under the algebraic equivalence, then the property may be characterized as a property of the corresponding compact set of states on A.

Consider a compact set \mathcal{W} of pure states on A. If the algebra A is abelian, then for any continuous function f on \mathcal{W} , we can choose an element A of A with $f(\omega) = \omega(A)$ on \mathcal{W} .

Definition 3.1. A compact set \mathcal{W} of pure states on a C^* -algebra A is said to be a *subspectrum* if every continuous vector field x on \mathcal{W} is a uniform limit of a sequence of fields $A_n\omega$ with $A_n \in A$.

If the algebra is non-commutative, a compact set of pure states on A is not generally a subspectrum.

Definition 3.2. A compact set \mathcal{W} of states on A is said to be a *prespectrum* if the totality $\mathcal{F}_{\mathcal{W}}$ of continuous fields on \mathcal{W} is the uniform closure of $(A\omega: A \subseteq A)$.

In Theorem 23 in Chapter 4 we shall assert that every compact set of pure traces is a prespectrum. This result may be a sort of non-commutative extension of the Gelfand-Stone-Weierstrass Theorem. We now observe some elementary properties of prespectrums and subspectrums.

Lemma 3.1. A compact set of states on A is a prespectrum if and only if, for any given positive number ε and any (numerical) continuous

function f on W, we can choose an $A \in A$ such that

$$||f(\omega) - A\omega||_{\omega}^2 = |f(\omega)|^2 - 2\Re(f(\omega)\omega(A^*)) + \omega(A^*A) < \varepsilon.$$

Theorem 14. (1). Every distribution in a subspectrum is a spectral distribution. Convesely, if W is a compact set of states and if every distribution in W is spectral, then W is a subspectrum.

(2). Every distribution in a prespectrum is a prespectral distribution. Conversely, if W is a compact set of states and if every distribution in W is prespectral, then W is a prespectrum.

Proof. We shall first prove (2). Consider a prespectrum \mathcal{W} . Then for every distribution μ in \mathcal{W} , the set $(A\omega: A \in A)$ is dense everywhere in the Hilbert space $L^2(\mu)$ and μ is a prespectral distribution (cf. Lemma 1.8 in Chapter 2).

Conversely, assume that every distribution μ on \mathcal{W} is prespectral. Then for every distribution μ in \mathcal{W} the set $(A\omega: A \in A)$ is uniformly dense everywhere in $L^2(\mu)$. By Proposition 2. $1(A\omega: A \in A)$ is uniformly dense everywhere in \mathcal{F}_{qp} , and \mathcal{W} is a prespectrum.

Proof of (1). If $\mathcal W$ is a subspectrum, every state in $\mathcal W$ is pure and every distribution in $\mathcal W$ is spectral. Conversely, assume that every distribution μ in $\mathcal W$ is spectral. Then every point-mass distribution δ_{λ} in $\mathcal W$ is spectral and every point in $\mathcal W$ is a pure state.

Theorem 15. When A is a uniformly separable C^* -algebra, the carrier of a spectral distribution on the total state space S is a subspectrum removing an open set of any small mass from it.

Proof. Consider a fixed spectral distribution μ on \mathcal{S} . If x is a field in $L^2(\mu)$, a sequence $A_n \in \mathbf{A}$ can be so chosen as $\int \|A_n \omega - x_\omega\|_\omega^2 d\mu(\omega) < 2^{-n}$. Removing an open set of any small mass from \mathcal{S} , the sequence of numerical functions $\|A_n \omega - x_\omega\|_\omega$ of the variable ω tends to 0 uniformly. Then

$$||A_{n\omega}-x||_{qy-q_{J}}\rightarrow 0 \ (n\rightarrow\infty).$$

Notice that the space $\mathcal{E}_{\mathcal{W}}$ is uniformly separable and contains a countable subset $\{x_n\}$ which is dense everywhere in $\mathcal{E}_{\mathcal{W}}$. Removing an open set U of any small mass from \mathcal{W} , $x_n(n=1,2,\cdots)$ belong to the uniform closure of the set $(A_{\mathcal{W}}: A \in A)$. Then $\mathcal{W}-U$ is a prespectrum. Every state in the carrier of \mathcal{W} is pure almost everywhere. Hence the theorem follows.

Chapter 4. Commutor Theory of Q^* -algebra and the v. Neumann's Density Theorem.

 \S 1. Q*-topologies in the algebra of continuous operator fields. (a). C*-algebra on the Banach space of continuous vector fields.

Consider an abelian representation (A_{λ}, E) : $A \to A_{\lambda}$ of A in a Hilbert space \S . The algebra $B((A_{\lambda} \cup E)/E)$ is the totality of bounded operators X in \S such that X and X^* are both bounded operators in the space $(A_{\lambda} \cup E)/E$. We shall first observe that the algebra $B(A_{\lambda} \cup E)/E$ is invariant under the algebraic equivalence of the representation.

Definition 1.1. Consider a compact set \mathcal{W} of states on A. A bounded operator X on the Banach space $\mathcal{F}_{\mathcal{W}}$ is said to be adjointable if there exists another bounded operator X^* (the adjoint of X) in $\mathcal{F}_{\mathcal{W}}$, which satisfies

$$((Xx_{\omega}), y_{\omega}) = (x_{\omega}, (X^*y)_{\omega}) \quad \text{(where } x, y \in \mathfrak{F}_{\mathcal{W}}, \ \omega \in \mathcal{W}).$$

We denote by $B(\mathfrak{F}_{\mathcal{W}})$ the totality of adjointable operators in the space $\mathfrak{F}_{\mathcal{W}}$.

Proposition 1.1. Consider an abelian representation (A_{λ}, E) : $A \rightarrow A_{\lambda}$ of A in a Hilbert space and the corresponding compact space W of states on A. Then the representation is algebraically equivalent to the representation (A_{W}, P) and the algebraic equivalence determines an isometry between $(A \cup E)$ and \mathcal{F}_{W} .

The isometry between $(A \cup E)/$ and \mathcal{F}_{W} determines a spatial isomorphism between algebras $B((A \cup E)/E$ and $B(\mathcal{F}_{W})$.

To prove the proposition we need to prepare some sub-lemmas.

Sub-lemma 1.11 A C*-algebra A is linearly spanned by its unitary element.

In fact, if A is an Hermitian element in A with $|A| \leq 1$, then

$$A = \frac{U + U^*}{2}$$
, $U = A + i(I - A^2)^{\frac{1}{2}}$ and $U^* = A - i(I - A^2)^{\frac{1}{2}}$,

where U and U^* are unitary elements in A.

Sub-lemma 2. $B(\mathcal{F}_{qv})$ is a C^* -algebra.

Proof. It is sufficient to show $|X^*X| = |X|^2$ $(X \in B(\mathfrak{F}_{qp}))$, where |X| denotes the operator norm of X in \mathfrak{F}_{qp} .

Let $x, y \in \mathcal{F}w$. Then

$$|((X^*x)_{\omega}, y_{\omega})| = |(x_{\omega}, (Xy)_{\omega})| \le |x| ||w|| ||Xy||_{qy}$$

$$\le |X| ||x||_{qy} ||y||_{qy}.$$

Put $y = X^*x$. Then

$$||X^*x||_{qp}^2 \le |X| ||x||_{qp} ||X^*x||_{qp},$$

and

¹⁾ Dixmier (1).

$$|X^*| \le |X|, |X| = |X^{**}| \le |X^*| \text{ and } |X| = |X^*|.$$

Now

$$|| Xx ||_{\omega}^2 = |((X^*Xx)_{\omega}, x_{\omega})_{\omega}| \leq || X^*Xx ||_{Qy},$$

and

$$||Xx||_{q_{\mathcal{U}}}^{2} \leq |X^{*}X|||x||_{q_{\mathcal{U}}}^{2}.$$

Then

$$|X|^2 \le |X^*X|$$

and

$$|X|^2 = |X^*X|.$$

 $B(\mathfrak{F}_{W})$ is a *-Banach algebra with the identity and with the norm condition $|X|^2 = |X^*X|$. Then it is a C^* -algebra.

Proof of the proposition. Two abelian representations (A_{λ}, E) and (A_{W}, P) are algebraically equivalent. Then $A_{\lambda} \cup E$ and $A_{W} \cup P$ are algebraically isomorphic. We consider these two algebras to be the same algebra. Therefore $A_{W} \cup P$ is an operator algebra in a suitable Hilbert space \mathfrak{D} , and P is a generative abelian projection in \mathfrak{D} . Let A be any bounded operator in \mathfrak{D} such that $X \in (A_{W} \cup P)/P$ implies AX, $A^{*}X \in (A_{W} \cup P)/P$. If $x, y \in \mathfrak{F}_{qy}$, then $X, Y \in (A_{W} \cup P)/P$ can be so chosen that

$$x = X\omega$$
, $y = Y\omega$, $(Y^*X)\omega = (x_{\omega}, y_{\omega})_{\omega}\omega$.

Define $(AX)_{\omega} = Ax$. Since $Y^*(AX) = (A^*Y)^*X$ and

$$((Ax)_{\omega}, y_{\omega}) = (x_{\omega}, (A^*y)_{\omega}) (\omega \in \mathcal{W}).$$

A is an adjointable operator in \mathcal{F}_{qv} .

Conversely, let A be any adjointable operator in \mathfrak{F}_{qp} . Then A is considered to be a bounded operator in $(A_{\mathfrak{P}} \cup P)/P$ with

$$Y^*(AX) = (A^*Y)^*X$$

for every $X, Y \in (Aw \cup P)/P$.

Consider an unitary element U in $B(\mathcal{F}_{qy})$. Then $U^*U = UU^* = I$ and

$$(U(XP))^*(U(YP)) = (XP)^*(YP)$$

hold for every $X, Y \in (Aw \cup P)$.

Consider $X_1, X_2, \ldots, X_n \in A_W \cup P$ and $x_1, x_2, \ldots, x_n \in \mathfrak{F}$. Then

$$\| \sum_{i} U(X_{i}P)x_{i}\|^{2} = \sum_{i,j} ((U(X_{j}P))^{*}(U(X_{i}P))x_{i}, x_{j})$$

$$= \sum_{i,j} ((X_{j}P)^{*}(X_{i}P)x_{i}, x_{j})$$

$$= \| \sum_{i,j} X_{i}Px_{i}\|^{2}.$$

P is generative in the Hilbert space \mathfrak{H} , and \mathfrak{H} is the smallest uniformly closed linear set which contains $(APx: A \in Ay, x \in \mathfrak{H})$. Then an isometric operator U in \mathfrak{H} is so determined that

$$(U(XP))x = U(XPx)$$
 (where $X \in Aw \cap P$, $x \in \mathfrak{H}$).

Since $U^*U = UU^* = I$, U is an unitary operator in \mathfrak{S} and belongs to $\mathbf{B}((\mathbf{A}_W \cup P)/P)$. Q. E. D.

(b). C*-algebra of operator fields and its commutors.

In the algebra $B(\mathfrak{F}_{\mathcal{W}})$ of adjointable operators in $\mathfrak{F}_{\mathcal{W}}$, the Q^* -and urtra- Q^* -topologies are defined as in (c) of § 1.

Definition 1.2. A Q^* -neighbourhood $U(X: x_1, x_2, \ldots x_n; \varepsilon)$ of an adjointable operator X in \mathcal{F}_{qy} is a set $(Y \in B(\mathcal{F}_{qy}): \max (\|(X-Y)x_t\|_{qy}), \|(X^*-Y^*)x_t\|_{qy}) < \varepsilon$), where $x_1, x_2, \ldots x_n$ are elements in \mathcal{F}_{qy} and ε is a positive number. The Hausdorff topology of $B(\mathcal{F}_{qy})$ which is determined by these Q^* -neighbourhoods of elements of $B(\mathcal{F}_{qy})$ is said to be the Q^* -topology of $B(\mathcal{F}_{qy})$.

An urtra- Q^* -neighoourhood $U(X: \{x_i\}, \varepsilon)$ of an adjointable operator X in \Re_{qy} is a set $(Y \in B(\Re_{qy}): \sup(\|(X-Y)x_i\|_{qy}, \|(X^*-Y^*)x_i\|_{qy}) < \varepsilon)$, where $\{x_i\}$ is a uniformly convergent sequence in \Re_{qy} and ε is a positive number.

A Q^* -closed *-algebra of adjointable operators in $\mathfrak{F}_{\mathcal{W}}$ is said to be a Q^* -algebra in $\mathfrak{F}_{\mathcal{W}}$. The Q^* -closure of a *-algebra R in $\mathfrak{F}_{\mathcal{W}}$ is denoted by R^q .

Definition 1.3. If R is a C^* -algebra of adjointable operators in \mathfrak{F}_{qp} , then the totality of adjointable operators in \mathfrak{F}_{qp} which commutes with every element of R is denoted by R' and said to be the *commutor* of R. R' is a Q^* -algebra.

Lemma 1.1. The totality of continuous operator fields on W is a C^* -algebra of adjointable operators in \mathcal{F}_{qy} and is the commutor C'_{qy} of the algebra C_{qy} (the totality of continuous functions on W).

Proof. A continuous operator field is adjointable in \mathfrak{F}_{qp} and belongs to C'_{qp} . Then it is sufficient to show that every adjointable operator in C'_{qp} is a continuous operator field.

If X is an adjointable operator in $\mathcal{F}_{\mathcal{C}_{\mathcal{V}}}$, which commutes with $C_{\mathcal{W}}$, then

$$f(\omega)(Xx)_{\omega} = (Xfx)_{\omega} \quad (f \in \mathbb{C}_{\mathcal{W}}, \text{ and } x \in \mathcal{F}_{\mathcal{W}})$$

and

$$\sup_{\omega \in \mathcal{W}} |f(\omega)| \| (Xx)_{\omega} \|_{\omega} \leq |X| \| fx \|_{\mathcal{W}},$$

where |X| is the operator norm of X in \mathcal{F}_{W} .

Put

$$f_n(\omega) = \min (n, |x_{\omega}|_{\omega}^{-1}) (\omega \in \mathcal{W}).$$

Then

$$||f_n x||_{qy} \le 1(n = 1, 2,),$$

 $|f_n(\omega)| ||(Xx)_{\omega}||_{\omega} \le |X| (n = 1, 2,),$

and

$$\|(Xx)_{\omega}\| \leq \|X\| \|x_{\omega}\|_{\omega} (x \in \mathcal{F}_{qy} \text{ and } \omega \in \mathcal{W}).$$

 $x_{\omega} = y_{\omega}(x, y \in \mathcal{H}_{\mathcal{W}})$ implies $(Xx)_{\omega} = (Xy)_{\omega}$. Then for each $\omega \in \mathcal{W}$ a bounded operator X_{ω} in $L^{2}(\omega)$ with $|X_{\omega}| \leq |X|$ is determined in such a way that

$$(Xx)_{\omega} = X_{\omega}x_{\omega} \quad (x \in \mathcal{F}_{\mathcal{C}(\mathcal{U})}).$$

Then X is a continuous operator field in \mathcal{W} . Q. E. D.

By Theorem 10 the Kaplansky Density Theorem holds in every C^* -algebra of adjointable operators in \mathfrak{F}_{qp} . The remained problem is the extension of the v. Neumann Density Theorem which involves us in the study of the commutor theory of operator algebras in the Banach space \mathfrak{F}_{qp} . In what follows we shall devote ourselves to study the following two questions.

Consider a compact set \mathcal{W} of states on A and a C^* -algebra R of continuous operator fields on \mathcal{W} with $C_{\mathcal{W}'} \supseteq R \supseteq C_{\mathcal{W}}$. Then its commutor R' is a Q^* -algebra of continuous operator fields on \mathcal{W} with $C_{\mathcal{W}'} \supseteq R' \supseteq C_{\mathcal{W}}$.

- (1). If μ is a distribution in W, is the W^* -closures of R and R' (regarding as operator angebras) in $L^2(\mu)$ a commutor pair?
 - (2). Is the bicommutor R'' of R the Q^* -closure R^q of R?

Consider a compact set \mathcal{W} of states on A and a C^* -algebra R of continuous operator fields in \mathcal{W} . For each $\omega \in \mathcal{W}$, we denote by R_{ω} the C^* -algebra $R_{\omega} = (A ; A \in \mathbb{R})$ in the Hilbert space $L^*(\omega)$.

If μ is a distribution in \mathcal{W} , then we denote by R_{μ} the representative algebra of R in the Hilbert space $L^{2}(\mu)$.

Theorem 15. Consider a compact set W of states on A and a C^* -algebra R of continuous operator fields on W with $C_W' \supseteq R \supseteq C_W$. Assume that for each $\omega \in W$ W^* -algebras $(R_\omega)''$ and $(R'_\omega)''$ in the Hilbert space $L^2(\omega)$ are a commutor pair. Then given any distribution μ in W, the W^* -algebras $(R_\mu)''$ and $(R'_\mu)''$ on the space $L^2(\mu)$ are a commutor pair.

To prove the theorem we prepare two sub-lemmas.

Sub-lemma 1. Consider a C^* -algebra R of continuous operator fields as in Theorem 15 and a closed linear subset \mathfrak{M} of \mathfrak{F}_{W} which is invariant under the algebra R. For each $\omega \in \mathcal{W}$, let $[\mathfrak{M}_{\omega}]_{\omega}$ denote the uniform closure of the set $\mathfrak{M}_{\omega} = (x_{\omega} : x \in \mathfrak{M})$ and E_{ω} the projection in $L^2(\omega)$ whose range is $[\mathfrak{M}_{\omega}]_{\omega}$. Then the projection field E is a measurable operator field in $L^2(\mu)$ (cf. Def. 1.4 in Chapter 2), and it is a projection in $L^2(\mu)$

whose range is the uniform closure $[\mathfrak{M}]_{\mu}$ of \mathfrak{M} in $L^{2}(\mu)$.

Proof of the sub-lemma. It is sufficient to show the following

- (1). If $x \in [\mathfrak{M}]_{\mu}$, then $E_{\omega} x_{\omega} = x_{\omega} \ (\omega \in \mathcal{W})$ almost everywhere.
- (2). If x is a field in $L^2(\mu)$ which is orthogonal to $[\mathfrak{M}]_{\mu}$, then $E_{\omega}x_{\omega}=0$ ($\omega\in\mathscr{W}$) almost everywhere.

By Lemma 1.4 in Chapter 2, the set $(x \in L^2(\mu) : x_\omega \in [\mathfrak{M}_\omega]_\omega)$ is a uniformly closed linear subspace of $L^2(\mu)$ and contains \mathfrak{M} . Then it contains $[\mathfrak{M}]_\mu$ and hence (1) follows.

Next, let x be a field in $L^2(\mu)$ which is orthogonal to \mathfrak{M} . Then

$$(x, fz)_{\mu} = \int f(\omega)(x_{\omega}, z_{\omega})d_{\mu}(\omega) = 0,$$

where $z \in \mathfrak{M}$ and $f \in C_{\mathscr{W}}$. Now (x_{ω}, z_{ω}) vanishes almost everywhere for each fixed $z \in \mathfrak{M}$. x_{ω} is regularly and weakly measurable, and removing an open set of any small mass, it is weakly continuous. Then x_{ω} is orthogonal to $[\mathfrak{M}_{\omega}]_{\omega}$ almost everywhere and hence (2) follows.

Sub-lemma 2. Consider the compact space W and the algebra R as in Theorem 15 and Sub-lemma 1. If \mathfrak{M} is a closed linear subspace of \mathfrak{F}_{W} which is invariant under R, we denote by $E\mathfrak{M}$ the projection field in W such that each value $(E\mathfrak{M})_{\omega}$ is a projection in $L^2(\omega)$ with the range $[\mathfrak{M}_{\omega}]_{\tilde{\omega}}$. If μ is a distribution in W, then the commutor $(R_{\mu})'$ of R_{μ} in the Hilbert space $L^2(\mu)$ is the smallest W^* -algebra which contains all those projections $E\mathfrak{M}$.

Proof. For each $x \in L^2(\mu)$ we consider the cyclic projection E_x^R . It is a projection in $L^2(\mu)$ whose range is the uniform closure $[Rx]_{\mu}$ of the set $(Ax:A \in R)$. The algebra $(R_{\mu})'$ becomes the smallest W^* -algebra in $L^2(\mu)$ which contains all those projections $(E_x^R:x\in L^2(\mu))$. Then it is sufficient to show that each $E_x^R(x\in L^2(\mu))$ is a strong limit of a sequence of projection fields $E_{y_n}^R(n=1,2,\ldots)$ with $y_n\in \mathcal{F}_{qy}$. Consider a fixed $x\in L^2(\mu)$. x is regularly and weakly measurable. Then it is continuous removing an open set of any small mass from \mathcal{W} . Now given any $\varepsilon>0$, there is a compact subset \mathcal{U} of \mathcal{W} with $\mu(\mathcal{W}-\mathcal{U})<\varepsilon$ such that x is continuous in \mathcal{U} . By the Lebesgue extension theorem (Theorem 13), this restricted field in \mathcal{U} is extended to a continuous field y in \mathcal{W} and, when the mass $\mu(\mathcal{W}-\mathcal{U})$ tends to 0, the projection E_y^R tends to E_x^R strongly. Hence the smallest W^* -algebra which contains $(E_y^R:y\in \mathcal{F}_{qy})$ contains $(E_x^R:x\in L^2(\mu))$ and its W^* -envelop $(R_\mu)'$.

Proof of Theorem 15. Consider a fixed distribution μ in \mathcal{W} , and two closed linear subspaces \mathfrak{W} and \mathfrak{N} in $\mathfrak{F}_{\mathcal{W}}$ which are invariant under R and its commutor R' respectively.

Projection fields $E_{\mathfrak{M}}$ and $E_{\mathfrak{N}}$ are measurable operator fields in $L^2(\mu)$ and belong to $(R_{\mu})'$ and $(R'_{\mu})'$ respectively. The values $(E_{\mathfrak{M}})_{\omega}$ and $(E_{\mathfrak{N}})_{\omega}$ of $E_{\mathfrak{M}}$ and $E_{\mathfrak{N}}$ at $\omega \in \mathcal{W}$ are projections in $L^2(\omega)$ whose ranges are $[\mathfrak{M}_{\omega}]_{\omega}$ and $[\mathfrak{N}_{\omega}]_{\omega}$ respectively. Then we have $(E_{\mathfrak{M}})_{\omega} \in (R_{\omega})'$ and $(E_{\mathfrak{N}})_{\omega} \in (R'_{\omega})'$.

By the assumption in the theorem every pair of W^* -algebras $(R_\omega)''$ and $(R'_\omega)''$ are a commutor pair in $L^2(\mu)$. Then $(E_{\mathfrak{M}})_\omega \in (R_\omega)' = (R'_\omega)''$, $(E_{\mathfrak{M}})_\omega \in (R'_\omega)' = (R_\omega)''$, $(E_{\mathfrak{M}})_\omega = (E_{\mathfrak{M}})_\omega (E_{\mathfrak{M}})_\omega = (E_{\mathfrak{M}})_\omega (E_{\mathfrak{M}})_\omega$ and $E_{\mathfrak{M}}E_{\mathfrak{M}} = E_{\mathfrak{M}}E_{\mathfrak{M}}$. By Sub-lemma 2, the algebra $(R_\mu)'$ is spanned by the projections $E^{\mathfrak{M}}$. Similarly the algebra $(R'_\mu)'$ is spanned by $E_{\mathfrak{M}}$ and hence $(R_\mu)''$ and $(R'_\mu)''$ are a commutor pair in $L^2(\mu)$.

By Theorem 15 we obtain an extension of the v. Neumann's Density Theorem.

Theorem 16. Consider a compact ret W of states on A and a *-algebra R of continuous operator fields in W with $C_W \supseteq R \supseteq C_W$. Assume that each pair of W^* -algebras $(R_\omega)''$ and $(R'_\omega)''$ ($\omega \in W$) is a commutor pair in $L^2(\omega)$. Then the bicommutor R'' of R is the Q^* -closure R^q of R in the space \mathcal{F}_{QV} .

Proof. Let μ be any distribution in \mathcal{W} , Then the representative algebra $(R'')_{\mu}$ of R'' in $L^{2}(\mu)$ is contained in $(R'_{\mu})'$ and consequently in the W^{*} -closure $(R_{\mu})''$ of R_{μ} , in $L^{2}(\mu)$.

Consider a fixed continuous operator field X in R''. Given any $\varepsilon > 0$, any x_1, x_2, \ldots, x_n in \mathfrak{F}_{qy} and any distribution u in \mathfrak{W} , an operator field A in R can be so chosen that

$$\|(X-A)x_i\|_{\mu}^2 = \int \|(X_{\omega}-A_{\omega})x_{i\omega}\|_{\omega}^2 d_{\mu}(\omega) < \varepsilon^2,$$

where

$$\varphi_{A}(\omega) = \sum_{i} \|(X_{\omega} - A_{\omega})x_{i\omega}\|^{2}_{\omega}$$

is a continuous function of the variable ω . The weak closure of the set of those functions $(\varphi_A:A \in A)$ and consequently its uniform convex span in the space $C \cdot \psi$ contain the function 0. Then bor any $\varepsilon > 0$ we can choose positive numbers a_1, a_2, \ldots, a_n and elements B_1, B_2, \ldots, B_n in R such that

$$\sum_{j} a_{j} \left(\sum_{i} \| (X_{\omega} - B_{j\omega}) x_{i\omega} \|_{\omega}^{2} \right) < \varepsilon$$

for every $\omega \in \mathcal{W}$. Using the Schwarz's inequality we have

$$\sum_{i} \sum_{j} \|X_{\omega} x_{i\omega} - (\sum_{i} a_{j} B_{j\omega}) x_{i\omega}\|_{\omega}^{2} < \varepsilon$$

and

$$||Xx_{i}-(\sum_{j}a_{j}B_{j})x_{i}||_{qy}<\varepsilon \quad (i=1, 2, \ldots, n).$$

Hence X belongs to the Q^* -closure \mathbb{R}^9 of \mathbb{R} . Q. E. D.

§ 3. Extension Theorem of continuousm operator fields.

Consider a compact set \mathcal{W} of states on A. A vector field p on \mathcal{W} is said to be a *positive field* if each value p_{ω} is a positive definite functional in A.

Definition 3.1. If x is a vector field in \mathcal{W} , then we denote by x^{v} a vector field in \mathcal{W} whose each value $(x^{v})_{\omega}$ is the absolute variation of the value x_{ω} of x. We call it the *absolute variation* of the field x.

Definition 3.2. A continuous vector field x in \mathcal{W} is said to be absolutely continuous if the function $|x_{\omega}|$ of the variable ω (where $|x_{\omega}|$ denotes the functional norm of the value x_{ω} as a bounded linear functional in A) is a continuous function in \mathcal{W} .

Proposition 3.1. A continuous vector field x in a compact state space W is absolutely continuous if and only if its absolute variation x^v is a continuous field in W.

Proof. If x is a continuous field in \mathcal{W} such that x^{ν} is continuous, then $|x_{\omega}| = x^{\nu}(I)$ is continuous and x is absolutely continuous.

Conversely, assume that x is absolutely continuous in \mathcal{W} but x^v is not continuous at a point λ in \mathcal{W} . Since $\|x^v_{\omega}\|_{\omega} (=\|x_{\omega}\|_{\omega})$ is continuous in \mathcal{W} , x^v is not weakly continuous at λ . x^v is bounded in \mathcal{W} and there is at least a filter F in \mathcal{W} which converges to λ and induces the weak convergence of the value x_{ω}^v to a positive functional $y \neq x_v^{\lambda}$ $\omega \to \lambda$. Since $|x_{\omega}| (=x_{\omega}^v(I))$ is continuous and $|x_{\omega}|x_{\omega}^v(A^*A) \geq |x_{\omega}(A^*)|^2$ holds in \mathcal{W} , we have $y(I) = |x_{\lambda}|$ and $y(A^*A)|x_{\lambda}| \geq |x_{\lambda}(A^*)|^2$.

By the corollary of Theorem 1 in Chapter 1 we have $y = x_{\lambda}^{v}$. Hence x^{v} is continuous in W.

Definition 3. 3. A compact set \mathcal{W} of states on A is said to be absolutely continuous if every field $A_{\omega}(A \in A)$ is absolutely continuous in \mathcal{W} .

Lemma 3.1. If a compact state space W is absolutely continuous, then every continuous field in W is absolutely continuous.

Proof. Consider a field

$$x = \sum f_i A_i \omega$$
 $(f_i \in \mathbb{C} \mathcal{W} \text{ of } A_i \in \mathbb{A}).$

We shall show that x is absolutely continuous. Let λ be a fixed point in \mathcal{W} and A an element $A = \sum f_i(\cdot)A_i$ of A. Then

$$x_{\omega} - A_{\omega} = \sum (f_{i}(\omega) - f_{i}(\lambda)) A_{i\omega}$$

and

$$||x_{\omega}| - |A_{\omega}|| \leq \sum |f_{i}(\omega) - f_{i}(\lambda)||A_{i}||$$

 $|A_{\omega}|$ is a continuous function and $|x_{\omega}| - |A_{\omega}|$ tends to 0 when $\omega (\in W)$ tends to λ . Then $|x_{\omega}|$ is continuous at λ .

Let $\{x_n\}$ be a sequence of absolutely continuous fields in \mathcal{W} which converges to a continuous field x in \mathcal{W} . Then

$$||x_{n\omega}| - |x_{\omega}|| \le ||x_{n\omega} - x_{\omega}||_{\omega} \le ||x_n - x||_{\mathcal{U}} \to 0$$

and $|x_{\omega}|$ is a continuous function in \mathcal{W} . Hence x is absolutely continuous.

Lemma 3. 2. Consider an absolutely continuous compact set W of states on A and its compact subset U. Then every continuous positive field p in U is extensible to a continuous positive field in W.

Proof. p is extensible to a continuous field f in \mathcal{W} . Then its absolute variation $q = f^{v}$ is a desired positive extension of p.

Lemma 3. 3. Consider a compact set W of states on A. Let q be a positive continuous field in W such that each $q_w + \omega$ is a cyclic element in the space $L^2(\omega)$ (for each $\omega \in W$).

Let Q_{ω} denote a definite self-adjoint operator in $L^2(\omega)$ which $r_i A_{\omega}'$ and which is determined by $q_{\omega} = Q_{\omega}\omega$, and let f be any real continuous function in the half real-line $0 \le x \le \infty$, where we assume that f is continuous at ∞ (i. e., $\lim_{x\to\infty} f(x) = f(\infty)$). Then the operator field f(Q), whose value at $\omega \in W$ is $f(Q_{\omega})$, is a continuous operator field in W and commutes with every operator in $K_{W} = A_{W} \cup C_{W}$.

Proof. Consider the set $\mathfrak{M} = (K(q+\omega): K \in K)$. $q_{\omega} + \omega$ is cyclic in $L^2(\omega)$ (for each $\omega \in \mathcal{W}$) and $\mathfrak{M}_{\omega} (= (A(q_{\omega} + \omega): A \in A) = (x_{\omega}: x \in \mathfrak{M}))$ is uniformly dense everywhere in $L^2(\omega)$.

Then by Proposition 2.2 in Chapter 3, the uniform closure $[\mathfrak{M}]_{qy}$ of \mathfrak{M} in \mathfrak{F}_{qy} is the space \mathfrak{F}_{qy} .

Notice that

$$||X(q+\omega)||_{q_{\mathcal{V}}} \ge ||X\omega||_{q_{\mathcal{V}}} (X \in K).$$

Then $X(q+\omega) \to X\omega$ is extended to a bounded operator T in \mathfrak{F}_{qp} with

$$T(X(q+\omega)) = X\omega \quad (X \in K).$$

T is a continuous Hermitian operator field in \mathcal{W} . Its value T_{ω} at $\omega \in \mathcal{W}$ is determined by $T_{\omega} = (Q_{\omega} + I)^{-1}$ and belongs to A_{ω}' . T is a definite Hermitian in $(K_{\mathcal{W}})'$ and $|T| \leq 1$. Let f be a real continuous function in the half-line $0 \leq x \leq \infty$. g(x) = f((1-x)/x) is a continuous function in the closed interval $0 \leq x \leq 1$, the operator g(T) is a continuous operator field in $(K_{\mathcal{W}})'$ and we have $g(T_{\omega}) = f(Q_{\omega})$ ($\omega \in \mathcal{W}$). Hence the lemma follows.

Lemma 3.4. Let p be a state and A an element of A_p'' . Then p +

 $(Ap)^{n}$ is cyclic in $L^{2}(p)$.

Proof. Set $(Ap)^n = UAp = Kp$, where U is a partially isometric operator in A_p'' and K is a definite self-adjoint operator in $L^2(p)$ with $K_{\gamma} A_p'$. Notice that $(UA)^m p = K^m p \in L^2(p)$ and $(1 + \alpha UA)^{-1} p = (1 + \alpha K)^{-1} p \in L^2(p)$ for $|\alpha| < |A|^{-1}$. Then the uniform closure of $(A(1+K)p : A \in A)$ in $L^2(p)$ contains $(1 + \alpha K)^{-1}(1 + K)p$ and the range of the operator $(1 + \alpha K)^{-1}(1+K)$ which is invertible in $L^2(p)$. Q. E. D.

Lemma 3.5. Let p be a state and x any element of $L^2(p)$. If A_n is a sequence in A with $||A_np-x||_p \to 0$, then $||(A_np)^v-x^v||_p \to 0$.

Proof. By Lemma 2.5 in Chapter 1, $(A_n p)^v$ converges to x^v in the point weak topology of \overline{A} . Since $\|(A_n p)^v\|_p = \|A_n p\|_p \to \|x\|_p = \|x^v\|_p$, $(A_n p)^v$ converges to x^v in the weak topology of $L^2(p)$. Hence

$$\|(A_n p)^v - x^{v+2}\|_p^2 = \|A_n p\|_p^2 - \|x\|_p^2 - 2\Re e((A_n p)^v - x^v, x^v) \to 0.$$

Lemma 3. 6. Let μ be a distribution in the total state space S and x an element of $L^2(n)$. Regard x as a functional on K such that $x(K) = (Kx, \omega)_{\mu}$. Then the absolute vertation x^{σ} of x is a field in S which satisfies $(x^{\sigma})_{\omega} = (x_{\omega})^{\sigma}(\omega \in S)$.

Proof. Choose two sequences U_n and V_n of operators in K such that $|U_n| \le 1$, $|V_n| \le 1$, $|U_n x - x^v||_{\mu} \le 2^{-n}$ and $|V_n(x^v) - x||_{\mu} \le 2^{-n}$. Then we have $|U_{n\omega} x_{\omega} - (x^v)_{\omega}||_{\omega} \to 0$, $|V_{n\omega}(x^v)_{\omega} - x_{\omega}||_{\omega} \to 0$ and consequently $(x^v)_{\omega} = (x_{\omega})^v$ almost everywhere.

Lemma 3.7. Let W be any absolutely continuous compact set of states, x a continuous field in W and K_n a sequence in K with $||K_n\omega - x||_{W} \to 0$. Then $(K_n\omega)^v$ converges to x^v in the point weak topology of \mathcal{F}_{W} .

Proof. Let μ be any distribution in \mathcal{W} . Then $(K_n \omega)^{\nu}$ converges to x^{ν} in $L^2(\mu)$, from which the lemma follows.

Lemma 3.8. Let W be an absolutely continuous compact set of states, U its closed subset and q a continuous positive field in U. If $\omega-q$ is positive in U, then q is extended to a continuous positive field in W preserving the positivity of $\omega-q$.

Proof. q is extended to a continuous positive field r in \mathcal{W} . We choose a sequence $r_n(=K_n\omega)$ with $K_{n\omega} \in (A_{\omega})^n$) of continuous positive fields in \mathcal{W} which converges to r uniformly in $\mathfrak{F}_{\mathcal{W}}$ and which is contained in the linear span of the set $((K\omega)^p: K \in K)$. By Lemma 3. 4 each $r_{n\omega} + \omega(\omega \in \mathcal{W})$ is cyclic in $L^2(\omega)$. Let R_n denote the operator field in \mathcal{W} with $R_n\omega = r_n$ and Q the continuous operator field in \mathcal{W} with $Q\omega = q$. Now $(I+R_n)^{-1}$ are continuous operator fields in $\mathfrak{F}_{\mathcal{W}}$ and the following relations hold in $\mathfrak{F}_{\mathcal{W}}$.

$$((I+R_n)^{-1}-(I+Q)^{-1})(q+\omega)=(I+R_n)^{-1}(r_n-q)\to 0.$$

 $(K(q+\omega)\colon K \in K) = (K(I+Q)\omega\colon K \in K)$ is uniformly dense everywhere in \Re_{Q^*} . Then $(I+R_n)^{-1}$ converges to $(I+Q)^{-1}$ in the Q^* -topology of $B(\Re_{Q^*})$. Consider the function $f(x) = \min(x, 1)$ $(0 \le x \le \infty)$ and set $q_n = f(R_n)\omega$. Then q_n and $\omega - q_n$ are positive and continuous in \Re_{Q^*} and $\|q_n - q\|_{Q^*} \to 0$. We can assume without loss of generality that $\|q_n - q\|_{Q^*} \le 2^{-n-1}(n = 1, 2, \cdots)$ holds. Choose a sequence f_n of continuous functions in $\mathscr W$ which satisfies the next conditions

- (1). $1 = f_0 \ge f_1 \ge f_2 \cdots \ge 0$.
- (2). $|f_n(\omega)| ||q_{n+1\omega} q_{n\omega}||_{\omega} \leq 2^{-n} (\omega \in \mathcal{W}).$
- (3). $f_n(\omega) = 1$ for $\omega \in \mathcal{U}$.

Then $q' = q_1 + \sum f_n(\omega)(q_{n+1} - q_n)$ converges uniformly in $\mathfrak{F}_{\mathcal{W}}$. q' is the desired positive continuous extension of q in \mathcal{W} because $\omega - q'$ is positive in \mathcal{W} .

Theorem 17. Consider an absolutely continuous compact set W of states on A and its closed subset U. If K is a continuous operator field in $(K_U)'$, then K is extended to a continuous operator field in $(K_W)'$.

Proof. If K is a definite Hermitian in $K_{\mathcal{U}'}$ with $|K| \leq 1$, then K_{ω} and $\omega - K_{\omega}$ are positive continuous fields in \mathcal{U} and K_{ω} is extensible to a positive continuous field q in \mathcal{W} preserving the positivity of $\omega - q$. Choose a definite Hermitian Q in $(K_{\mathcal{W}})'$ with $q = Q_{\omega}$. Then Q is a desired extension of K.

Corollary 1. Consider an absolutely continuous compact set W of states on A and the commutor (Kw)' of the algebra Kw. Then

$$(K_{\mathcal{W}})'_{\omega} = (X_{\omega} : X \in (K_{\mathcal{W}})')$$

is a W*-algebra which is the commutor $(A_{\omega})'$ of the representative algebra A_{ω} of A in $L^2(\omega)$.

By Theorem 15, 16 and 17 we obtain:

Theorem 18. Consider an absolutely continuous compact set W of states on A. Then given any distribution μ in W, W^* -closures K_{μ}^{μ} and $((K_{\Psi})'_{\mu})''$ of algebras K_{μ} and $(K_{\Psi})'_{\mu}$ in $L^2(\mu)$ are a commutor pair in $L^2(\mu)$.

Theorem 19. Let W be given as in Theorem 18. Then the bi-commutor $(K_W)''$ of K_W in \mathcal{F}_W is the Q^* -closure $(K_W)^{\circ}$ of K_W .

§ 4. Abselute continuity of states and the Reduction Theory.

Definition 4.1. (1). A state p is said to be absolutely continuous if

every numerical function $|A_{\omega}|(A \in A)$ of the variable ω is continuous at p in the total state space S.

- (2). Consider a compact set \mathcal{W} of states on A. A state p in \mathcal{W} is said to be absolutely continuous in \mathcal{W} if every numerical function $|A_{\mathcal{W}}|(A \in A)$ of the variable ω is continuous at p in the space \mathcal{W} .
- (3). Let p be any state. An absolute weak neighbourhood $V(p:A_1, A_2, \cdots A_n, \varepsilon)$ of p is a subset of S:

$$(q \in \mathcal{S}: \max(|p(A_i)-q(A_i)|, ||A_ip|-|A_iq|) < \varepsilon).$$

A Hausdorff topology of the total state space S which is determined by the absolute weak neighbourhood of elements of S is said to be the absolute weak topology of S.

Theorem 20. Every pure state is absolutely continuous. The totality S_p of pure states is the totality of absolutely continuous states in the weak closure of S_p .

Proof. Consider a fixed pure state p. If q is any state, then $|Aq| \le |Aq|_q$ holds. Let F be any filter in the total state space S which converges to p. Then

$$\overline{\lim_{q \in F}} |Aq| \leq ||Ap||_p (A \in A).$$

p is a pure state, and every $A \in A$ satisfies $||Ap||_v = |Ap|$. Since $|Aq| = \sup_{|U| \le 1} |q(AU)|$ is lower semicontinuous on S, we have

$$\lim_{\overline{q\in F}}|Aq|\geq |Ap|\ (A\in \mathsf{A}).$$

Then we have $\lim_{q \in F} |Aq| = |Ap|$, and p is an absolutely continuous state.

Using the similar arguments of Proposition 3.1, we obtain

Proposition 4.1. Consider a compact set of states on A and a continuous field x in W. Then the absolute variation x^v is weakly continuous at every absolutely continuous state in W.

In the following propositions 4.2—4.5 we assume that the algebra A is separable.

Proposition 4.2. Let A be a separable C^* -algebra and S its total state space. Choose a countable subset $\{A_n\}$ of the unit ball U of A which is everywhere dense in U and consider a numerical function on S:

$$d^{v}(\omega) = \sum_{n} 2^{-n} |A_{n}\omega|.$$

Then d^v is a lower semicontinuous function on S. A state p is absolutely continuous in a compact subset W of S if and only if d^v (as a function in W) is continuous at p.

Proposition 4.3. Consider a metric m in S which induces the weak topology of S. Then the absolute weak topology of S is the topology induced by the metric

$$v(p, q) = m(p, q) + |d^{v}(p) - d^{v}(q)|.$$

The totality S_P of pure states in A is its closed subspace.

Proposition 4.4. A weakly compact set of states in A contains absolutely continuous states in it everywhere dense.

Proposition 4.5. Let μ be a distribution in the total state space S.

Then, removing an open set U of any small mass from S, the set S-U is absolutely continuous.

Consider a sequence $\{s_n\}$ of states in A which converges to a state s by the absolute weak topology. Then $\mathcal{W} = \{s_n, s\}$ is an absolutely continuous compact set of states in A and given any bounded operator K in A_s' we can choose a sequence K_n of bounded operators in A_{sn}' such that $|K_n| \leq |K|$ and $K_n s_n$ converges weakly to K_s . Roughly speaking, the algebra A_s' is approximated by a sequence of algebras $\{A_{sn}'\}$.

Finally we notice that Propositions 4.5 and Theorems 18, 19 include completely the v. Neumann's reduction theorem.

Let A be a C^* -algebra A in a Hilbert space \mathfrak{D} , A' its commutor and A'' its bicommutor. Consider the center $Z(=A'' \cap A')$ of A'' and its commutor Z'. It is well-known that:

Lemma.

- (1). Z is abelian and Z' contains at least a generative abelian projection E.
- (2). If the Hilbert space $\mathfrak D$ is separable, then the algebras A'' and A' are products $A'' = A_1 \times A_2$, $A' = A_1' \times A_2'$ of algebras A_1 , A_2 and their commutors A_1' , A_2' respectively, where (A_1, A_1') and (A_2, A_2') are commutor-pairs on closed supspaces $\mathfrak D_1$ and $\mathfrak D_2$ of $\mathfrak D$ such that the projection E on $\mathfrak D$ with range $E = \mathfrak D_1$ belongs to the center Z of A''. The algebra $Z_1' = (A_1 \cup A_1')''$ contains at least an abelian projection E_1 which is generative in $\mathfrak D_1$ relative to the algebra A_1 and the algebra $Z_2' = (A_2 \cup A_2')''$ contains at least one abelian projection E_2 which is generative in $\mathfrak D_2$ relative to the algebra A_2' .

Even if A is inseparable and E is an abelian generative projection in the algebra Z', we consider the smallest uniformly closed linear space \mathfrak{S}_1 which contains $(AEx: A \in A, x \in \mathfrak{S})$. The induction of the algebra A'' in \mathfrak{S}_1 is an isomorphism and E is generative in \mathfrak{S}_1 relative to the algebra A.

Consider an abelian representation (A_{λ}, E) : $A \rightarrow A_{\lambda}$ of A in a Hilbert space $\mathfrak D$ whose projection E is abelian relative to the commutor $Z'(=(A \cup A')'')$ of the center Z of A''. We call such an abelian representation a central abelian representation. Then the v. Neumann's reduction theory is essentially the reduction theory of central abelian representations.

Assume that the algebra A and the Hilbert space $\mathfrak D$ are separable. A central abelian representation $(A_\lambda, E) \colon A \to A_\lambda$ in the space $\mathfrak D$ has a suitable compoundly cyclic element g relative to the algebra A and the center Z. Then g is cyclic relative to A. This compoundly cyclic representation is unitary equivalent to the representation of A in $L^2(\mu)$ which is defined by a suitable pre-spectral distribution μ in the total state space $\mathcal S$, where the carrier of μ is the carrier of the projection E. Apply Theorem 20 to this distribution μ , then a reformed v. Neumann reduction theorem follows.

Theorem. If (A_{λ}, E) : $A \rightarrow A_{\lambda}$ is a central abelian representation of a separable C^* -algebra A, then there is a sequence Z_n of projections in the center Z of A'' such that Z_n converges to I strongly and the carrier of each Z_nE is absolutely continuous.

Next we observe the central abelian representation of a W^* -algebra.

Theorem 21. Consider a W^* -algebra A in a Hilbert space $\mathfrak D$ with an generative abelian projection E, which is abelian relative to the algebra $Z' = (A \cup A')''$. Then the center Z is the carrier algebra of A reduced by E, and the spectrum W of Z, as a compact state space on A, is absolutely continuous.

To prove the theorem we first observe the next lemma.

Lemma 4.1. Let A, Z', E and \mathcal{D} be given as in Theorem 21. Then for every $A \in A$ a definite self-adjoint operator $K_T A'$ and a partially isometric operator $U \in A$ can be so chosen as AE = KUE.

Proof. Consider a fixed $A \in A$, $g \in Range E$ and the uniform closure [Ag] of the set $(Bg: B \in A)$. By Lemmas 2. 2, 2. 3 in Chapter 1, a partially isometric operator U_g in A and a definite self-adjoint operator $K_g \gamma$ A' can be so chosen that

$$Ag = U_a K_a g$$
, Range $K_a \subseteq [Ag]$ and $U_a = U_a Z_a$,

where Z_g is the least projection in the center Z of A whose range contains [Ag]. U_g , K_g and Z_g are uniquely determined by A and g. Z_gE is a projection whose range is the uiform closure of the set $(Fg: F \in \mathbb{Z})$. Notice that $AFg = U_g K_g Fg$ $(F \in \mathbb{Z})$. Then we have

$$AZ_{g}E = U_{g}K_{g}E$$
.

The system $(Z_{\mathfrak{g}} \colon g \in \text{Range } E)$ is a directed system of projections and converges strongly to the identity I. Since $h \in \text{Range } Z_{\mathfrak{g}}E$ implies $U_h = U_{\mathfrak{g}}Z_h$ and $K_h = K_{\mathfrak{g}}Z_h$, the system $(U_{\mathfrak{g}} \colon g \in \text{Range } E)$ converges strongly to a suitable partially isometric operator U in A when $Z_{\mathfrak{g}}$ converges to I. Similarly the system $(K_{\mathfrak{g}} \colon g \in \text{Range } E)$ determines a definite self-adjoint operator $K_{\mathfrak{f}}A'$ with $K_{\mathfrak{g}} = KZ_{\mathfrak{g}}$ $(g \in \text{Range } E)$.

Proof of the theorem. (A, E) is a faithful abelian representation of A and algebraically equivalent to an abelian representation (Aw, P) which is determined by a compact state space W. The projection E is therefore identified with the coordinate projection field P in W, where Cw is the center of the algebra Aw.

Now given any $A \in A$, a partially isometric operator U in A and a definite self-adjoint operator K in A' can be so chosen that AP = UKP and $U^*AP = KP$. Then we obtain

$$A\omega = U(K\omega)$$
 and $U^*A\omega = K\omega$.

 K_{ω} is a positive field in \mathcal{W} . In fact $K_{\mathcal{W}}$ and A are identical,

$$P(B^*B)^*KP \ge 0 \ (B \in A),$$

and

$$(B^*B\omega, K\omega)_{\omega} \ge 0$$
 for every $B \in A$.

Hence $K\omega$ is the absolute variation of the field $A\omega$ and is continuous.

- \S 5. A non-commutaive extension of the Gelfand-Stone-Weierstrass Theorem in a compact space of pure traces.
 - (a). Absolute continuity of compact spaces of traces.

A state t on A is a trace if t(AB) = t(BA) holds.

Lemma 5.1. Consider a fixed trace t on A. Then

- (1). $L^2(t)$ is a two-sided invariant self-adjoint subspace of the dual space \overline{A} of A.
 - (2). $x \rightarrow x^*$ is a conjugate linear and isometric automorphism of $L^2(t)$.
- (3). Let A_i denote the algebra of left multiplies $(A_i: A \in A)$ of A in A where $(A_ix)(B) = x(AB)$ holds for every A, $B \in A$ and $x \in A$). Then A_i'' and $(A_i)_i''$ are a commutor pair in $L^2(t)$.

We denote by \mathcal{I} the totality of traces on A. If \mathcal{W} is a compact space of traces on A and x is a vector field in \mathcal{W} , then we denote by x^* a field $(x^*)_{\omega} = (x_{\omega})^*$ on \mathcal{W} . If X is an operator field in K, each value X_{ω} of X belongs to A. We denote by X_i an operator field in \mathcal{W} with $(X_i)_{\omega} = (X_{\omega})_i$ $(\omega = \mathcal{W})$.

Lemma 5.2. Consider a fixed distribution y in \mathfrak{I} . Then:

- (1). $x \in L^2(\mu)$ and $K \in K$ implie Kx, $K_1x \in L^2(\mu)$.
- (2). $x \rightarrow x^*$ is a reflexive, conjugate linear and isometric automorphism of the Hilbert space $L^2(\mu)$.
- (3). Strong closures of the representative algebras $(K_{\mu})^{\mu}$ and $(K_{l\mu})^{\mu}$ are a commutor pair in $L^{2}(\mu)$.

These two lemmas follow immediately from the well-known trace theory. Further we obtain the next proposition.

Proposition 5.1. Consider a compact set W of traces on A. Then

- (1). W is absolutely continuous.
- (2). \mathfrak{F}_{qv} is *-invariant and invariant under algebras K and K_i .
- (3). $x \rightarrow x^*$ is reflexive, conjugate linear and isometric automorphism of the Banach space \mathcal{E}_{qv} .
- (4). Q^* -closures $(K_W)_q$ and $(K_l W)_q$ of K_W and $K_l W$ in the Banach space \mathcal{F}_W are a commutor pair.
- *Proof.* (1). Consider a trace t and an element A of A. Then $At = U(A^*A)^{\frac{1}{2}}t$, where U is a partially isometric operator in A_t " and $(A^*A)^{\frac{1}{2}}t$ is a positive definite functional. The absolute variation of At is $(A^*A)^{\frac{1}{2}}t$ and the field $A\omega$ is absolutely continuous in the total trace space \mathcal{I} .

Hence (1) follows.

- Since (2) and (3) are obvious, we prove (4) only. \mathcal{W} is absolutely continuous and $(K_{\mathcal{W}})^q$ is the bicommutor of $K_{\mathcal{W}}$ in $\mathfrak{F}_{\mathcal{W}}$. The conjugate linear isometric automorphism $x \leftrightarrow x^*$ in $\mathfrak{F}_{\mathcal{W}}$ determines a conjugate linear spatial isomorphism $X \leftrightarrow (X^*)_l$ because $(Xx^*)^* = (X^*)_l x$. Then $(K_{\mathcal{W}})^q$ is the bicommutor of $K_{\mathcal{W}}$. Since $(K_{\mathcal{W}})^q$ and $(K_l w)^q$ commute with each other, to prove (4) it is sufficient to show that $(K_{\mathcal{W}})'$ and $(K_l w)'$ commute with each other. Let $X \in (K_{\mathcal{W}})'$ and $Y \in (K_l w)'$. X is a continuous operator field which commutes with $K_{\mathcal{W}}$ and whose each value $X_{\mathcal{W}}$ ($\mathcal{W} \in \mathcal{W}$) belongs to $(K_{\omega})' = (A_{\omega})' = (A_{\omega})_l''$. Similarly Y is a continuous operator field whose each value Y_{ω} belongs to A_{ω}''' and which satisfies $X_{\omega}Y_{\omega} = Y_{\omega}X_{\omega}$. Then we have XY = YX and hence $((K_{\mathcal{W}})^q, (K_l w)^q)$ is a commutor pair in $\mathfrak{F}_{\mathcal{W}}$.
 - (b). 4-mapping in the dual space of C*-algebra.
 - Hereafter we shall use the following notations.
- (1). If $A \in A$, then U_A is the smallest uniformly closed convex subset of A which contains $(U^*AU: U \text{ are unitary operators in } A)$.
- (2). U denotes the smallest uniformly closed convex set of bounded operators in the dual space A of A which contains the set $(U^*_{\iota}U: U \text{ are unitary operators in A})$, where $y = U^*_{\iota}Ux$ implies $y(A) = x(U^*AU)$.
- (3). If x is a functional in A, then [Ux] is the uniform closure of the set (Tx: T = U) in the dual space of A.
- (4). If μ is a distribution in the total trace space \mathcal{I} and x is a field in $L^2(\mu)$, then $[Ux]_{\mu}$ is the uniform closure of the set $(Tx: T \in U)$ in $L^2(\mu)$.
- (5). If \mathcal{W} is a compact set of traces in A and x a continuous field in \mathcal{W} , then $[Ux]\mathcal{W}$ is the uniform closure of the set $(Tx: T \subseteq U)$ in \mathcal{F}_{cw} .

we first prepare some lemmas and sub-lemmas to define the 4-applications of functionals in A.

Sub-lemma 1. S, $T \in U$ implies $ST \in U$.

Sub-lemma 2. Let t be a trace and x an element of $L^2(t)$. Then [Ux] is the uniform closure of $(Tx: T \subseteq U)$ in $L^2(t)$.

Lemma 5. 3. Consider a fixed trace t on A.

- (1). $x \in L^2(t)$ and $y \in [Ux]$ imply $[Uy] \subseteq [Ux]$.
- (2). If $x, y \in L^2(t)$ and $x_0 \in [Ux]$, then a $y_0 \in [Uy]$ can be so chosen that

$$||x_0-y_0||_t \le ||x-y||_t$$
 and $x_0+y_0 \in [U(x+y)]$.

(3). Let x_n and y_n be two sequences in $L^2(t)$ such that

$$||x_n - x||_t \to 0$$
, $||y^n - y||_t \to 0$ and $y_n \in [Ux_n]$.

Then $y \in [Ux]$

Proof. (1). $T \in U$ implies $T[Ux] \subseteq [Ux]$. Then $y \in [Ux]$ implies $(Ty: T \in U) \subseteq [Ux]$ and $[Uy] \subseteq [Ux]$. Hence (1) follows.

(2). If x, $y \in L^2(t)$ and $x_o \in [Ux]$, then a sequence $\{x_n\}(x_n = T_n x)$ with $T_n \in U$ can be so chosen that $\|x_n - x_0\|_{t} \to 0$. Now $\{y_n\}(y_n = T_n y)$ is a sequence in [Uy] and has at least a sub-sequential weak limit y_o because of the weak compactness of [Uy]. Since $x_n + y_n \in [U(x + y)]$ and

$$||x_n - y_n||_t = ||T_n(x - y)||_t \le ||x - y||_t$$

the desired relations in (2) are satisfied.

(3) follows immediately from (2). Similarly as Lemma 5.3, we have the following lemma.

Lemma 5. 4. Consider a fixed distribution μ in the total trace space \mathfrak{I} . Then

- (1). $x \in L^2(\mu)$ and $y \in [Ux]_{\mu}$ imply $[Uy]_{\mu} \subseteq [Ux]_{\mu}$.
- (2). If $x, y \in L^2(\mu)$ and $x_o \in [Ux]_{\mu}$, then a $y_o \in [Uy]_{\mu}$ can be so chosen that

$$||x_o - y_o||_{\mu} \le ||x - y||_{\mu} \text{ and } x_o + y_o \in [U(x + y)]_{\mu}.$$

(3). Let x_n and y_n be two sequences in $L^2(t)$ such that

$$||x_n-x||_{\mu}\to 0, ||y_n-y||_{\mu}\to 0 \text{ and } y_n\in [Ux_n]_{\mu}.$$

Then $y \in [Ux]_{\mu}$.

Proposition 5.2. Consider a trace t and a functional x in $L^2(t)$.

Then there is one and only one functional x in $L^2(t)$ such that $x^4 \in [Ux]$ and $x^4(AB) = x^4(BA)$ $(A, B \in A)$.

Proof. A_t'' is a W^* -algebra of finite type in which the Dixmier's A_t -application is defined. The A^* of $A \in A$ is contained in the common part of the center of A_t'' and the strong closure of U_A in A_t'' . In fact, A^* is contained in the uniform convex span of the set $(U^*AU: U$ are unitary operators in A_t''). Each U is a strong limit of unitary operators in A. Since $U^*_{l}U(At) = UAU^*_{l}t(A, U \in A)$, [U(At)] is the uniform closure of the set $(Tt: T \in U_A)$ and contains $A^*_{l}t$.

Hence putting x = At and $x^{4} = A^{4}t$ we have the relations

$$x^{q}(AB)=x^{q}(BA)$$
 and $(U^{*}_{i}Ux)^{q}=x^{q}\in [Ux]$ (for unitary U in A).

The mapping $At \to (At)^{\frac{1}{2}} = A^{\frac{1}{2}}t$ is extended to a bounded linear mapping $x \to x^{\frac{1}{2}}$ in $L^2(t)$ which preserves above relations in virtue of Lemma 5.3. Finally we prove the uniqueness of $x^{\frac{1}{2}}$ in the proposition. Suppose that there is another functional y in [Ux] such that y(AB) = y(BA). Since we have $(Tx)^{\frac{1}{2}} = x^{\frac{1}{2}}(T \in U)$, $y \in [Ux]$ implies $y^{\frac{1}{2}} = x^{\frac{1}{2}}$. Hence $Ty = y(T \in U)$ implies $y = y^{\frac{1}{2}} = x^{\frac{1}{2}}$ and the uniqueness of $x^{\frac{1}{2}}$. Q. E. D.

Now we observe the Δ -application of pure traces. A trace t is said pure if the algebra A_t is a factor. We have immediately:

Lemma 5. 5. A trace t is pure if and only if $x \in L^2(t)$ implies $x^4 = x(1)t$.

We next define the Δ -applications of vector fields and operator fields.

- (1). If \mathcal{W} is a compact set of taces and x is a vector field in \mathcal{W} , then we denote by x^{4} the field $(x^{4})_{\omega} = (x_{\omega})^{4}$ in \mathcal{W} .
- (2). If t is a trace, then the $\not a$ -application of $A \in A$ in A_t " is denoted by $(A_t)^{\not a}$.
- (3). Consider the totality \mathcal{I} of traces in A. If $A \in A$, then we denote by A^{\sharp} the operator field in \mathcal{I} such that $(A^{\sharp})_{\omega} = (A_{\omega})^{\sharp} (\omega \in \mathcal{I})$.
- (4). If μ is a distribution in \mathcal{I} , then $(A_{\mu})''$ is a W^* -algebra of finite type in $L^2(\mu)$. The \mathcal{L} -application of $A \in A$ in $(A_{\mu})''$ is denoted by $(A_{\mu})^{\sharp}$.

Lemma 5.6. Consider a distribution μ in the total trace space \mathfrak{I} . Then the A^{\sharp} of each $A \subseteq A$ is a measurable operator field in $L^{2}(\mu)$ and identical with the operator $(A_{\mu})^{\sharp}$.

Proof. $(A^{\mu})^{\sharp}$ is contained in the common part of the cenfer of $(A_{\mu})''$ and the strong closure of U_{A} in $(A_{\mu})''$. If f is a continuous function in \mathcal{G} , $(A_{\mu})^{\sharp}$ f belongs to the center of K_{μ}'' . Then

$$(BC(A_{\mu})^{\sharp} f \omega, \omega)_{\mu} = (CB(A_{\mu})^{\sharp} f \omega, \omega) (B, C \in A).$$

and

$$\int f(\omega)((A)^{4}_{\mu}\omega)_{\omega}(BC)d\mu(\omega) = \int f(\omega)((A_{\mu})^{4}\omega)_{\omega}(CB)d\mu(\omega).$$

For each fixed B, C in A the equality

$$((A_{\mu})^{\dagger}\omega)_{\omega}(BC) = ((A'_{\mu})^{\dagger}\omega)\omega(CB)$$

holds almost everywhere. $(A_{\mu})^{\varphi_{\omega}}$ is regularly and weakly measurable. Then, removing an open set of any small mass from \mathcal{I} , it is weakly continuous. Hence the above equality is valid for every B, C in A removing a fixed null sup-set of \mathcal{I} .

On the other hand $(A_{\mu})^{4}$ is contained in the strong closure of U_{λ} in $(A_{\mu})^{\prime\prime}$ and a sequence T_{n} in U_{λ} can be so chosen that

$$|T_n\omega-(A_\mu)^{\frac{\alpha}{2}}\omega|_{\mu}^2=\int ||T_n\omega-((A_\mu)^{\frac{\alpha}{2}}\omega)_{\omega}|_{\omega}d\mu(\omega)\leq 4^{-n}.$$

Now we have

$$|T_{n\omega}-((A_{\mu})^{\sharp}\omega)_{\omega}|_{\omega}\to 0 \ (n\to\infty) \ \text{and} \ ((A_{\mu})^{\sharp}\omega)_{\omega}\in [\mathsf{U}(A_{\omega})]$$

almost everywhere, By these relations we have $((A_{\mu})^{4}\omega)_{\omega} = (A^{4})\omega$ almost everywhere, and the equality in $L^{2}(\mu)$:

$$(A_{\mu})^{a}x = A^{a}x$$

is valid for every $x = \sum_{i=1}^{n} f_i A_i$ with $f_i \in \mathbb{C}$ and $A_i \in A$. Then the same equality is valid for every $x \in L^2(\mu)$ and hence A^{\sharp} is a measurable operator field which is identical with $(A_{\mu})^{\sharp}$ in $L^2(\mu)$. Hence the lemma follows.

We now obtain the following proposition.

Proposition 5. 3. Consider a distribution μ in the total trace space \mathcal{I} and a vector field x in $L^3(\mu)$. Then $[Ux]_{\mu}$ contains the field x^{μ} .

Proof. Consider a subset of $L^2(\mu)$:

$$\mathfrak{M} = (x \in L^2(\mu): y \in [Ux]_{\mu} \text{ implies } x^{4} = y^{4} \in [Uy]_{\mu}).$$

We show that \mathfrak{M} satisfies the following (1)—(4).

- (1). M is uniformly closed.
- (2). $(A_{\omega}: A \in A) \subseteq \mathfrak{M}$.
- (3). $f \in \mathbb{C}$ and $x \in \mathfrak{M}$ imply $fx \in \mathfrak{M}$.
- (4). $x, y \in \mathfrak{M} imply x + y \in \mathfrak{M}$.
- (1) follows from (3) of Lemma 5. 4. (2) follows from what $T \in U_{A}$ implies $T^{\sharp} = A^{\sharp}$ and $(A^{\sharp}\omega) = (T^{\sharp}\omega) \in [U(T\omega)]_{\mu}$. We now prove (3). Let $f \in \mathbb{C}$ and $x \in \mathfrak{M}$. Every y = Tfx with $T \in \mathbb{U}$ satisfies the relation:

$$y^{4} = fx^{4} \subseteq f[UTx]_{\mu} \subseteq [U(y)]_{\mu}$$
.

Then the same relations are satisfied by every $y \in [U(fx)]_{\mu}$ and hence $fx \in \mathfrak{M}$. We finally prove (4). Let $x, y \in \mathfrak{M}$. By $x^{q} \in [Ux]_{\mu}$ we can choose a suitable $y_{o} \in [Uy]_{\mu}$ such that $x^{q} + y_{o} \in [U(x+y)]_{\mu}$. Now

$$x^4 + [Uy_o]_\mu \subseteq [U(x+y)]_\mu$$

and

$$(x^{4}+y)^{4}=x^{4}+y_{o}^{4}\in x^{4}+[Uy_{o}]_{\mu}\subseteq [U(x+y)]_{\mu}.$$

Notice that $T \in U$ implies $(Tx)^{\frac{1}{2}} = x^{\frac{1}{2}}$, $(Ty)^{\frac{1}{2}} = y^{\frac{1}{2}}$ and Tx, $Ty \in \mathfrak{M}$. Then every z = T(x+y) ($T \in U$) satisfies the relations:

$$(x+y)^{4}=z^{4}\in [U_{z}]_{\mu}$$

The same relations are satisfied for every $z \in [U(x+y)]_{\mu}$ and hence x+y belongs to \mathfrak{M} .

By (1)···(4) \mathfrak{M} contains the set $(Af: A \in A \text{ and } f \in C)$ and its uniform linear span $L^{\mathfrak{g}}(\mu)$, from which the proposition follows.

(c). A generalized Stone-Weierstruss Theorem in a pure state space.

To study the problem which is mentioned in the section 3 of Chapter 3, we introduce here the following notations.

- (1). We denote by A4 the smallest C^* -algebra of operator fields in the total trace space \mathcal{I} which contains the set $(A^{\sharp}: A \in A)$.
- (2). If μ is a distribution in the total trace space \mathcal{I} , then we denote by $[A_{\omega}]_{\mu}$ the uniform closure of the set $(A_{\omega}: A \in A)$ in $L^{2}(\mu)$.

Lemma 5. 3. Consider a distribution μ in the total trace space \mathfrak{I} . Then the set $(X_{\omega} \colon X \in A^{\sharp})$ is contained in $[A_{\omega}]_{\mu}$.

Proof. Let E denote the projection in $L^2(\mu)$ whose range is $[A_{\omega}]_{\mu}$. Then E commutes with every operator in the strong closure $(A_{\mu})''$ of A in $L^2(\mu)$. The $A^{\frac{1}{2}}$ of each $A \in A$ belongs to $(A_{\mu})''$ and commutes with E. Hence every operator X in $A^{\frac{1}{2}}$ commutes with E. Since ω is contained in the range of E, we have

$$(X_{\omega}: X \in A^{4}) \subseteq \text{Range } E = [A_{\omega}]_{\mu}. \text{ Q. E. D.}$$

Consider the totality \mathcal{I}_p of pure traces on A. If the algebra A is abelian, then \mathcal{I}_p is the spectrum of A and there is a one-one correspondence between the totality \mathcal{I} of traces and the totality of distributions in \mathcal{I}_p .

Consider a prespectral distribution μ in \mathcal{I}_p in the sense of Definition

1.7 in Chapter 2 and set $p = \int \omega d\mu$. Then the Fourier induction

$$x \in L^2(\mu) \rightarrow \int x_\omega d\mu(\omega)$$

is an isometry between $L^2(\mu)$ and $L^2(p)$. If A is abelian, every distribution μ in \mathcal{I}_p is prespectral because $L^2(\mu)$ is the Hilbert space of square summable and measurable functions in \mathcal{I}_p . We now show that these es-

sential properties of distributions in \mathcal{I}_p are preserved even if A is non-abelian.

Theorem 22. Let μ be a distribution in the total trace space \mathfrak{I} whose carrier \mathfrak{W} consists of pure traces except for a null set. Then μ is prespectral and the center of $(A_{\mu})''$ is the totality $M(\mu)$ of bounded measurable functions in \mathfrak{I}_n .

Proof. Notice that the operator field A^{\sharp} of $A \in A$ satisfies

$$(A^{\sharp})_{\omega} = (A_{\omega})^{\sharp} = \omega(A)I \quad (\omega \in \mathcal{I}_p).$$

Then abla-application $(A_{\mu})^{\phi}$ of A in $L^{2}(\mu)$ is the primitive function J_{A} of A in \mathcal{W} which is defined by $J_{A}(\omega) = \omega(A)$ in \mathcal{W} . The smallest C^{*} -algebra of operator fields in \mathcal{W} which contains $(J_{A}: A \in A)$ is the totality $C_{\mathcal{W}}$ of continuous functions in \mathcal{W} . Then we have $A^{\phi} = C_{\mathcal{W}}$ and $(f_{\omega}: f \in C_{\mathcal{W}}) \subseteq [A_{\omega}]_{\mu}$. By Lemma 1.8 in Chapter 2 μ is a prespectral distribution. The center of $(A_{\mu})^{\prime\prime}$ is the strong closure of $A^{\phi}(=C_{\mathcal{W}})$ in $L^{2}(u)$ and is the algebra $M(\mu)$.

The space \mathcal{I}_p is not generally compact, but its compact subspaces have the following properties.

Theorem 23. A compact set W of pure traces is a prespectrum. If x is a continuous field in W, then for any $\varepsilon > 0$ we can choose a $T = \sum \alpha_i U_{ii}^* U_i \in U$ such that

$$\sup_{\omega \in \mathcal{W}} |Tx_{\omega} - (x_{\omega})(I)\omega|_{\omega} < \varepsilon.$$

Proof. Every distribution μ in \mathcal{W} is prespectral, and by Theorem 14 \mathcal{W} is a pre-spectrum. Next, consider a fixed $x \in \mathcal{F}_{\mathcal{W}}$ and the set $[Ux]\mathcal{W}$ (=the uniform closure of the set $(Tx: T \in U)$ in $\mathcal{F}_{\mathcal{W}}$). If μ is a distribution in \mathcal{W} , the field x is contained in its uniform closure $[Ux]_{\mu}$ in $L^2(\mu)$. Since $x^{\mu}(=x_{\omega}(I)_{\omega}$ in \mathcal{W}) belongs to $\mathcal{F}_{\mathcal{W}}$, by Proposition 2.1 in Chapter 3 $x_{\omega}(I)_{\omega}$ belongs to $[Ux]_{\mathcal{W}}$ and hence the theorem follows.

Consider a compact set \mathcal{W} of traces in A. A trace $t \in \mathcal{W}$ is said A-continuous in \mathcal{W} if every numerical function $||A^{\frac{1}{2}}\omega||_{\omega}(A \in A)$ of the variable ω is continuous in \mathcal{W} .

Proposition 5. 3. Consider a compact set W of traces on A and a continuous field in W. If x is $\not\vdash_{I}$ -continuous in W, then $x^{\not\vdash_{I}}$ and the numerical function $\|(x^{\not\vdash_{I}})_{\omega}\|_{\omega}$ of the variable ω are weaky continuous in W respectively.

Proof. If $A, B \in A$, then the function of the variable ω :

$$A^{\dagger}\omega(B) = (B\omega, A^{*\dagger}\omega)_{\omega} = (B^{\dagger}\omega, A^{*\dagger}\omega)_{\omega}$$

is continuous in \mathcal{W} . Therefore every $A^{\frac{1}{2}}\omega(A \in A)$ is weakly continuous in

W. Consider a field $x = \sum f_i A_{i\omega}$ ($f_i \in \mathbb{C}$, $A_i \in \mathbb{A}$ and its \mathcal{L} -application $x^{\mathcal{L}} = \sum f_i A_i^{\mathcal{L}}_{\omega}$. Then $x^{\mathcal{L}}$ and the numerical function of the variable ω :

$$||x^{\dagger}_{\omega}||_{\omega}^{2} (= \sum \overline{f_{i}(\omega)} f_{i}(\omega) (A_{i}^{*\dagger} \omega) (A_{i}))$$

are weakly continuous and continuous in \mathcal{W} respectively.

Proposition 5. 4. Every pure trace is 4-continuous in \mathfrak{I} . The totality \mathfrak{I}_p of pure traces is the totality of 4-conuous points in the weak closure of \mathfrak{I}_p . If the algebra A is separable, then \mathfrak{I}_p is a G_8 -subspace of $\mathfrak I$ and has a complete metric which induces the wevk topology.

Proof. If $A \subseteq A$, then the function of the variable ω :

$$||A^{\mbox{\scriptsize d}}\omega||_{\omega}(=\inf_{T\in U}||T(A\omega)||_{\omega})$$

is upper semicontinuous in \mathcal{I} , and \mathcal{I}_p is the set

$$\mathcal{I}_{p} = \bigcap_{A \in A} (t \in \mathcal{I} : ||A^{q}t||_{t} = |t(A)|).$$

Let \mathcal{I}_p be the weak closure of \mathcal{I}_p . Then a trace in \mathcal{I}_p is \mathcal{L} -continuous in \mathcal{I}_p if and only if it belongs to \mathcal{I}_p .

Assume that A is separable and choose a countable subset $\{A_n\}$ of A which is dense verywhere in the unit ball of A. Then we have

$$\mathcal{G}_{p} = \bigcap_{n=1}^{\infty} (t \in \mathcal{G}: \|A_{n} + t\|_{t} = |t(A_{n})|)$$

and \mathcal{I}_p is a G_{δ} -subset of \mathcal{I} . Q. E. D.

Assume that A is separable and consider the sequence A_n in the unit ball of A which is everywhere dense in it. Then

$$d^{4}(t,s) = \sum_{n=1}^{\infty} 2^{-n} | \|A_{n}^{4}t\|_{t} - \|A_{n}^{4}s\|_{s} |$$

is a metric in \mathcal{I} . We call it a β -metric in \mathcal{I} and its induced topology a β -weak topology of \mathcal{I} .

If a distribution μ in \mathcal{I} vanishes outside of \mathcal{I}_p , it is regarded as a distribution in \mathcal{I}_p such that every Borel set in \mathcal{I}_p is measurable and, removing a suitable set of any small mass from \mathcal{I}_p , each measurable set is compact. Such a distribution in \mathcal{I}_p is said merely a distribution in \mathcal{I}_p . Consider the totality $D(\mathcal{I}_p)$ of distributions in \mathcal{I}_p and the totality $C(\mathcal{I}_p)$ of continuous functions in \mathcal{I}_p . $D(\mathcal{I}_p)$ is a subset of the dual space of $C(\mathcal{I}_p)$ in which the weak topology is defined.

Theorem 24. If A is separable, every trace t on A is a mean

$$t = m_{\mu} = \int_{\omega} d\mu (\omega)$$

of a suitable distribution μ in \mathfrak{I}_p . The mapping

$$\mu \in D(\mathcal{I}_p) \to m_\mu \in \mathcal{I}$$

is a homeomorphism between $D(\mathfrak{I}_p)$ and \mathfrak{I}_p in their weak and β -weak topologies.

Proof. Let t be a trace and Z the center of $(A_t)''$. By Proposition 1. 7 in Chapter 2, a prespectral distribution μ in the total state space S is so uniquely chosen that two representations $(A_t, Z, L^2(t))$ and $(A_\mu, M(\mu), L^2(\mu))$ are unitary equivalent. It is easy to show that the carrier of μ is contained in \mathcal{I} and consists of pure traces almost everywhere. Since every distribution in \mathcal{I}_p is prespectral, the mapping $\mu \to m_\mu$ is one-one between $D(\mathcal{I}_p)$ and \mathcal{I} . We show that the mapping is a homeomorphism. Since $(A_\omega)^{\frac{1}{2}} = \omega(A)I = J_A(\omega)I$ holds for $A \in A$ and $\omega \in \mathcal{I}_p$, $C(\mathcal{I}_p)$ is regarded as the smallest C^* -algebra of operator fields in \mathcal{I}_p which contains $(A^{\frac{1}{2}}: A \in A)$. Let $\mu \in D(\mathcal{I}_p)$, $x \in L_2(\mu)$, $t = m_\mu = \int \omega d\mu$ and $m_x = \int x_\omega d\mu(\omega) \in L^2(t)$. Then we have

$$(A_t)^{\frac{1}{4}}m_x = \int (A_\omega)^{\frac{1}{4}}x_\omega d\mu(\omega) = \int J_A(\omega)x_\omega d\mu(\omega).$$

For every operator field $X \subseteq A^{\sharp}$ in \mathcal{I} a continuous function f_x in \mathcal{I}_p is so determined that

$$(X_t t, t)_t = \int f_X(\omega) d\mu(\omega).$$

By the mapping $\mu \to m_{\mu}$ the weak topology in $D(\mathcal{I}_r)$ is induced to the weakest topology in \mathcal{I} such that each numerical function $(X_t t, t)_t$ (where $X \in A^{\sharp}$) of the variable t is continuous in \mathcal{I} . The \sharp -weak topology of \mathcal{I} is the weakest topology such that each $((A_t)^{\sharp}t, (A_t)^{\sharp}t)_t$ ($A \in A$) is continuous. Then it is weaker than the former induced weak topology. Conversely, let t_n be a sequence in \mathcal{I} which converges to $t \in \mathcal{I}$ in the \sharp -weak topology. Then $(A^{\sharp}t_n)(B) = (B^{\sharp}t_n, A^{*\sharp}t_n)_{t_n} \to (A^{\sharp}t)(B)$ and $t_n(A) = (A^{\sharp}t_n, I^{\sharp}t_n)_{t_n} \to t(A)$ when $n \to \infty$. Therefore $\mathcal{W} = \{t, t_1, t_2, \cdots\}$ is a weakly compact sub-set of \mathcal{I} in which every $A^{\sharp}\omega$ ($A \in A$) is a continuous field. Now $A^{\sharp}(K\omega) = KA^{\sharp}\omega \in \mathfrak{F}_{\mathcal{W}}(K \in K)$ imply that every $A^{\sharp}(A \in A)$ and consequently every $X (\in A^{\sharp})$ are continuous operator fields in \mathcal{W} , so that we have $(X_{tn}t_n, t_n)_{tn} \to (X_tt, t)_t$ ($X \in A^{\sharp}$) and t_n converges to t by the induced weak topology. Hence $\mu \leftrightarrow m_{\mu}$ is a homeomorphism between $D(\mathcal{I}_{\mathcal{T}})$ and \mathcal{I} .

REFERENCES

- [1] J. DIXMIER: Les Algébres d'opérateurs dans l'éspace Hilbertien (1955).
- [2] ______: Application 4 dans les anneux d'opérateurs, Comps. Math., 10, (1952), 1-55.
- [3] _____: Algébres quasi-unitaires, Comm. Math. Helv., 26 (1952), 275—322.
- [4] I. GEFAND and M. NAIMARK: On the imbeddig of normed rings in the ring of operators in Hilbert space. Mat. Sbornik., 12 (1943), 197—213.
- [5] I. GRIFFINE: Some contributions to the theory of rings of operators II. Traas. Amer. Math. Soc. 79 (1955), 389-400.
- [6] A. Grothendiek: Un resultät sul le dual d'une C*-algebre. J. Math., 36 (1957),
- [7] R. v. KADISON: Unitary invariants for representations of oprator algebras, Ann. Math., 57 (1957), 304—379.
- [8] I. KAPLANSKIY: Quelques résultats sul les anneux d'opérateurs, C. R. Acad. Sci., 231 (1950), 485—486.
- [9] : A theorem of rings of operators. Paci. J. Math., 1 (1951), 227-232.
- [10] F. J. Murray and J. v. Neumann: On rings of Operator. Ann. Math., 37 (1936), 116-229.
- [11] J. v. NEUMANN: On rings of operators. Reduction. theory, Ann. Math., 37 (1936).
- [12] MANTNER: Irreducible Representations of locally compact groups, Ann. Math., 51 (1950), 401-485.
- [13] Z. TAKEDA: Conjugate spaces of Operator algebras, Proc. Jap. Acad., 30 (1954), 40 -95.
- [14] I. E. SEGAL: Irreducible representations of operator algebras, Bull. Amer. Math. Soc., 13 (1947), 73-88.
- [15] _____: A nontcommutative extension of the abstract integration, Ann. Math., 57 (1953), 401—457.
- [16] M. TOMITA: Harmonic analysis in locally compact groups, Math. J. Okayama Univ., (1956), 133—193.
- [17]_____: Spectal theory of operator algebras I. Math. J. Okayama Univ., (1959), 63-98.

DEPARTMENT OF MATHEMATICS, OKAYAMA UNIVERSITY

(Received July 1, 1960)