SPECTRAL THEORY OF OPERATOR
ALGEBRAS 11

Minoru TOMITA

This paper is a continuation of the preceding ‘“‘Spectral Theory of
Operator Algebras I” in this journal and consists of the latter three
chapters.

Chapter 3. Extensions of Kaplansky Density Theorem and
Gelfand-Naimark Representation Theory.

§ 1. An extension of Kaplansky Density Theorem.

(a). C*-algebra in general Banach space.

In what follows we consider C*-algebras whose underlying spaces are
not generally Hilbert spaces. Then we first define a C*-algebra in a general
Banach space.

Definition 1. 1. A topologico-algebraic homomorphism of a C*-algebra
A in an operator algebra in a certain Banach space B is said to be a
representation of A in B.

An operator algebra A on a Banach space B is said to be a C*-algebra
on B if A is isometric and isomorphic to a C*algebra.

The above definition is compatible with the ordinary definition of C*
algebra whenever the underlying Banach space B is a Hilbert space.
In fact, let A be an operator algebra in a Hilbert space © which contains
the identity, where we do not need to assme that A is self-adjoint. If A
is isometric and isomorphic to another C*-algebra, then A is a uniformly
closed self-adjoint algebra in the Hilbert space.

Proposition 1. 1.” If a C*algebra A is represented in a Banach space
B, then the representative algebra A% is topologico-algebraically isomorphic
to a C*algebra. If the representation A— AB satisfies |AB|<|A|, where
| A8| is the operator norm of AB in B, then As is a C*-algebra on B.

To prove the proposition we prepare the next lemma.

Lemma 1. 1. Let A be an element of A, and put B = (A*A)*. Then
two sequences {U,} and { V,} in A can be so chosen that |U,| <1, | Va| £ 1,
|U,A—B|— 0 and |V,B—A|— 0.

Proof. Assume that the uniform closure 11(A4) of the set (UA: UE A

1) Kaplansky 8).
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and |U|< 1) does not contain B. Then a functional f € A and a number
6>> 0 can be so chosen that Re f(B)+d < Re f(UA) for every UE A with
|U|<1. Consider a positive linear functional p on A with f& L*(p)
and a partially isometric operator U, A, in L¥p) such that B =(A*A)*%
= U,A. U, is contained in the strong closure of the unit ball of A,, and
F(B) = (Bf, p)» = (U,AF, p), hold. It is incompatible with the above Klein-
Smulian’s inequality. Then 11(A) contains B. Similarly 11(B) contains A.
Q.E.D.

Proof of Proposition 1.1. Let A— Am be the representation of A
in As. Then a number % can be so chosen as |As|<k|A|. Consider an
ideal N=(A€A; As=0)of A. Then IASB\gitg kE|A—B|=|A/N|. Itis

B

well-known that A/N is a C*algenra. Then to prove the proposition it is
sufficient to show the inequality k|As|=|A/N|. Let A be a fixed
element of A, and put B=(A*A)%. By Lemma 1.1 we have %|Bs|<|As]|
<Fk7'|Bs|, and k=1 implies |Bs|=|As|. The smallest C*-sub-algebra
R of A which contains I and B is an abelian algebra. Let £ denote the
spectrum of the quotient algebra R/(N\UR). £ is the totality of maximal
ideals of R which contains NNR. And | X/(NNR)|= sup | X/ 2| holds for

Xe&R, On the other hand, R/NNR is a normed algebra with the
norm || X/NNR]|| = | X8|. By the Gelfand-Silov’s Theorem we have

1
| Xl = |X3/% = sup 1X/2l = | X/(NAR)| = | X/N|.
Thus we have | A/N| = |Bwn| <k| As|, from which the proposition follows.

(b). A generalization of the Kaplansky Density Theorem.

Consider a fixed C*-algebra A and its left ideal N. The quotient space
A/N is a Banach space with the quotient norm |A/N| = llglgf |A—B|, and
A is represented as an operator algebra Ay, so called the re;ular represen-
tation algebra of A, in A/N. The represented operator Ay of A€ A
is an operator in A/N with Anx =AX/N, where x=X/Ne A/N. By
Proposition 1. 1 Ay is a C*algebra on A/N.

A/N is a Banach space, and the strong topology is defined in the
totality of bounded operators in it. Consider the strong closure H of the
totality of Hermitian elements in Ay and the set Ay = (X+iY: X, YE
H) of bounded operators in A/N. If A= X+i{Y(X, Y=H) belongs to
AyY the operator A*=X—iY is called the adjoint of A.

As we shall observe below, Ay® is a C*algebra on A/N. The Q*topo-
logy is defined as the self-adloint strong topology in A% A Q*-neighbour-
hood (a quotient strong neighbourhood) of an X& Ay is a set



SPECTRAL THEORY OF OPERATOR ALGEBRAS II 21

U(X: x5, g - 22 e) = (YEAW: %?;(I(X_ Y)xl, [(X*—Y)x)<e),
where %, %», +-* X, are a fininite number of elements in A/N and ¢ is a
positive number. A Hausdorf topology of A% whose open base is the
totality of @*neighbourhoods of elements of Ay? is said to be the @*
topology (quotient strong topology) of Ay divided by N. And a Q*closed
x-sub-algebra of Ay’ is said to be a Q*-sub-algebra of A\’

An urtra-Q-*neighbourhood (a quotient urtra-strong neighbourhood) of
an X Ay is a set U(X: {5}, ¢) = (Y€ Ay sup (|(X— )z, [(X*—
Y*)x,|) <<e), where {x;} is a uniformly convergent sequence in A/N and
¢ is a positive number. A Hausdorff topology of Ay’ whose open base in
the totality of urtra-Q*-neighbourhoods of elements of A’ is said to be
an urtra-Q*topology (quotient urtra-strong topology) of Ay® devided by N.

The next Theorem 9 is a generalized Kaplansky Density Theorem
relative to these Q*- and urtra-Q*topologies. The extension problem of v.
Neumann Density Theorem shall be dealt with in the next chapter.

Theorem 9. (Generalized Kaplansky Density Theorem). Let A be a
*algebra, N its left ideal and Ay the representative algebra of A in

A/N by the regular representation. Then Ay* is a C*-algebra on AJN,
and

(1). The Q*-closure and the urtra-Q*closure of a C*-sub-algebra of
A\*® are an identical C*-algebra.

(2). Let R be a C*-subalgebra of Ay® and R® be its Q*closure. Then
the urtra-Q*-closure of the unit ball of R is the unit ball of R%

To prove the theorem, we need to prepare four sub-lemmas. The
totality S(N) of states on A which vanish on N is a regularly convex
subset of the dual space A of A, and we have | A/N]| =§1§p 1Ap),. If sis

PEOS(ND

a state in S(N) and ¢ is a state in L*(s), then ¢ belongs to S(N) (cf. Lemma
4.1, 4.2 in Chapter 2), and the left ideal N(s) = (A€ A: s(4*4) = 0)
contains the ideal N.

The dual space of A/N is the totality @& (N) of functionals € A which
vanish in N. We define the product of f € ®(N) and x € A/N as follows:
Let x = A/N (where A= A). Then xf =Af. xf is uniquely determined

because x = A/N = B/N imply Af = Bf. If X is a bounded operator in
A/N and if A€ A, then we define X(A4) = X(A/N).

Sub-lemma 1. Let X be an operator in the unit ball of A\ and p a
state in S(N). Then an operator X, in LY p) is determined in such a way
that X,Ap = X(A)p (A € A) and belongs to A,".
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Proof. First we assume that p is a finite dimensional state in S(N).
A, is a finite dimensional algebra. By Lemma 4.2 in Chapter 1 E,is a
finite dimensional projection, and p is a linear sum of finite number of
pure states in S(N).

By Proposition 2.1 in Chapter 2, E, is a regular projection in A,'
and A/N(p) < Ap is an isomorphism between A/N(p) and L*(p). Hence,
given any x € L*(p), we can choose an A € A with x = Ap.

By the assumption, X belongs to the unit ball of Ay% Then | X(4)|
< |A/N|. Since Ay’ is contained in the strong closure of the regular
representation Ay of A, A& N(p) implies | X(A4)| € N(p)/N and
| X(A)/N(p)|<|A/N(p)|. A bounded operator X, in A/N(p) is so chosen
as X, (A/N(p)) = X(A)/N(p), and its operator norm is <1. By the
isomorphism between L*(p) and A/N(p), X, is regarded as a bounded
operator in L(p) with X(A)p = X, Ap (for every A € A) and belongs to
A,". In fact, given any A,p, A.p, -+, A.pEL*(p) and any ¢ >0, we can
choose a B € A with |(X(A;)— B(A4y))/N|<e. Then |(X,— B)Ap|,<<e, and
X, belongs to the strong closure of A,.

We shall show that the norm of X,, as an element of A,”, is <1.

The state p is extended to that of A, with p(A4)=(Ap, p),(for ASA,").
Consider a left ideal N'(p) = (X € A,"": p(X* X) = 0) of the algebra A,".
The algebra A, is faithfully represented on an operator algebra on
A" /N"(p) by the regular representation. The operator norm of
A= A,"” and the norm of X, in L*(p) are the norms as operators in
AIN"(p). Since A,"/N"(p)= A,/N(p) holds, the norm of X, as
an element of A,”, is that of X, as an operator in A,/N(p) and satisfies
| X, |=1.

We shall now define the operator X,EA," for every state p in S(N).
If p is of finite dimensional, then, as we already observed, X, belongs to
A, and | X,! <1 holds. Notice that S(N) contains finite dimensional
states everywhere dense in it. Then we obtain

HX(AY X(A) < p(A*A)
and
X(A)p(B*) = (X(A)p, Bb)» = (Ap, X*(B)p), = X*(B)p(A)

for every p& S(N) and A, BE A. Now X, is an operator in L*(p) such
that | X,| <1 and X,(Ap)= X(A)p for A€ A, Then it is sufficient
to show the relation X, € A,"”. Consider a state p in S(N) and a definite
Hermitian operator K= A,’ with Kp(I)=1. Then g = Kp belongs to
S(N) and -
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(X,(KAp), Bp), = (KAp, X*(B)p)»
=(Agq, X*(B)q), = (X(A)q, Bq),
= (KXP(Ap)v Bp)z”

Hence X, K = KX, and X, € A,".
Sub-lemma 2. A\ is a C*-algebra in AJN.

Proof. Consider a product space = EELGSI? {f’( p). Each X Ay"is
PESIN

represented as an operator & @ X,, on 9, where | X| = seljgp | X,| is the ope-
PESMIND

rator norm of 3 @ X, and the representation X— X P X, is isometric.
Then A" is a C*-algebra.
Sub-lemma 3. Let R be a C*sub-algebra of Ay% R° its Q*-closure
and X an Hermitian element in the unit ball of R%. Then X belongs to the
*.closure of the unit ball of R%.

Proof. R%is a C*algebra, and the smallest C*subalgebra of R
which contains X and I is abelian. Then Y = X(7+{(I—X*%)" is an
Hermitian element in the unit ball of R, and X=2Y(7+Y* holds.
If B is an Hermitian element of R, C = 2B(I+B%' belongs to the unit
ball of R and we have

X—-C=2CB-Y)X+2(I+B)(Y—-B)(I+ Y3

Notice that |C|<1 and |[(I+B%7'|<1. Then when B converges to
Y in the @*topology, C converges to X and X belongs to the Q*-closure
of the unit ball of R%

Sub-lemma 4. Consider a C*-sub algebra R of A%, and for each
state p in S(N) let R, denote the representative algebra (X,: X R) of R
in LAp). If 'X is an element of A\® with |X| <1 and each X, belongs
to the strong closure R, of R,, then X belongs to the urtra-Q*-closure of
the unit ball of R.

Proof. The totality € of uniformly convergent suquences in A/N
is a Banach space, where the norm of x = {x,} €€ is |x| =sup |x;|. If
x ={x,} is an element of €, we put x..=lim x,. The dual Banach space €
of € is determined as follows: Consider a sequence { £} (n = oo, 1, 2, +++)
of elements in the dual space ®(N) of A/N with X |fi|<<oo. Then
flx) = & filx:) + fu(x.) is a bounded linear functional on €. € is the
-totality of these functionals, and the norm of fF&€€ is |f]| = |f.| +
1AL

Consider the product space 8= € x € and its dual space € =€ xC,
where the norm of (x, ) € €° is max (|x|, |»|) and the norm of (f, g) €
§?is | f] +|gl|. Consider moreover the unit ball U(R) of R and a fixed
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element x = {x;} of €. Then (Xx, X*x) (Xx = { X%}, X*x = {X*x,})is an
element of €% and W = (Bx, B*x) : BE U(R)) is a convex sub-set of €%

Now the sub-lemma is reduced to prove that (Xx, X*x) belongs to the
uniform closure, or rather, the weak closure of I8 in > Then it is
sufficient to show that, for any given (f, g) (where f ={ £}, g={gi} (i=100,
1,2,:.+)) in &* and for any given positive number ¢, a B U(R) can be so
chosen that | f(Xx— Bx)|<<¢ and |g(X*x—B*x)| <e.

The absolute variations p, = f,* and ¢, = g,* of f;* and g,* belong to
®(N) and satisfy :

Ifl = SIAl = Tp(l) < oo, gl = Zlgil = Sedl) < oo.
istge 1515 15150 1515

Then
b =]s§wa(pz+qz), (where ™' = |f]| +1g1)

belongs to S(N). Choose definite self-adjoint operators K, and L, in A,’
with p,= Kip and ¢, = L}p, and choose partially isometric operators U,
and V;in A," such that

fE=Up = U.K3ip, gt* = Vg = ViLip
respectively. Then
2 (1K:p) 5+ | Leplls) =2 (0(D+aD) = [f]+ lgl<oe,

1Sigee

and for every B € 11(R) we have
F(Xa—B2)| S 5 [(X,—B)Ap, UiKip)|
== Kol [(X—B)AKp )t
1SS 1gigen
|g(X*s—B*0)|< (S | Lipll» 9% (T | (X, — B ALpl5) %
18iS e 184S

By the assumption of the sub-lemma, X, belongs to R,” and conse-
quently to the urtra-strong closure of the unit ball of R,. If we choose
a suitable B U(R), |f(Xx — Bx)| and |g(X*x — B*x) | are smaller
than the given ¢ >0, and (Xx, X*x) belongs to the uniform closureof 8.

Proof of Theorem 8. Let U1; denote the urtra-Q*-closure of U(R), 1,
the totality of X & Ay® with |X| <1 and X, R,", 1, the unit ball of
the @*closure R?of R, 11, the Q*closure of U(R) and 11; the unit ball of
the urtra Q*-closure of R. 11,, 11, and U; contain U, and are contained in U,
respectively. By Sub-lemma 2, U, is contained in U;. Then they are
identical with each other. Q. E. D.

We shall now observe some examples of @*-topologies.
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Example (1). Let A be a C*algebra and N the 0-ideal. Then the
Q*topology divided by N is the uniform topology of A in the ordinary
sense,

(2). Let N be a maximal left ideal of A. Then the quotient space
A/N is the Hilbert space L°(p), where p is a suitable pure state of A.
The Q*topology divided by N is the self-adjoint strong topology in the
total operator algebra on L(p).

(3). Let A be a C*algebra in a Hilbert space ©, B the total operator
algebra on 9, E a certain one-dimensional projection in © and N(E) a
left ideal N(E) = (A= B : AE = 0) of B. The quotient space B/N(E) is
the Hilbert space © and the @*closure of A is the W*closure of A in the
ordinary sense.

(4). Consider a C*algebra A in a Hilbert space . Let R be a C*-
algebra which contains A and a projection E and N(E) be a left ideal N(E)
=(A€R: AE=0) of R. The Algehra B? is regarded as a C*algebra in the
space 9 (See the next sub-section (c)) and the Q*topology of B?is weaker
than the uniform topology but stronger than the self-adjoint strong
topology. Let A, and A" denote the uniform and the strong closures of
the algebra A. Then A, € A*C A",

Roughly speaking, these examples show that a Q*topology has an
intermediate strength between the uniform topology and the self-adjoint
strong topology.

(¢). Quotient space of a C*-algebra devided by a projection.

Consider a C*algebra A in a Hilbert space 9, a projection E in £
and the uniform closure A/E of the set (AE : A€ A). A/E is said to be
the guotient space of A divided by E.

A is represented in an operator algebra in A/E. The represented
operator of A€ A in A/E: X A/E— AXE A/E is said to be the
regular representation of A. The represented operator algebraof A in A/E
is a C*algebra on A/E.

Lemma 1. 1. Counsider a C*algebra A in a Hilbert space O and a
projection E in . Let O, denote the subspace of 9 gemerated by E.
(Namely, 9, is the smallest unifomly closed linear set which contains the
set (AEx : AEA, xE9)). Then the representative algebra of A in AJ/E
is the induced algebra Ay of A in ..

Consider the totality B(A/E) of bounded operators X in the space 9,
such that BEA/E implies XB, X*B< A/E. B(A/E) is a C*algebra
and contains the regular representation Ay of A in A/E. Now the Q*
topology is defined in B(A/E).

A Q*neighbourhood of an A€ B(A/E) is a set
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UA: X;, Xo, -+ X} €)
= (Be B(A/E): max (|(A—B)X:|, [(A*—B"X,|)<e),

where X;, X;, -+ X, are a finite number of elements in A/E and ¢ is a
positive number. A Hausdorff topology of B(A/E) whose open base is the
totality of Q*neighbourhoods of elements of A/E is said to be the Q*topo-
logy of B(A/E) divided by E.
An urtra-Q*-neighbourhood of an A € B(A/E) is a set
U(A- {Xn }: € )
= (BEB(A/E): sup (|(A-B)X|, |(A*-B")X| <e),

where { X,,} is a uniformly convergent sequence in A/E and : is a positive
number. A Hausdorff topology of B(A/E) whose open base is the totality
of urtra-@*-neighbourhoods of elements of B(A/E) is said to be the urtra-
Q*-topology of B(A/E) divided by E.

Lemma 1. 2. Let A be a C*algebra in a Hilbert space ©, E a pro-
jection in © and A\U E the smallest C*-algebra which contains A and E.
Consider a left ideal N(E) = (AEA\UE: AE =0) of A\UE, the algebra
B=B(A/E) and a left ideal Ny(E)<=(A€BUE: AE=10) of BUE.
Then

(AUE)E=BUE)/E = (AUE)/N(E) = (BU E)/Ng(E).

Proof. B'\UE is the smallest uniformly closed linear set which con-
tains those operators Y = B,EB,E --- B,_; EB, with B,€ B. BB implies
BE€A/E, and Y& B\UE implies YEES(AUE)/E. Then (BUE)/E =
(A\UE)/E. On the other hand A\UE contains the projection E. Then

[A/N(E)| jeit()f) |A—B| = |AE| (for every A€ A\UE).
B (E
Identifying A/N(F) with AE, we have (A\U E)/N(E) = (A\UE)/E and
similarly (B\U E)/Ngx(E) = (B\UE)/E. Q.E.D.

The algebra B = B(A/E) has two kinds of underlying Banach spaces.
One is B/E = A/E, another is (B\UE)/Ng(E)=(AUE)/E and then two
Q*topologies are defined in B. The @*topology of B as an operator algebra
on A/E is said to be an E-Q*topology, and the Q*-topology of B as an
operator algebra on (A\U E)/E = (B\U E)/Ng(E) is said to be an Ny(E)-
Q*-topology.

Proposition 1. 2. (a). Consider a C*-algebra in a Hilbert space © and
a projection E in . Then the algebra B = B(A/E) is Ng(E)-Q*-closed as
an operator algebra in (A\UE)/E = (B\U E)/Ng(E).

(b). IfRis a*sub-algebra of B, then E-Q*-closure of R is identical
with the Ng(E)-Q*-closure of R.
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Proof. (a). It is sufficient to show that, if A is an operator in the
Ng(E)-Q*closure of B with |4] <1, then A= B.

If A is such an operator, A is an operator in the space (A\UE)/E
and belongs to the Ng(E)-Q-*closure of the unit ball U(B) of B. Then, given
any X;, X, >+ X, € A\UE and any ¢>0, an operator B& U(B) can be
so chosen as [(A—B) X E|<e.

U(B) is a set of bounded operators in the Hilbert space 9. Its weak
closure is weakly compact and contains A. Then A is a bounded operator
in © and belongs to B(A/E) = B.

(b). Ng(E)-Q*topology (the @*topology of B as an operator algebra
in (AU E)/E) is clearly stronger than the E-Q*topology of B. Then, to
prove (b), it is sufficient to show that, if K is an Hermitian element in
the unit ball of the E-Q*closure @ of the given C*sub-algebra R, then it
belongs to the Nz(E)-Q*closure of R.

Let K be such an Hermitian element in the unit ball of Q. Q* isa C*-
algebra, and an Hermitian element T in Q is so chosen that K = 27T(I+
T, Then T = K({I—(I— K»)%*) belongs to the unit ball of Q).
Consider a filter of Hermitian elements A in R which converges to T in the
E-Q*topology. Then B =2A(I+ A»)™ converges to K because |(I+A4%7|
=1, |B|<£1 and

K—B =2(I+AY(T—-A)(I+T?+2B(A-T)K.

Since |B|=<1, K belongs to the E-Q*closure of the unit ball of R.
Let UK : X;, Xo, -+ X €) be any Ni(E)-Q*neighbourhood of K, where
X, are elements of (A\UE)/E and ¢ is a positive number. For each
X, (AUE)/E, a Y, with |X;—Y,| <e/3 can be so chosen that Y, isa
sum of finite number of operators B{EB,E -+ B,_1EB,E with B_LEEA/E.
K belongs to the E-Q*closure of the unit ball U(R) of R, and an operator
B in U(R) can be so chosen that |(B—K)Y,|<<e/3(1 <i < #n). Then

(K—B)X;| (| K|+ |B)|Xi— Y| + (K—-B)Yi|<e
and Be U(K: X;, X, -+ Xu, ¢). Hence K belongs to the Ni(E)-Q*closure
of R. Q.E.D.

By Proposition 1.2, the Kaplansky Density Theorem is preserved in
any subalgebra of B(A/E).

Theorem 10. Consider a C*-algebra A in a Hilbert space D, a projec-
tion Ein O, and a C*-sub-algebra R of B(A/E). Then the urtra E-Q*-
closure of the unit ball of R is the unit ball of the E-Q*-closure R? of R.

The unit ball of the E-Q*-closure (Ng(E)-Q*closure) of R is the urtra-
E-Q*-closure of the unit ball of R.

The urtra-E-Q*topology is weaker than the urtra-Ng(E)-Q*topology
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but stronger than the E-Q*topology. Then the theorem follows.

§ 2. Abelian representations of C*-algebras.
Consider a C*.algebra A in a Hilbert space . A projection E is
said abelian” relative to A if the reduced algebra EAE is abelian.

Definition 2. 1. A representation of A in a Hilbert space  with a
fixed generative abelian projection E is said an abelian representation
of A,

If A— A, is an abelian representation of A whose representative
algebra is A, and the related abelian projection is E, then we call it an
abelian representation (A,, E): A— A,

A compoundly cyclic representation of a C*algebra is an abelian
representation (cf. Lemma 4.9 in Chapter 1), and there is a one-one corre-
spondence between the totality of distribntions in the total state space S
and the totality of compoundly cyclic representations up to the unitary
equivalence. We shall assert that there is a one-one correspondence
between the totality of compact subset of & and the totality of abelian
representations up to the algebraic equivalence®,

(a). Continuous vector fields in a compact set of states.

We use the notations and terms in Chapter 2.

Definition 2. 2. A vector field x in a compact set G of states on A
is said to be continuous on I if it is a weakly continuous A-valued
function on 9 such that its norm function ||x.|l. of the variable o is
bounded and continuous in 9.

If x is a vector field in 9, we define its norm by |x|qy = SEu(ll:,V | %ol o

Notice that A, C, and K are C*algebras of operator fields in S. Then
Agp, Cyp and Kgy denote the restrictions of those algebras A, C and K in
the space 9¥ respectively.

" Theorem 11. Let T be a compact set of states on A. If x and y are
continuous vector fields, then x + vy is continuous. The totality Fqy of
continuous vector fields on W is a Banach space relative to the norm
|l g It contains the set (Kw : K €K) uniformly dense everywhere.

Proof. Consider the smallest uniformly closed linear set & of vector
fields on 9 which contains ( fAw: fEC, AEA) relative to the norm |x]/qp.
Then ¢ contains (Kw : K € K) everywhere dense in it, and every field in
€ is continuous. Hence it is sufficient to observe that € contains gy

1) Def. 2.3 in Chapter 2.
2) Def. 2.3 in this Chapter,
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Consider a fixed continuous vector field x in 9%, a positive number
¢ and a distribution s in the set 9. The coordinate field « is cyclic in
L*(p) relative to the algebra K (cf. Proosition 1.2 in Chapter 2), and y =
> fiAiow (, where f,€ C, A;€ A) can be so chosen that

lx=y 1= {ln-sudidut) <e.
A numerical function of the variable w :
%0 — pulld = [2all3 — 2 Re(Z filw)xa(AF))
+ 2‘ %3 Flo)fw)w (A A)

is a continuous function in 9. The set B = (||x, — 3.2 : y € @) is a sub-
set of the totality Cay of continuous functions on 9. The weak closure of
B and consequently the uniform convex span of B in Cgy contain the
function 0 because the dual space of Cqy is linearly spanned by distri-
butions in 9.

Given any positive number ¢, we can choose y;, ¥, +* ¥, € E and
numbers a;, @, >+, @, =0 with

Z a, = 1 and Zai"xm—yim”uz:<€2.

Using the Schwarz’s inequality, we have

" xm—(z atyim)l;n:z g(z ai]!xw _yimll.w)z
S(Z (@) (S at ' xa — yl)?)
SXalx—ylf <

Then x belongs to &, and we have € = Fq.

Consider a compact set W of states on A, a distribution x on W
and a summable and regularly weakly measurable field #* on . #*

satisfies Sﬁt*‘.,l',,,d plw) < oo and is weakly continuous removing an open
set of any small mass from 9¥. Then
t@) = [ G ) dp0) = (5, 29

is a bounded linear functional on F9. The functional ¢ is denoted by

t= Sto, ().

Theorem 12. Consider a compact set W of states on A and the
Banach space §qy of vector fields on W. Then every bounded linear func-
tional t in Fqp is a weak integral
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t= S to dp(w),

where p1 is a distribution in W, t* is a summable and regularly and weakly
measurable field in W with t*.5=0(w EW) and

tlgp = [ £l de o)

is the functional-norm of t.
The distribution u and the field t* are essentially uniquely determined
up to those equivalent weak integral representations

£ = S sudul(o),

where du(w) = ¢(w)dv(w), Su = ¢(w)t. and ¢ > 0.
Proof. Consider a functional f on gy such that there is at least a
distribution g in 9 with

OIS | Tabduo) < o)

The totality & of such functionals f on Pgy consists of a bounded
regularly convex subset of the unit ball 1 of the dual space of Fqy.
Consider a state 1€ 9, a functional y € L*(2) with |y, =<1, and the
functional y* in Fqy with y*(x) = (2», ¥)x(x € Fqp). Then U is the smallest
regularly convex set in the dual space of Fqy which contains all those
functionals (3*: |yj» = 1, 2 € ). Let 5, be the point mass distribution on
99 which distributes its total mass 1 at 1 € 9. Then we have

7)< | (o),

and y* belongs to & Now we have 11 & @, and every functional f in the unit
ball U of F9v has at least one distribution g in 9% such that

£ | < | dps) < ([ Ik dpsan)?.

We consider a functional # on §qp with the functional norm 1 and a
distribution x on 9¥ which satisfies the above inequality. Then a vector
field #* in L*(¢) can be so chosen that

1) = (3 %= | (G i)
t* is regularly and weakly measurable, and
1) =1 £ Gt 20 a0
< {1 7@l 5ulds (@) (for every f&©)
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Then we have | (%o, *u)o | = %ol (x € FWw) and | #*.]. =1 almost every-
where.

On the other hand, the functional norm of fis 1, and
1)1 =1 [ G . dio)
<[ 1 dpo) S 15 1] 10 dps.

Then we have g It lodu(w) =1 and |t*,]. = 1 almost everywhere.

The uniqueness of the integral representation is shown as follows.
Let z be a distrinution in 9 and ¢*, be a summable and regularly and

weakly measurable vector field in 9 such that #(x) = S (For t¥0)o dp(w)

vanishes on Jqy. We can assume without loss of generality that || £*), is a
constant in the carrier of 2. Then £* belongs to L*y) and

(Kw, t*), =S (Ko, t*.). du(w) = 0 for every K= K.

By Proposition 1. 3 in Chapter 2, #* vanishes almost everywhere. Hence
if we assume ||#*,] . = const almost everywhere, the distribution ;¢ and the
field #* are essentially uniquely determined.

Proposition 2. 1. Consider a compact set W of compact states and
a convex subset X of %CW. A continuous field x belongs to the uniform
closure of X if and only if x belongs to each uniform closure of X in L*(u)
such that p is a distribution in W whenever we regard X as a subset of
L(g).

Proof. Assume that x does not belong to the uniform closure of %.
Then a functional ¢ in ¥q, and a positive number ¢ can be so chosen as

tH(x) = a5 + t(y) (for every y € %).

¢t is a weak integral #(x) = S(xw, t*o)o dt(w), where #* belongs to L*(y)

and satisfies ||#*,[, = const. almost everywhere. (x, {*).=¢ + (3, t*).
implies that x does not belong to the uniform closure of ¥ in the Hilbert
space L(y). Thus the proposition follows.

Lemma 2. 1. Let U and VW be compact spaces of states such that US
W, M a closed linear subspace of Fqy such that x € M and f < C imply
fx € M and Mq; the totality of restrictions of fields in W as being in U.
Then Mq; is a closed subspace of Fqj.

1) Def. 1.2, Chap. 2.
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Proof. The set R =(xEWM:x, =0 for w € V) is a closed linear
subspace of M, and we have

| - s "
|2l = lx/R|qp = %fz” =y qp
In fact, if x is a field in 9 and fis a function 9¥ such that

flow)=0if |z < x|v
flw) =1 —|x|v/| %u]w for | xu]lo>| x [ w.
then fxE RN, 1= f(w)==0, and
le/Rlw <z — friw<|xlv.
Hence
[2/Rlay = |x|w.

Wy is therefore isometric and isomorphic to the quotient Banach
space M /N. Then it is closed in F7. D. E. D.

Now the next Lebesgue Extension Theorem: of continuous fields fol-
lows.

Theorem 13. Let U and W be compact sets of states on A with
US W. Thenevery continuous field f in U is extended to a continuous
field in W with | flu = || f|w.

For each w € W and each x, € LX) there exists a continuous field
xin W with x, =x, and | x||w = || Zo|wr

The reduced set (Fqp)q; of Fgy in U contains (Xw : XE K) and is
closed in Fq Then we have Fq; = (Fq)q-

Proposition 2.2. Let 9 be a compact set of states and M be a closed
linear set of continuous fields on W such that x=M and fFEC imply fxE
M. Then W contains every continuous field x in W such that x.,E M., =
(Yu: ¥y EM) for each w € W.

Proof. Let x be a continuous field in ¥ with x., € M0 € W). To
see x € M, it is sufficient to show that x belongs to the uniform closure
of M in the space L.(;) whenever u is a distribution in 99, Let u be any
distribution in %’ and E the projection in L*(y) whose range is the uniform
closure of M in L*(y). Then z=x — Ex is orhtogonal to the space I and
2o = %, — (Ex). belongs to 9, almost everywhere (M, is closed). Now
for every y € M and every f & C we have fy € 9t and

(19, 2= | F@Xour 2uilw) = 0

for each fixed z= . Then (y., 2.). vanishes almost everywhere. Since z
is weakly continuous removing an open set of any small open mass from
9Y and z, is orthogonal to 9%, almost everywhere, we have z=0. Hence
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x belongs to the uniform closure of M in L*(g).

(b). Abelian representation of C*-algebra and an extension of
the Gelfand-Naimark Theorem,

Definition 2. 3. Consider a compact set ¥ of states on A. An opera-
tor field X on ¥ (Definition 1.1 in Chapter 2) is said to be continuous if
X and its adjoint field X* are bounded operators in the space Fqp.

The reduced algebras Ayp, Car and Kyy of A, C and K in the space
9 are C*-algebras of continuous operator fields.

Lemma 2.2. The totality of continuous operator fields in W is a C*
algebra in Fyv, and the norm of a continuous operator field X is | X|w=
sup | X, lo. -
wEqp

Proof. Let k denote the operator norm of X as an operator in Fqy.
Then £ < | X |4y follows from | Xx|aw < | X |99, x "9y (x € Tepp).

On the other hand, given any w € W and any x, € L¥(w) with || %}
=1, a contnuous field x in F¥ can be so chosen that | x| gy = || %l.= 1 and
%o =X, Then k=Xx|¢p=! Xuxo]o and k=X, for every w € W.
Hence k£ = sup | X..| = | X] .

Lemma 2.3. Consider a compact set W of states on A and the
coordinate projection field P> on W. Then (Aqy, P) determines an abelian
representation of A. (Namely, A9\ J P is regarded as a suitable C*-algebra
in a Hilbert space and P is a generative abelian projection relative to A).

Cay is the carrier algebra® of P, and the primitive operator ]’ of
A € A is the primitive function® J,(w) = w(A) of A in W.

Proof. P is an operator field in 9 with P,x = (x., ). o(x € FW).
Then

(PAP). = (Aw, o) P, = JLw)P.,
and PAP = J,P. P is therefore abelian, and J, is the primitive operator .
of A. Notice that Cupr (the totality of continuous functions on 9) is the
smallest C*-algebra which contains those primitive functions (J,: A € A).
Then Cuyp is the carrier algebra of P in the sense of Definition 4.6 in
Chapter 1.

Proposition 2.3. Let W be a compact set of states on A. Then
Xw < XP (X A9\J P)

determines an isometric isomorphism between the space Fqp and the

1) Definition 1.1 in Chapter 2.
2) and 3). Definition 4.6 in Chapter 1.
4) Definition 1.1 in Chapter 2.
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quotient space (AuAJ P)/ P,
Proof. &qy is the uniform closure of (Xw: X € AU P), and every
X € AU P satisfies (PX*XP)., = (X*Xw, @)oP. Then

| XPIt}lV= | PX*XPLHJ = SEU’B (X*Xll), (l)) = " Xlu;i c:iV,
and Xw © XP is an isometry between ¥y and (A\U P)/ P.

Definition 2. 4. Consider two abelian representations (A,, E): A—A,,
and (A,, F): A— A, of A. These two representations are said to be
algebraically equivalent if the correspondences

Ao A,(for A= A)and Eo F

determine an algebraic isomorphism between algebras A,\JE and A,\UF.

Theorem 15. If (A,, E): A — A, is an abelian representation of A,
then it is algebraically equivalent to a representation (Aay, P) whose T
is a suitable compact set of states on A. The space W is uniquely
determined and is the spectrum of the carrier algebra Cg of E. The
algebraic equivalence determines an isometric isomorphism between these
spaces (A\JE)/E and Fqp.

Proof. Consider the carrier algebra C, and the algebra K, = AUC,.
If A€ A, then its primitive operator J, belongs to C, and satisfies J.E =
EAE. C; is the smallest C*algebra which contains all those J,. Con-
sider the spectrum 9% of C; and let w: denote a state on A with wz(4) =
w(J4) for each » € 9. Notice that any two points in 9 are separated by
a suitable J,, then the weakly continuous mapping € W — wy is a
homeomorphism. Identify each w € 9 with the state ws on A, then 9
is a compact set of states on A, and the carrier algebra C, is represented
as the totality Cyy of continuous functions on 9.

If X is an operator X = 3 A, F; with A,€ A and F, e C, = Cy,
then we denote by Xw a field in 9 with

Xw = ZFg((U)A(a).
Then
| XE |*=|EX*XE| = |( ZFJ*FifA?Ai)E I
= Slé([?V(Xm, Xo) = || Xo llch

The correspondence XE <> Xw is extended to an isometry between
the quotient spaces K, /E and §w = Kqgy/ P. The isometry determines
a spatial isomorhipsm between algebras K, and Kgy. Then the reminder
of the theorem is reduced to prove the next lemma.

Lemma. Consider two abelian representations (A, E): A — A,
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and (A,, F): A= A,. Assume that the correspondences Ay > A, J1, © Ja,

are extended to an algebraic isomorphism X, < X, between algebras K, and
Ky, and assume | XaE | = | X,F | for every X< K. Then these two repre-
sentations are algebraically equivelent.

Proof of the lemma. The algebra K,\UE is the uniform closure of
the set (X, + X,.E -+ EX;: X, K;). Then (K;\UE)/E =K,/E = (AU
E)/E and (K, UF)/F =K;/F = (A UF)/F.

Consider two elements :

Wi=X\+ YoE + EZ,€ K, \JE and W, = X, + Y,E - EZ,€ K;\UF
such that X;, Y, Z.€K;and X,, V3, Z,& K. Then

W)‘EE KE/E, WAFEKF/F and I W,\El = 1 W,Fl.
The isometry WA E ©» W, F(W,eK;\UE) determines a spatial isomorphism
between algebras K;\UE and K;\UF as operator algebras on K;/E and
K;/F. The same spatial isomorphism dstermines the isomorphism between

their subalgebras A\UE and A,\UF. The lemma and the theorem are thus
proved.

Corollary 1. Consider an abelian representation (A, E): A— A, of
A and the spectrum W of the carrier algebra Cg.

If U is a compact subset of W, then N(U) = (X € A\VE : o(Jx*x)
=0 for every w € U) is a left ideal of A\\JU E which contains the left
ideal N(E) = (X< A\JE : XE =0).

Conversely, any left ideal N of A\\JE which contains N(E) is a
left ideal N = N(U), where U is a suitable compact subset of W.

Proof. We can assume without loss of generality that the given
abelian representation is (Agy, P) and E is the projection field P. Let N
be a left ideal of AgAJ P which contains N(P) = (X€ Ag\UP: AP =0).
The reduced algebra PAqgyP is a subalgebra of A y\JP, and NNPAqgyP
is an ideal of PAgpP. The induction f€ Coy— fP& PAgP is an iso-
morphism between Cgy and PAqyP. Then W = (f& Ca: fP NN
PAqpP) is an ideal of Cqy. Consider a compact subset

q]———((uECWZf(w)=0fOl'fEm)
of #. Then fe Cy and X AgyU P imply
PN =(fEC‘WZ flw) =0 for wE V),
|ffm) =inf | f— gl =sup|flw)|=1f|v
9€IN wgdJ
and

| X/N|*=inf (X— Y)P|*=inf | P(X"— Y*) (X — Y)P|
YEN VEN



36 Minoru TOMITA

= l?f | PX*XP — PZ| = | PX*XP/(NNPAgP) |
ZEN

= sup (X*Xo, w)e=| Xo \.cgu
wEqJ

Couversely

| Xwjv=inf (|Q = fle)Xe|w: 0=f=1, f€Cyw and
f(w) = Of()?’ w e CU)
inf ([(I-F)XP|:0<FP<1I, FPENUPAwP)
itell\lj.lX— Y| =|X/N]|.

¥

=

Hence we obtain
| XIN(U) | = Xew|lv=|X/N| (for X = AaAJP)

and N(U) = N. Q.E. D.

When the algebra A is an abelian C*algebra, the identity [ is an
abelian projection. Apply the corollary to the algebra A\U I = A and the
ideal N(I)={0}. Then we obtain the well-known correspondence between
ideals of A and closed subspaces of the spectrum of A.

§ 3. Non-commutative extension of the Stone-Weierstruss Theorem.
If a property of an abelian repesentation of A is invariant under the
algebraic equivalence, then the property may be characterized as a pro-
perty of the corresponding compact set of states on A,
Consider a compact set 99 of pure states on A. If the algebra A is

abelian, then for any continuous function f on 9%, we can choose an
element A of A with f(w) = w(A) on .

Definition 3. 1. A compact set 9 of pure states on a C*algebra A.
is said to be a subspectrum if every continuous vector field x on 9 is
a uniform limit of a sequence of fields 4.« with A, € A.

If the algebra is non-commutative, a compact set of pure states on
A is not generally a subspectrum.

Definition 3. 2. A compact set F of states on A is said to be a pre-
spectrum if the totality §y, of continuous fields on ¥ is the uniform
- closure of (Aw : A € A).

In Theorem 23 in Chapter 4 we shall assert that every compact set of
pure traces is a prespectrum. This result may be a sort of non-commuta-
tive extension of the Gelfand-Stone-Weierstrass Theorem. We now observe
some elementary properties of prespectrums and subspectrums.

Lemma 3. 1. A compact set of states on A is a prespectrum if and
only if, for any given positive number ¢ and any (nuwmerical) continuous
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Sunction f on W, we can choose an A € A such that
1 f(w) = Aw|a = | f{@)|* = 2MRe(f(w)w(A7)) + w(A*A) <e.

Theorem 14. (1). Every distribution in a subspectrum is a spectral
distribution. Convesely, if W is a compact set of states and if every dis-
tribution in W is spectral, then W is a subspectrum.

(2). Every distribution in a prespectrum is a prespectral distribu-
tion. Conversely, if W is a compact set of states and if every distribution
in W is prespectral, then W is a prespectrum.

Proof. We shall first prove (2). Consider a prespectrum 9. Then
for every distribution s in 9, the set (Aw: A € A) is dense everywhere
in the Hilbert space L°(y:) and s is a prespectral distribution (cf. Lemma
1. 8 in Chapter 2).

Conversely, assume that every distribution ;2 on 9/ is prespectral.
Then for every distribution n in 9 the set (Aw: A € A) is uniformly
dense everywhere in L% ). By Proposition 2. 1 (Aw: A € A) is uniformly
dense everywhere in Jqy, and 9 is a prespectrum.

Proof of (1). If 9 is a subspectrum, every state in 9 is pure
and every distribution in 9 is spectral. Conversely, assume that every

distribution x in 9 is spectral. Then every point-mass distribution a,
in 99 is spectral and every point in 9¥ is a pure state.

Theorem 15. When A is a uniformly separable C*-algebra, the
carrier of a spectral distribution on the total state space S is a subspectrum
removing an open set of any small mass from it.

Proof. Consider a fixed spectral distribution  on S. If x is a field
in L*(st), a sequence A, € A can be so chosen asSlI Anew — 2|2 dufw)<<27".

Removing an open set of any small mass from S, the sequence of

numerical functions | A,» — x.|l. of the variable « tends to 0 uniformly.
Then

| Anew — x| gp_qy— 0 (n— o2).

Notice that the space Fqy is uniformly -separable and contains a
countable subset {x,} which is dense everywhere in %LW. Removing an
open set U of any small mass from 9, x.(n =1, 2, --+) belong to the uni-
form closure of the set (Aw: A€ A). Then F/—U is a prespectrum,.

Every state in the carrier of 9% is pure almost everywhere. Hence the
theorem follows.
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Chapter 4. Commutor Theory of Q*-algebra and the v. Neumann’s
Density Theorem.

§ 1. Q*-topologies in the algebra of continuous operator fields.
(a). C*-algebra on the Banach space of continuous vector fields.

Consider an abelian representation (A,, E): A— A, of A in a
Hilbert space 9. The algebra B ((A\\UE)/E) is the totality of bounded
operators X in $ such that X and X* are both bounded operators in the
space (Ay\\UE)/E. We shall first observe that the algebra B(A,\UE)/E)
is invariant under the algebraic equvalence of the representation.

Definition 1. 1. Consider a compact set 9 of states on A. A bounded
operator X on the Banach space §q, is said to be adjointable if there exists
another bounded operator X* (the adjoint of X) in §qp, which satisfies

(Xxa), yu) = (xa, (X*y).) (Wherezx, y € Fqp, 0 € W).
" We denote by B(&q,) the totality of adjointable operators in the space
SW.

Proposition 1. 1. Consider an abelian representation (A,, E): A— A,
of A in a Hilbert space and the corresponding compact space W of states
on A. Then the representation is algebraically equivalent to the repre-
sentation (Aap, P) and the algebraic equivalence determines an isometry
between (A\UE) and Fqp.

The isometry between (A\JE)] and Fq, determines a spatial iso-
mor phism between algebras B(A\UE)/E and B(Fqyp).

To prove the proposition we need to prepare some sub-lemmas.

Sub-lemma 1.° A C*-algebra A is linearly spanned by its unitary
element.

In fact, if A is an Hermitian element in A with|{ A | < 1, then

A= L_g——q: U=A+i{I-Arand U*=A4 — i(I — AD?%,
where U and U* are unitary elements in A,

Sub-lemma 2. B(§qp) is a C*-algebra.

Proof. 1t is sufficient to show | X*X| = | X|* (X € B(Zqy)), where
| X| denotes the operator norm of X in Fqy.

Let x, y € §9. Then

| ((X*x)m yw)l = I (xun (XJ’)«) l = l x " w ” Xy" 57/
=|Xll=x] fw“J’ | qp-
Put y = X*x. Then

I X* 203y < | X (%1 gp | X* 2l gp,
and

1) Dixmier (1).
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IX*| <1 X, [ X]=|X"|<|X"] and | X| =] X"|.

Now
| Xx 12 = [(X* X0 2| ) X*Xx | g
and
I Xx 02y < | X*X ] x|

Then

| X2 X*X|
and

| X12=|X*X].

B(®qp) is a *-Banach algebra with the identity and with the norm
condition | X |*= | X*X|. Then it is a C*-algebra.

Proof of the proposition. Two abelian representations (A,, E) and
(Agp, P) are algebraically equivalent. Then A,\UE and Ag\UJ P are
algebraically isomorphic. We consider these two algebras to be the same
algebra. Therefore Agy\JP is an operator algebra in a suitable Hilbert
space , and P is a generative abelian projection in . Let A be any
bounded operator in © such that X< (Agy\JP)/ P implies AX, A*X e
(AgpUP)/P. 1fx, yE Fqp then X, Y E (AyA\JP)/ P can be so chosen
that

x=Xw, ¥y = Yo, (Y*X)w = (Zu, y,_,,),.,(u.
Define (AX)w = Ax. Since Y*AX) =(A*Y)*X and
((A%)w ¥o) = (Zay (A*)) (0 E D).

A is an adjointable operator in §qy.
Conversely, let A be any adjointable operator in &g Then A is
considered to be a bounded operator in (Agy\U P)/ P with

Y*AX) = (A*Y)'X

for every X, YE (Aw\U P)/P.
Consider an unitary element U in B(§qy). Then U*U = UU"= I and

(UXP)(U(YP)) = (XP)(YP)

hold for every X, Y € (Agp\J P).
Consider X;, Xs,.... X, E Agp\U P and %1, %, .... %, € 9. Then

12 U PIxl* = %((U(X;P))*(U(X«P))% x5)
g ((X,P)*(X.P)xf, x,)
= "‘Zj: Xnggllz-
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P is generative in the Hilbert space ©, and $ is the smallest uniformly
closed linear set which contains (APr: A€ Agpy, xr= 9). Then an
isometric operator U in 9 is so determined that

(U(XP))x = U(XPx) (where X€ AN\ P, xE9).

Since U*U = UU"= 1, U is an unitary operator in © and belongs to
B (Aw\U P)/P). Q.E.D.

(b). C*-algebra of operator fields and its commutors.

In the algebra B(®q,) of adjointable operators in gy the @*-and
urtra-@*-topologies are defined as in (c) of §1.

Definition 1.2. A Q*neighbourhood U(X: %, X:,... %,; ¢) of an
adjointable operator X in {qp is a set (Y € B(&qy) : max ([(X —Y)xlqp,
I(X*—Y*)xlqp) <e), where x;, %, ....x, are elements in §qy and ¢ is a
positive number. The Hausdorff topology of B(§qy) which is determined
by these Q*-neighbourhoods of elements of B(&qyp) is said to be the Q*
topology of B(Fqp).

An urtra-Q*neighoourhood U(X: {x}, i) of an adjointable operator
X in §qp is a set (Y€ B(Fqp) : sup([(X— Vx| gp, (X *— Y Nxifiqp) <o),
where {x,} is a uniformly convergent sequence in Fqp and ¢ is a positive
number,

A Q"-closed *-algebra of adjointable operators in §qp is said to be a
Q*-algebra in §q,. The Q*-closure of a *-algebra R in gy is denoted by
Re,

Definition 1. 3. If R is a C*algebra of adjointable operators in Fqy,
then the totality of adjointable operators in Fqpy which commutes with
every element of R is denoted by R’ and said to be the commutor of R. R’
is a Q*algebra.

Lemma 1.1. The totality of continuous operator fields on W is a Cc*
algebra of adjointable operators in Fqy and is the commutor Cqy of the
algebra Cay (the totality of continuous functions on W).

Proof. A continuous operator field is adjointable in §qy and belongs
to Cci,). Then it is sufficient to show that every adjointable operator in
Cqy is a continuous operator field.

If X is an adjointable operator in §q, which commutes with Cqyp, then

flw)(Xx)o = (XSfx)o (fECaqw, and x € Fqp)

and
sggylf(w)l [(Xx)ullo < | X1 f2 gy,

where | X| is the operator norm of X in &qy.
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Put

Sfolw) = min (n, '2,13") (e € ).
Then

!!fnx'?qys 1(71 =12 .... ),

) (Xl = | X (e =1,2,....),
and

”(Xx)mll s |X| Il-’rm’}w (x = ((\{‘CH} and w E q’f/’).

%o = Yo%, ¥ EFqp) implies (Xx)., = (Xy)., Then for each w& W a bounded
operator X, in L* (w) with | X,| = | X| is determined in such a way that
(XX),., = wls (x =5 %Cﬂ})-

Then X is a continuous operator field in 9/. Q. E. D.

By Theorem 10 the Kaplansky Density Theorem holds in every
- C*-algebra of adjointable operators in & The remained problem is the
extension of the v.Neumann Density Theorem which involves us in the study
of the commutor theory of operator algebras in the Banach space Fqp.

In what follows we shall devote ourselves to study the following two ques-
tions.

Consider a compact set T4 of states on A and a C*-algebra R of con-
tinuous operator fields on W’ with Cyp' 2 R 2 Cqyp. Then its commutor

g' is a Q*algebra of continuous operator fields on 9’ with Cq¢/' D R'D
.

). If p is a distribution in W, is the W*-closures of R and R’
(regarding as operator angebras) in L (i) a commutor pair ?
(2). Is the bicommutor R" of R the Q*closure R"of R ?

Consider a compact set 9 of states on A and a C*-algebra R of
continuous operator fields in 9. For each & 9%, we denote by R,
the C*algebra R, = (4 ; A € R) in the Hilbert space L'(m).

If ;1 is a distribution in 9%, then we denote by R, the representative
algebra of R in the Hilbert space L*(x).

Theorem 15. Consider a compact set W of states on A and a C*-
algebra R of continuous operator fields on W with Cgy' 2 R 2 Cyyp.
Assume that for each w= W W*algebras(R,)" and (R',)" in the Hilbert
space L*(w) are a commutor pair. Then given any distribution p in W, the
W*-algebras (R.)" and (R'.)" on the space L'(n) are a commutor pair.

To prove the theorem we prepare two sub-lemmas.

Sub-lemma 1. Consider a C*algebra R of continuous operator fields
as in Theorem 15 and a closed linear subset M of Fqy which is invariant
under the algebra R. For each «w & W, let [W.]. denote the uniform
closure of the set M. = (x,: x €M) and E., the projection in L(w) whose
range is [W.).. Then the projection field E is a measurable operator
field in L*(y) (cf. Def. 1.4 in Chapter 2), and it is a projection in L*(yt)
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whose range is the uniform closure [M], of W in L*(pn).

Proof of the sub-lemma. It is sufficient to show the following

(1). If x=[M],, then E,x.=x, (0w E ) almost everywhere.

(2). If x is a field in L*() which is orthogonal to[],, then E,x., =0
(w € W) almost everywhere.

By Lemma 1.4 in Chapter 2, the set (x & L¥n) : z. € [M.].) is a
uniformly closed linear subspace of L’() and contains ®%. Then it
contains [9M], and hence (1) follows.

Next, let x be a field in L*(s:;) which is orthogcnal to M. Then

(& 1 = | £(0) (5 2D =0,

where z€ M and fF& Caq. Now (x.,, z.) vanishes almost everywhere
for each fixed z € 9. ., is regularly and weakly measurable, and remov-
ing an open set of any small mass, it is weakly continuous. Then x, is
orthogonal to [,], almost everywhere and hence (2) follows.

Sub-lemma 2. Consider the compact space W and the algebra R as in
Theorem 15 and Sub-lemma 1. If I is a closed linear subspace of %cw
which is invariant under R, we denote by EW the projection field in W such
that each value (EM)., is a projection in L (w) with the range [Mole. If p
is a distribution in W, then the commutor (R.) of R, in the Hilbert space
L) is the smallest W*-algebra which contains all those projections EM.

Proof. For each x € L¥y) we consider the cyclic projection ER. It
is a projection in L*(xz) whose range is the uniform closure [Rx], of the set
(Ax: A€ R). The algebra (R,) becomes the smallest W*algebra in
L*(x) which contains all those projections (ER: x& L*(yz)). Then it is
sufficient to show that each ERX(x € L*(n)) is a strong limit of a sequence
of projection fields Ef(z =1, 2,...) with y,& Fq. Consider a fixed
x € L*(n). x is regularly and weakly measurable. Then it is continuous
removing an open set of any small mass from 9. Now given any ¢>0,
there is a compact subset U of T with n(W — U)<<e such that x is
continuous in 9J. By the Lebesgue extension theorem (Theorem 13), this
restricted field in €U is extended to a continuous field y in 9% and, when
the mass (9 —U) tends to 0, the projection ER tends to ER strongly.
Hence the smallest W*-algebra which contains (E}: y € qp) contains
(ER: x € L*(2)) and its W*-envelop (R,)".

Proof of Theorem 15. Consider a fixed distribution y in 9, and two
closed linear subspaces % and 9 in §qp which are invariant under R
and its commutor R’ respectively.
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Projection fields Eqy and Eg are measurable operator fields in L*(y:)
and belong to (R,) and (R’,)' respectively. The values (Egy). and (Eg).
of Eqp and Egy at » € 9V are projections in L*(w) whose ranges are [T.].
and [N,]. respectively. Then we have (Eg). € (R.) and (Eg). € (R

By the assumption in the theorem every pair of W*-algebras (R.)"”
and (R',)" are a commutor pair in L*(;z). Then (Egp). € (R.)' = (R)",
(Ep)o € (RLY = (R, (Egpu(Eg). = (Egp)u(Eq). and Eg,Eq = EqEq. By
Sub-lemma 2, the algebra (R,)' is spanned by the projections EM.
Similarly the algebra (R’,)’ is spanned by Eg and hence (R,)"” and (R’.)"
are a commutor pair in L*(p).

By Theorem 15 we obtain an extension of the v. Neumann’s Density
Theorem.

Theorem 16. Consider a compact ret W of states on A and a
x-algebra R of continuous operator fields in W with Cay 2 R 2 Cay.
Assume that each pair of W*algebras (R,)" and (RL)" (w € W) is a com—
mutor pair in LXw). Then the bicommutor R" of R is the Q*-closure R* of
R in the space Fqp.

Proof. Let p be any distribution in 9, Then the representative
algebra (R"), of R in L*(;) is contained in (R’,)" and consequently in the
W*-closure (R,)"” of R, in L*(y).

Consider a fixed continuous operator field X in R”. Given any ¢>0,
any xj, %.... %, in $qy and any distribution « in 9, an operator field
A in R can be so chosen that

1= Al = N A wl dul) <e

where
Sﬁa(m) = '|(X —A )xim.\ w

is a continuous funct1on of the varlable w. The weak closure of the set
of those functions (¢, : AEA) and consequently its uniform convex span
in the space Cypy contain the function 0. Then bor any >0 we can
choose positive numbers «;, @ ..., @ and elements B, By, ....., B, in
R such that

Ej a;(; X, —Bj)xw|2)<e
for every w &€ 9. Using the Schwarz's inequality we have
%’J ‘% 1 X2 — (32 @3B u)%"2<e

and



44 Minoru TOMITA

| Xx- —(; a;Bixllgp<e (i=1,2, ....n)
Hence X belongs to the Q@*closure R?of R. Q. E.D.

§ 3. Extension Theorem of continuousm operator fields.

Consider a compact set T/ of states on A. A vector field pon W is
said to be a positive field if each value p, is a positive definite functional
in A,

Definition 3.1. If x is a vector field in 9, then we denote by "
a vector field in 9 whose each value (x°), is the absolute variation of the
value x,, of x. We call it the absolute variation of the field x.

Definition 3. 2. A continuous vector field x in 9 is said to be abso-
lutely continuous if the function |x,| of the variable «(where |x.| denotes
the functional norm of the value x, as a bounded linear functional in A)
is a continuous function in .

Proposition 3. 1. A continuous vector field x in a compact state space
W is absolutely continuous if and only if its absolute variation x° is a con-
tinuous field in “W.

Proof. If x is a continuous field in 9 such that 2 is continuous,
then |x.| = x°(I) is continuous and x is absolutely continuous.

Conversely, assume that x is absolutely continuous in 9/ but #°
is not continuous at a point 4 in 9. Since |4, ].(=|x.|.) is continuous
in 9, x”is not weakly continuous at 1. x*is bounded in 9 and there is
at least a filter F in 9¥ which converges to 1 and induces the weak con-
vergence of the value x, to a positive functional y==x, »— 1. Since
|x.] (= x2(I)) is continuous and |z, |2 (A* A)= | x.(4")|* holds in ¥, we
have y(I) = | x| and y(A4* A)| x| = |2 (A%

By the corollary of Theorem 1 in Chapter 1 we have y=x}. Hence x*
is continuous in G,

Definition 3. 8. A compact set 9 of states on A is said to be
absolutely continuous if every field Aw(A € A) is absolutely continuous in
9.

Lemma 3. 1. If a compact state space W is absotutely continuous,
then every continuous field in W is absolutely continuous.

Proof. Consider a field

x = thA[ll) (fie Cay of A¢EA).
We shall show that x is gbsolutely continuous. Let i be a fixed point
in 9 and A an element A =3 fi(-)A4, of A. Then
Yo—Aw = X (filw)— f1(2)) Acw
and
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2.} — 14w | < X | filw) — fl2) 1Al

| Aw| is a continuous function and |x,| — | Aw! tends to 0 when w (& W)
tends to 4. Then |x,| is continuous at i.

Let {x,} be a sequence of absolutely continuous fields in 9 which
converges to a continuous field x in 9. Then

“xnw’ - xw" = [ Xno — mew =l — x"LW—’ 0

and |x,| is a continuous function in 9. Hence x is absolutely continuous.

Lemma 3. 2. ‘Consider an absolutely continuous compact set W of
states on A and its compact subset U. Then every contivous positive field
b in U is extensible to a continuous positive field in W.

Proof. p is extensible to a continuous field f in 9. Then its
absolute variation ¢ = f* is a desired positive extension of p.

Lemma 3. 3. Consider a compact set W of states on A. Let g be a
positive continuous field in W such that each q.—+w is a cyclic element in
the space L(w)(for each v € ).

Let Q., denote a definite self-adjoint operator in L(w) which 7A.' and
which is determined by q.= Q.w, and let f be any real continuous function
in the half real-line 0 < x < oo, where we assume that f is continuous at
oo (7. e., iuz f(x) = f(e=)). Then the operator field f(Q), whose value at

w €W is £(Qu.), is a continuous operator field in W and commutes with
every operator in Ky = Aqp\J Cap.

Proof. Consider the set M = (K(¢g+w): K= K). g, +w is cyclic in
L¥(w)(for each w € W) and M, (= (A(go+w): AEA) = (x,: xEM)) is
uniformly dense everywhere in L*(w).

Then by Proposition 2. 2 in Chapter 3, the uniform closure [I]qy, of
WM in Fyp is the space Fqp.

Notice that

I X(q + w) gp = || X gy (X€ K).
Then X(g-+w)— Xw is extended to a bounded operator T in Fy with

T(X((]—I-w)) =Xovw (Xe K)

T is a continuous Hermitian operator field in . Its value 7, at we W
is determined by T, = (Q.+ I)”' and belongs to A,. 7T is a definite
Hermitian in (Kgy)' and |T| < 1. Let f be a real continuous function in
the half-line 0 < x < c0. g(x) = f((1—x)/x) is a continuous function in
the closed interval 0 < x < 1, the operator g(7T) is a continuous operator
field in (Kg)' and we have g(T.) = f(Q.) (v € ). Hence the lemma
follows.

Lemma 3. 4. Let p be a state and A an element of A,''. Then p -+
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(Ap) is cyclic in L¥(p).

Proof. Set (Ap) = UAp = Kp, where U is a partially isometric
operator in A," and K is a definite self-adjoint operator in L*p) with K 5
A,. Notice that (UA)"p=K"p&L¥(p) and (1+alUA)'p=(1+aK)'pE
L*(p) for |a| <|A|™*. Then the uniform closure of (A(1+ K)p: AEA) in
L(p) contains (1 - «K)™'(1-+ K)p and the range of the operator (1 -
aK)"'(1-+ K) which is invertible in L%(p). Q. E. D.

Lemma 3.5. Let p be a state and x any element of L*(p). If A.is
a sequence in A with |A.p— x|, — 0, then |(A.p)’ —x°|,— 0.

Proof. By Lemma 2.5 in Chapter 1, (A,p)° converges to x° in the
point weak topology of A. Since [(A.p)°l, = | A.pl> = |2l = [2°[2 (A.0)°
converges to x° in the weak topology of L*p). Hence ‘

“ (Anp)“—‘x““ p2 = “ Awﬁilpl - le”;’ - zme((Aup)v - x"7 x”) - 0'

Lemma 3. 6. Let p be a distribution in the total state space S and x
an element of L*(n). Regard x as a functional on K such that x(K) =
(Kx, w)u. Then the absolute veriation x° of x is a field in S which satisfies
() = (x)(0w € S).

Proof. Choose two sequences U, and V, of operators in K such that
U, 1, [V, £1, |Ux— 2,27 and | V,(s") — x| .=<27". Then we
have | U, %o—(3"u]w—0, || Vou(2?w — %« w—>0 and consequently (x”), = (%)’
almost everywhere.

Lemma 3.7. Let W be any absolutely continuous compact set of
states, x a continuous field in W and K, a sequence in K with || K.o —
xlaw — 0. Then (K,w)® converges to x° in the point weak topology of Fqp-

Proof. Let ;2 be any distribution in 9. Then (K,)" converges to
2”in L*(y), from which the lemma follows.

Lemma 3.8. Let 9 be an absolutely continuwous compact set of
states, U its closed subset and q a continuous positive field in U. If
w—q is positive in U, then q is extended to a continuous positive field in
G preserving the positivity of w—q.

Proof. ¢ is extended to a continuous positive field » in 9. We
choose a sequence 7,(= K,» with K,,=(A,)") of continuous positive fields
in 9 which converges to r uniformly in &, and which is contained in
the linear span of the set ( Kw)”: K€K). By Lemma 3. 4 each 7,4 (0 € W)
is cyclic in L*w). Let R, denote the operator field in 9 with R,o =7,
and @ the continuous operator field in U with Qw=g¢. Now (I/+R,)™
are continuous operator fields in g, and the following relations hold in
Fu-

(I+R)'—{U+Q) VY yg+w) = I+R.) r.—q)— 0.
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(K(g+o): KEK)=(K(I+Q)w: KEK) is uniformly dense everywhere in
%®qr Then (I--R,)™" converges to (I+-Q)™' in the Q*-topology of B(%F ).
Consider the function f(x) = min (x, 1) (0 £ x < o) and set ¢, = f(K.)w.
Then ¢, and w—g¢, are positive and continuous in Fqy and g, —g¢llq;— 0. We
can assume without loss of generality that |¢g.—¢||q; =27 (n=1,2, )
holds. Choose a sequence f, of continuous functions in ¥ which satisfies
the next conditions

(1)- l=fH=fi=foeeeee = 0.
(2)' I fll((’)) "l dus1o — Juw ”w g 2_"((0 = CW).
(3). f,,(a)) =1 for wE U.

Then ¢' = ¢, + 3 fu(®)(g.+1—¢.) converges uniformly in Fqy. ¢' is the
desired positive continuous extension of ¢ in 9 because w—¢q' is positive

in 9.

Theorem 17. Consider an absolutely continuous compact set W of
states on A and its closed subset U. If K is a continuous operator field
in (K@), then K is extended to a continuous operator field in (Kay)'.

Proof. 1f K is a definite Hermitian in Kq// with |K|< 1, then Kw
and w— Kw are positive continuous fields in U and K« is extensible to
a positive continuous field ¢ in 9¥ preserving the positivity of w —gq.
Choose a definite Hermitian @ in (Kgy)' with ¢4 = Qw. Then @ is a
desired extension of K,

Corollary 1. Consider an absolutely continuous compact set W of
states on A and the commutor (Kaw)' of the algebra Kay. Then

Kp), =(X.: X (Kw))
is a W*-algebra which is the commutor (A,)' of the representative algebra

A, of Ain L(w).
By Theorem 15, 16 and 17 we obtain :

Theorem 18. Consider an absolutely continuous compact set W of
states on A. Then given any distribution n in W, W*closures K,"
and (Kw)')" of algebras K, and (Kap)', in L*(u) are a commutor pair in
L¥(p).

Theorem 19. Let W be given asin Theorem 18. Then the bi-commutor
Kap)" of Kay in Fqy is the Q*closure (Kw)® of Kay.

§ 4. Abselute continuity of states and the Reduction Theory.
Definition 4.1. (1). A state p is said to be absolutely continuous if
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every numerical function |Aw| (A& A) of the variable » is continuous
at p in the total state space S.

(2). Consider a compact set 9 of states on A, A state p in 9 is said
to be absolutely continuous in 9 if every numerical function | Aw |(AEA)
of the variable  is continuous at p in the space 9.

(3). Let p be any state. An absolute weak neighbourhood V(p: A,
A, A, ¢)of pisasubset of S:

(¢S : max (|p(A)—q(A)l, [Aip] — |Awgl) <e).
A Hausdorff topology of the total state space S which is determined

by the absolute weak neighbourhood of elements of S is said to be the
absolute weak topology of S.

Theorem 20. Ewery pure state is absolutely continuous. The totality
S, of pure states is the totality of absolutely continuous states in the weak
closure of S,.

Proof. Consider a fixed pure state p. If g is any state, then | A¢| <
IAq|, holds. Let F be any filter in the total state space S which converges
to p. Then

lé_m |Aq| <[ A4p]» (A € A).

b is a pure state, and every A=A satisfies | Ap|, = |Ap|. Since |Agl=
i‘f}pll(I(A U)| is lower semicontinuous on S, we have

lim |Ag| = |Ap| (A€ A).

aEF

Then we have liEm |Ag| = |Ap|, and p is an absolutely continuous state.
q€r
Using the similar arguments of Proposition 3.1, we obtain

Proposition 4. 1. Consider a compact set of states on A and a con-
tinuwous field x in W. Then the absolute variation x°is weakly continuous
at every absolutely continuous state in W.

In the following propositions 4. 2—4. 5 we assume that the algebra A
is separable.

Proposition 4. 2. Let A be a separable C*-algebra and S its total
state space. Choose a countable subset { A} of the unit ball U of A which
is everywhere dense in U and consider a numerical function on S:

d(w) = 227" Anw|.

Then d® is a lower semicontinuous function on S. A state p is
absolutely continuous in a compact subset W of S if and only if d°(as a
Sunction in ‘W) is continuous at p.
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Proposition 4. 3. Consider a metric m in S which induces the weak
topology of S. Then the absolute weak topology of S is the topology
induced by the metric

v(p, @) = m(p, q) + |d(p) —d°(q)].
The totality Sy of pure states in A is its closed subspace.

Proposition 4. 4. A weakly compact set of states in A contains abso-
lutely continuous states in it everywhere dense.

Proposition 4.5. Let i be a distribution in the total state space S.

Then, removing an open set U of any small mass from S, the set S—U
is absolutely continuous.

Consider a sequence {s,} of states in A which converges to a state s by
the absolute weak topology. Then 9 = {s,, s} is an absolutely continuous
compact set of states in A and given any bounded operator K in A, we
can choose a sequence K, of bounded operators in A,,’ such that | K,,| < | K|
and K,s, converges weakly to K, Roughly speaking, the algebra A/ is
approximated by a sequence of algebras {A;,'}.

Finally we notice that Propositions 4. 5 and Theorems 18, 19 include
completely the v. Neumann'’s reduction theorem.

Let A be a C*algebra A in a Hilbert space , A’ its commutor
and A’ its bicommutor. Consider the center Z (=A"" M A’) of A" and its
commutor Z!. It is well-known that :

Lemma.

(1). Z is abelian and Z' contains at least a generative abelian projection E.

(2). If the Hilbert space D is separable, then the al gebras A’ and A’ are products
A" =A1xAs, A'= Ay X A9 of algebras A\, Az and their commutors A(’, Ay respectively,
where (Aj, Ay) and (Ag, A2) are commutor-pairs on closed supspaces 9 and 92 of 9
such that the projection E on § with range E = §; belongs to the center Z of A”. The
algebra Zy = (A1 U Ay’ contains at least an abelian projection Ey which is generative
in Oy relative to the algebra Ay and the algebra Zy = (Ag U A2 contains at least one
abelian projection Eo which is generative in 9y relative to the algebra Ay,

Even if A is inseparable and E is an abelian generative projection
in the algebra Z/, we consider the smallest uniformly closed linear space
©, which contains (AEx: A€ A, x€ 9). The induction of the algebra
A’ in ©, is an isomorphism and E is generative in 9, relative to the
algebra A,

Consider an abelian representation (A,, E): A— A, of A in a Hilbert
sgace  whose projection E is abelian relative to the commutor Z'(=(A
\U AN of the center Z of A”. We call such an abelian representation a
central abelian representation. Then the v. Neumann’s reduction theory
is essentially the reduction theory of central abelian representations.
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Assume that the algebra A and the Hilbert space © are separable. A
central abelian representation (A,, E): A— A, in the space 9 has a suitable
compoundly cyclic element g relative to the algebra A and the center Z.
Then g is cyclic relative to A. This compoundly cyclic representation is
unitary equivalent to the representation of A in L*(x) which is defined by
a suitable pre-spectral distribution s in the total state space S, where the
carrier of s is the carrier of the projection E. Apply Theorem 20 to this
distribution x, then a reformed v. Neumann reduction theorem follows.

Theorem. If (A,, E): A— A, is a central abelian representation of a
separable C*-algebra A, then there is a sequence Z, of projections in the
center Z of A" such that Z, converges to I strongly and the carrier of each
Z.E is absolutely continuous.

Next we observe the central abelian representation of a W*-algebra.

Theorem 21. Consider @ W*-algebra A in a Hilbert space © with an
generative abelian projection E, which is abelian relative to the algebra Z'
=(A\UAN", Then the center Z is the carrier algebra of A reduced by E,
and the spectrum W of Z, as a compact state space on A, is absolutely
continuous.

To prove the theorem we first observe the next lemma.

Lemma 4. 1. Let A,Z', E and O be given as in Theorem 21. Then for
every A€ A a definite self-adjoint operator K-(A’ and a partially isometric
operator UEA can be so chosen as AE=KUE.

Proof. Consider a fixed A€ A, g=Range E and the uniform closure
[Ag] of the set (Bg : BEA). By Lemmas 2. 2, 2. 3 in Chapter 1, a partially
isometric operator U, in A and a definite self-adjoint operator K,s A’ can
be so chosen that

Ag=U,K,g, Range K,S[Ag] and U,=U,Z,,

where Z, is the least projection in the center Z of A whose range contains
[Ag]. U, K, and Z, are uniquely determined by A and g. Z,E is a projec-
tion whose range is the uiform closure of the set (Fg: FEZ). Notice
that AFg=U,K,Fg (FEZ). Then we have

AZ,E=U,K,E.

The system (Z,: gERange E) is a directed system of projections and
converges strongly to the identity I. Since # & Range Z,F implies Up=
U,Z, and K,= K,Z,, the system (U,: g € Range E) converges strongly to
a suitable partially isometric operator U in A when Z, converges to I. Si-
milarly the system (K,: gERange E) determines a definite self-adjoint
operator K;A' with K,= KZ,(g&Range E).
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Proof of the theorem. (A, E) is a faithful abelian representation
of A and algebraically equivalent to an abelian representation (Agy, P)
which is determined by a compact state space 9. The projection E is
therefore identified with the coordinate projection field P in 9, where
Cqp is the center of the algebra Aqgy.

Now given any A = A, a partially isometric operator U in A and a
definite self-adjoint operator K in A’ can be so chosen that AP=UKP and
U*AP = KP. Then we obtain

Aw = U(Kw) and U*Aw = Kw.
Ko is a positive field in 9. In fact Kgy and A are identical,
P(B*'B*KP =0 (B A),
and
(B*Bw, Kw).=0 for every B = A.

Hence Kw is the absolute variation of the field A« and is continuous.

§ 5. A non-commutaive extension of the Gelfand-Stone-Weierstrass
Theorem in a compact space of pure traces.

(a). Absolute continuity of compact spaces of traces.

A state f on A is a trace if t(AB) = t(BA) holds.

Lemma 5.1. Consider a fixed trace t on A. Then

(1). L¢) is a two-sided invariant self-adjoint subspace of the dual
space A of A.

(2). x—x*is a conjugate linear and isometric automorphism of L'(t).

(3). Let A, denote the algebra of left multiplies (A,: A€ A)of Ain
A where (A,x) (B) = x(AB) holds for every A, BE A and x& A). Then
A/ and (A) are a commutor pair in L*(¢).

We denote by I the totality of traces on A. If 9 is a compact space
of traces on A and =z is a vector field in 9%, then we denote by x* a field
(") = (x,)* on Y. If X is an operator field in K, each value X, of X
belongs to A, We denote by X, an operator field in 9 with (X)). = (X.):
(w=D).

Lemma 5.2. Consider a fixed distribution n in <. Then:

(1). xe L(p) and K € K implie Kx, K,x € L¥(u).

(2). x—x*is a reflexive, conjugate linear and isometric automor-
Dphism of the Hilbert space L'(p).

(3). Strong closures of the representative algebras (K.)" and (K,.)"
are a commutor pair in L(p).
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These two lemmas’ follow immediately from the well-known trace
theory. Further we obtain the next proposition.

Proposition 5. 1. Consider a compact set W of traces on A. Then

(1). W is absolutely continuous.

(2). Bqy is x~invariant and invariant under algebras K and K,.

(3). x—x* is reflexive, conjugate linear and isometric automorphism
of the Banach space Tqp.

(4). Q*closures (Ka), and (K.3w), of Ko and K, in the Banach
Space %cW are a commutor pair.

Proof. (1). Consider a trace ¢ and an element A of A. Then At =
U(A* A)*t, where U is a partially isometric operator in A,”” and (A* A)+¥¢
is a positive definite functional. The absolute variation of At is (A*A)*¢
and the field Aw is absolutely continuous in the total trace space 4.

Hence (1) follows.

Since (2) and (3) are obvious, we prove (4) only. 9 is absolutely
continuous and (Kgp)*is the bicommutor of Kgy in §qy The conjugate
linear isometric automorphism x © x* in §q, determines a conjugate linear
spatial isomorphism X< (X*), because (Xx*)*= (X*),x. Then (Kgp,)?is the
bicommutor of Kgy,. Since (K9)? and (K,90)” commute with each other, to
prove (4) it is sufficient to show that (Kgy)’ and (K,90)' commute with each
other. Let X (Kg) and Y& (K;9). X is a continuous operator field
which commutes with K9y and whose each value Xw (@ € 9) belongs to
(K.)'=(A.)Y=(A,)/. Similarly Y is a continuous operator field whose each
value Y, belongs to A,)” and which satisfies X,Y,=Y,X.. Then we have
XY=YX and hence (Kw), (K,9)?) is a commutor pair in Fqy.

(b). %-mapping in the dual space of C*-algebra.

Hereafter we shall use the following notations.

(1). If A€A, then U, is the smallest uniformly closed convex subset
of A which contains (U*AU: U are unitary operators in A).

(2). U denotes the smallest uniformly closed convex set of bounded
operators in the dual space A of A which contains the set (U%U: U are
unitary operators in A), where y=U*Usx implies y(A)=x(U*AU).

(3). If x is a functional in A, then [Ux) is the uniform closure of the
set (Tx: T&U) in the dual space of A.

(4). If uis a distribution in the total trace space I and x is a field
in L), then (Ux), is the uniform closure of the set (Tx: TeU)in L*(p).

(5). If 9 is a compact set of traces in A and x a continuous field in
W, then [Ux]gp is the uniform closure of the set (Tx: T&€U) in Fqy.

we first prepare some lemmas and sub-lemmas to define the 4-applica-
tions of functionals in A.

Sub-lemma 1. S, T€U implies ST U.
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Sub-lemma 2. Let t be a trace and x an element of L*f). Then [Ux]
is the uniform closure of (Tx: TEU) in L*).

Lemma 5. 3. Consider a fixed trace t on A.
(1). x < L¥t) and y € [Ux] imply (Uy]S[Ux].

(2. If x, ye LX) and xo[Ux], then a y,&[Uy] can be so chosen
that

20— 3olle S |x—y]; and xo + yo = [U(x+3)].
(3). Let x,, and y, be two sequences in L*(t) such that

|#n—x]c—= 0, |3"— 31:— 0 and y,&[Ux,].
Then ye [Ux]

Proof. (1). T€U implies T [Ur] & [Ux]. Then y&[Ux] implies (Ty:
TeU)S [Ux] and [Uy] S[Ux]. Hence (1) follows.

(2). If x, yeL*}) and x,€ [Ux], then a sequence {x,}(x,=7T,x) with
T.=U can be so chosen that ||, — xo|:— 0. Now { y.}(y.=T.y) is a sequence
in [Uy] and has at least a sub-sequential weak limit y, because of the weak
compactness of [Uy]. Since x,+y,€ [U(x+y)] and

len '—yn’l‘.t= "Tn(x—y)"t = “x —y”h

the desired relations in (2) are satisfied.

(3) follows immediately from (2).
Similarly as Lemma 5.3, we have the followng lemma.

Lemma 5. 4. Consider a fixed distribution i in the total trace space
9. Then

(1). x€L¥p) and y € [Ux], imply [Uyl, S [Ux],.

2). If x, yEL¥y) and x,€ [Ux),, then a y. & [Uyl, can be so chosen
that

| %= 3ol S — 3k and xo+3,€ [U(x + )],
(3). Let x, and y, be two sequences in L*(t) such that
|0 — 21— 0, | 92—y —0 and y.& [Ux,],.
Then ye<[Uxl,.
Proposition 5. 2. Consider atrace t and a functional x in L(t).

Then there is one and only one functional x in L(t) such that

x4 [Ux] and x9(AB)=x4(BA) (A4, BEA).
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Proof. A," is a W*algebra of finite type in which the Dixmier’s &-
application is defined. The A4 of AEA is contained in the common part
of the center of A, and the strong closure of U, in A", In fact, A" is
contained in the uniform convex span of the set (U*AU: U are unitary
operators in A,”). Each U is a strong limit of unitary operators in A.
Since U U(At)=UAU*t(A, UgA), [U(A?)] is the uniform closure of the
set (Tt: TeU,) and contains A¥%¢.

Hence putting x= At and 2% =A% we have the relations

x9(AB)=x1(BA) and (U*Ux)4=x%< [Ux](for unitary U in A).

The mapping At—(A#)4= A%t is extended to a bounded linear mapping x
—»x4 in L*(#) which preserves above relations in virtue of Lemma 5.3. Finally
we prove the uniqueness of x4 in the proposition. Suppose that there is
another functional y in [Ux] such that y(AB)=y(BA). Since we have
(Tx)i=x4(T€U), y=[Uzx] implies y4=x%. Hence Ty=y(T=U) implies
y=y4%=x4 and the uniqueness of z4. Q. E. D.

Now we observe the 4-application of pure traces. A trace ¢ is said
pure if the algebra A,/ is a factor. We have immediately :

Lemma 5. 5. A trace t is pure if and only if xEL¥t) implies x9=
x(It.

We next define the 4 -applications of vector fields and operator fields.

(1). If 9¥ is a compact set of taces and x is a vector field in 9, then
we denote by x4 the field (x4).=(x.)7 in .

(2). If tis a trace, then the & -application of A€ A inA,” is denoted
by (th)é_

(3). Consider the totality 9 of traces in A. If A€ A, then we denote
by A% the operator field in < such that (44),=(4.)9 (wE ).

(4). If p is a distribution in 9, then (A,)" is a W*-algebra of finite
type in L*(y). The 4-application of AEA in (A,)" is denoted by (A4,)4.

Lemma 5. 6. Consider a distribution i in the total trace space 4. Then
the A% of each AEA is a measurable operator field in L*(i) and identical
with the operator (A.)9.

Proof. (A*)4 is contained in the common part of the cenfer of (A,)”’
and the strong closure of U, in (A,)"". If f is a continuous function in I,
(A.)Y f belongs to the center of K,"”. Then

(BC(A) f w, w)u=(CB(AY f w, w) (B, CEA).
and
S F (@) ((A)1uw)o(BC) d,l((.,)=g F (@) (A)90)u(CB) dpu(w).

For each fixed B, C in A the equality
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((A)¥@)u(BC)=((A")%.) @(CB)

holds almost everywhere. (A,)4w is regularly and weakly measurable. Then,
removing an open set of any small mass from 9, it is weakly continu-
ous. Hence the above equality is valid for every B, C in A removing a
fixed null sup-set of <.

On the other hand (A,)? is contained in the strong closure of U, in
(A" and a sequence T, in U, can be so chosen that

| oo = (A0 o= | T = (A0 e ()47
Now we have
| Tatw = ((Aw)0)uf = 0 (2> 00) and ((A,)7w). € [U(Aw)]
almost everywhere, By these relations we have ((A.)7»).=(A%)w almost
everywhere, and the equality in L*s):
(A)ix = A4x

is valid for every x= Zﬂ} fi A; with ,£C and A,€A. Then the same equali-
ty is valid for every xIE L*:) and hence A7 is a measurable operator field

which is identical with (A,)4 in L*(x). Hence the lemma follows.
We now obtain the following proposition.

Proposition 5. 3. Consider a distribution 1. in the total trace space I
and a vector field x in L¥p). Then [Ux], contains the field x9.

Proof. Consider a subset of L¥(y):
M=xEL(p): y&[Ux], implies x1=31 [Uy],).
We show that 9t satisfies the following (1)—(4).
(1). W is uniformly closed.
(2). (Aw: A€A)CS M.
B). fEC and xEM imply frEM.
(4). z, yEWM imply x+ysIn.

(1) follows from (3) of Lemma 5. 4. (2) follows from what 7€ U, im-
plies T4= A% and (A%0)=(T9w)E [U(Tw)] .. We now prove (3). Let f&C
and xEIM. Every y=Tfx with T U satisfies the relation :

y# =fx# Ef[UTX]ILg [U(J’)]u-

Then the same relations are satisfied by every y = [U(fx)]. and hence
fxEM. We finally prove (4). Let x, yedt. By x4 [Ux], we can choose
a suitable y, € [Uy], such that x4 +y,€ [U(x+y)].. Now
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29+ [UJ’o]u c [U(x+y)]u
and
(x9+p)i=x4+y9€x1+ [Uy] .S [U(x+ )],
Notice that TeU implies (Tx)¥=x4, (Ty)i=y% and Tx, TycSI.
Then every z=T(x+y) (T€U) satisfies the relations

(x+y)i1=z24[Uz],.

The same relations are satisfied for every z& [U(x+ )], and hence x+y
belongs to .

By (1)--+(4) M contains the set (Af: A€ A and f=C) and its uniform
linear span L*(y), from which the proposition follows.

(¢). A generalized Stone-Weierstruss Theorem in a pure state
space.

To study the problem which is mentioned in the section 3 of Chapter
3, we introduce here the following notations.

(1). We denote by A% the smallest C*algebra of operator fields in
the total trace space 4 which contains the set (47: A€A).

(2). If 4 is a distribution in the total trace space 9, then we denote
by [Aw], the uniform closure of the set (Aw: AEA) in L*(x).

Lemma 5. 8. Consider a distribution p in the total trace space 9.
Then the set (Xw: XEAY) is contained in [Aw],.

Proof. Let E denote the projection in L*(iz) whose range is [Aw],.
Then E commutes with every operator in the strong closure (A,)" of A in
L*(yz). The A% of each A€ A belongs to (A,)" and commutes with E. Hence
every operator X in A4 commutes with E. Since w is contained in the
range of E, we have

(Xew: XeANHC Range F= [Aw] « Q. E.D.

Consider the totality <, of pure traces on A. If the algebra A is

abelian, then 4, is the spectrum of A and there is a one-one correspondence

between the totality I of traces and the totality of distributions in <,.
Consider a prespectral distribution ¢ in 9, in the sense of Definition

1.7 in Chapter 2 and set p = S‘“d . Then the Fourier induction

xEL”(p)-—)Sxm dn ()

is an isometry between L*(xz) and L*(p). If A is abelian, every distribu-
tion p in 4, is prespectral because L*(y) is the Hilbert space of square
summable and measurable functions in 4,. We now show that these es-
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sential properties of distributions in &, are preserved even if A is non-
abelian.

Theorem 22. Let y be a distribution in the total trace space < whose
carrier W consists of pure traces except for a null set. Then nis pre-
spectral and the center of (A,)" is the totality M(y) of bounded measurable
Sunctions in I,.

Proof. Notice that the operator field A4 of A= A satisfies

(A4%9),= (A,,,)" =w(A) (weE g,,).

Then 4 -application (A,)7 of A in L*) is the primitive function J, of A
in 9Y which is defined by J.(w)= w(A4) in 9. The smallest C*-algebra of
operator fields in 99 which contains (J,: AEA) is the totality Cav of con-
tinuous functions in 9. Then we have A7 = Cqp and (fo: feCyw)c
[Aw].. By Lemma 1.8 in Chapter 2 x is a prespectral distribution. The
center of (A,)" is the strong closure of A?(=Caqy) in L*() and is the algebra
M(ps).

The space 9, is not generally compact, but its compact subspaces
have the following properties.

Theorem 23. A compact set W of pure traces is a prespectrum. If x
is a continuous field in W, then for any ¢>0 we can choose a T =
S U U, € U such thot

sup | Tx,— (%) (Dol <<e.
weEW

Proof. Every distribution 4 in 9 is prespectral, and by Theorem 14
9 is a pre-spectrum. Next, consider a fixed x& Fqp and the set [Ux]gy
(=the uniform closure of the set (Tx: T€U) in Fqp). If y is a distribu-
tion in 9, the field x is contained in its uniform closure [Ux], in L*(y).
Since x4(=x.,(I)w in 9) belongs to Fqy, by Proposition 2.1 in Chapter 3
x.(I)w belongs to [Ux]9y and hence the theorem follows.

Consider a compact set 9 of traces in A, A trace t&€9 is said &-
continuous in W if every numerical function | A% |.,(A&A) of the variable
w is continuous in .

Proposition 5. 3. Consider a compact set W of traces on A and a
continuous field in W. If x is %&-continuous in W, then x% and the nu-
merical function |(x4).l. of the variable o are weaky continuous in W rve-
spectively.

Proof. 1f A, BEA, then the function of the variable « :

A¥w(B)=(Bw, A*qw)m=(B[7(u, A*qw).,,

is continuous in 9. Therefore every A9w(AEA) is weakly continuous in
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W. Consider a field x=3 fiAiw (fi€C, A;€A and its 4-application x4
=3 fiA%w. Then x4 and the numerical function of the variable w :

|x4a]12(= Z f{w) filw) (A4 0) (L)

are weakly continuous and continuous in 9¥ respectively.

Proposition 5. 4. Every pure trace is f-continuous in 9. The to-
tality 9, of pure traces is the totality of & -conuous points in the weak
closure of 9,. If the algebra A is separable, then 9, is a Gs-subspace
of 4 and has a complete metric which induces the wevk topology.

Proof. If A€A, then the function of the variable o :
| A4wll.(=inf | T(Aw)|.)
Teu

is upper semicontinuous in 9, and f5, is the set

T=NEEg: |Aft]=|tA)]).
AEA

Let I, be the weak closure of &,. Then a trace in 9, is 4&-continuous in
9, if and only if it belongs to 4,.

Assume that A is separable and choose a countable subset { A4, ]} of A
which is dense verywhere in the unit ball of A. Then we have

D=\ T: | A:bthe=(A)])

and 9, is a Ggsubset of 4. Q. E. D.
Assume that A is separable and consider the sequence A, in the unit
ball of A which is everywhere dense in it. Then

ax(t, s)= 227 | Autth —| Ants's]

is a metric in 4. We call it a & -metric in 9 and its induced topology a
& -weak topology of 4.

If a distribution p in 9 vanishes outside of <,, it is regarded as a
distribution in Y, such that every Borel set in <, is measurable and, re-
moving a suitable set of any small mass from <, each measurable set is
compact. Such a distribution in 9, is said merely a distribution in ,.
Consider the totality D(Y,) of distributions in <, and the totality C(<,)
of continuous functions in 9,. D(4,) is a subset of the dual space of C(I,)
in which the weak topology is defined.

Theorem 24. If A is separable, every trace t on A is a mean

t=m,= Swdﬂ ()
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of a suitable distribution p in S, The mapping
luED(Q,,)-’ m“EET

is a homeomorphism between D(I,) and I, in their weak and 4-weak
topologies.

Proof. Let t be a trace and Z the center of (A,)". By Proposition 1. 7
in Chapter 2, a prespectral distribution ; in the total state space S is so
uniquely chosen that two representations (A,, Z, L*(#)) and (A,, M (i), L*(12))
are unitary equivalent. It iseasy to show that the carrier of ;2 is contained
in 9 and consists of pure traces almost everywhere. Since every distribu-
tion in 4, is prespectral, the mapping p— m, is one-one between D(Z,)
and 9. We show that the mapping is a homeomorphism. Since (A,)7=
w(A)I= J (o) I holds for A€ A and wE T, C(d,) is regarded as the smallest
C*.algebra of operator fields in 9, which contains (A%: A€ A). Let

neD(G,), xELy(p), t=m,= gwd pand m,= wad,u(m) & L*(f). Then we have

(A)om, = S(Aw)qud,g () = S Ta() zudsa(eo).

For every operator field X A% in 9 a continuous function fx in 4, is so
determined that

(Xzf, t)t = K fx ((U) d,a(w).

By the mapping p— m, the weak topology in D(Y,) is irduced to the
weakest topology in & such that each numerical function (X, £); (where
Xe A%) of the variable ¢ is continuous in 4. The & -weak topology of I is
the weakest topology such that each ((A.)%¢, (A,)9t). (A€ A) is continuous,
Then it is weaker than the former induced weak topology. Conversely,
let ¢, be a sequence in 4 which converges to t& J in the 4 -weak topology.
Then (A%¢,) (B)=(BYt,, A*1t,)..— (A%) (B) and ¢,(A4)= (441, 191,)— t(A)
when # — oo, Therefore W ={¢, 1,1, -} is a weakly compact sub-set of &
in which every A%« (A€ A)is a continuous field. Now A4(Kw)= KA%wE
Bqp (KEK) imply that every A7(A€A) and consequently every X(EA%)
are continuous operator fields in 9, sothat we have (Xt £.)m— (Xif, £):
(XeA%) and ¢, converges to ¢ by the induced weak topology. Hence p ©
m,, is a homeomorphism between D(,) and .
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