ON GENERAL CONNECTIONS 1
TOMINOSUKE OTSUKI

In a former paper [11]Y, the author extended the concept of classical
affine connections considering them as a sort of cross-sections of the tensor
product bundle of the tangent bundle (of order 1) and the cotangent bundle
of order 2 of a differentiable manifold, and defined naturally the covariant
differentiation for any cross-section of this vector bundle over the manifold
which he called a general connection. As an interesting example, the
covariant differential operator for any tensor of type (1, 2), which is also
an above mentioned cross-section, was the so-called trivial differential
operator of the graded algebra of all tensor fields.

In the theory of general connections developed in [11], there exist
some faults as follows : Let ¥ be a differentiable manifold? of dimension
n. Let I'Y be any general connection of ¥ and P% I be its components
with respect to local coordinates ' of . For any tensor field, for instance,
contravariant tangent vector field U‘, by the formula [11], (7.4), its
covariant differential is given by

10U’
J 3 uk
Accordingly, for a contravariant tangent vector field of X which is given
only along a curve C, #'=u'(t), we can not, in general, define its co-
variant derivative with respect to ¢, DU'/dt. If and only if the tangent
vectors of C are eigen vectors of P, that is

pU‘=(P +ijUj)P§ du,

where ¢ in an eigen value of P}, then we have
DU'_(pydU’, py o du
g —o\FPi g T U g )

We call such a curve an eigen curve belonging to the eigen function
o on X¥ which is an eigen value of P=2(I") at each point of ¥. But, as
easily seen by [11], (6. 2—3), the forms

P AU+ T U’ du*

1) The numbers in square brackets show the numbers of the references at the
end of the present paper.

2) In the present paper, we deal with only manifolds, functions and transfor-
mations with suitable differentiabilities for our purpose.

3) We will make use of the notations in [11], with some exceptions.
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are vectorial, acccordingly we can define a sort of covariant derivatives
with respect to # for any tangent tensor field defined along any given curve
by an analogous formula. According to the classical principle that the
tangent vectors of a geodesic are parallelly displaced along itself, we can
define geodesics only in the family of eigen curves. But the differential
equations .

d*u’!  du? du® _ du?

e *ar dar ¥ ar .

have a geometrical significance as mentioned above. This discordance will
be removed.

In [11], § 9, the author could not define canonical mappings for any
general connections which give an interesting interpretation of connec-
tions different from the ordinary ones. He treated with only regular ge-
neral connections in a more arranged method than the one for classical
affine connections in [10]. Introducing general frames of order 2, he will

show that we can define also a canonical mapping for any general conne-
tion.

P ~ I

Furthermore, the universal affine connection of X defined in [11],
§ 10, which is an affine connection naturally defined for the vector bundle
over the space of all frames of order 2 of X induced from the tangent
bundle of ¥ by the projection of the associated principal bundle, has its
significance only for regular general connections and their contravariant
parts. But, making use of the space of all general frames of order 2 of ¥,
the author will define a more generalized universal connection of ¥ which
has a meaning for any general connection of X such that the latter is in-
duced from the former by the above mentioned canonical mapping of this
general connection.

In the present paper, the author will study also the torsions and curva-
tures of general connections and some properties of eigen curves.

§ 1. Preliminary.

Let 2% be the group of all generalized infinitesimal isotropies of order
2 at the origin of the n-dimensional coordinate space R*, whose element
is written as a set of real numbers (e, @/) such that ]ej| % 0 and whose
multiplication is given by the following formulas : For any «, € £;
al (af) = al(a)ai(P), (1.1)
ahl(ap)= all@)ai(B)+ al («) ai(F)ai(3). (1.2)
We identify L, = GL(n, R) with the subgroup of £; which consists of all
elements « such that a{(«x) =0 and may also regard «} as coordinates of
L}. Let ¢ be the natural homomorphism of &; onto L, given by
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al(a(a)) = al(x). (1. 3)
Let 9% be the kernel of ¢ and 7, 7 be mappings of & onto 9, defined by

p)=a(a e, - (1.4)

7(a)=as(a™). (1.5)

An element « of 22 can be written uniquely as a preduct of elements of
L}, and 9 by

a=a(ayy(a)=7(@)s(a). (1.6)

Now let ¥ be any #n-dimensional differentiable manifold. With any

coordinate neighborhood (U, #’), where the local coordinates #’ are defined

on the neighborhood U of X, we associate n+#n” fields of vectors denoted

by 6u;, 0°un. Let 6v;, 6°vs, be the vector fields associated with another

coordinate neighborhood (V, #’). When UN V5 @, we assume that they
are related mutually on UNV as

v’

8u{=£, 61);, (1. 7)
o 2%’ ov' ov* ..
Othin = o OV T 5y O Vo (1.8)

Thus we obtain at each point x of X an (»u+#°)-dimensional vector space
spanned by these n-+#° vectors 8u;, 6°un, x € U, but independent of co-
ordinate neighborhood containing the point x, which is denoted by %2 (¥).
The union
T2(%) = Usey T2(%)

may be considered naturally as the total space of a vector bundle {2°(¥),
X, ©.} with the natural projection =;, whose structure group is 23 (in fact
L} ={a|al(a) = ali(a), aE L%} and the coordinate transformation gry:
UNV— %, is given by

J PE
a’ (gw)=%, asjn(gvv)=#zu‘r- (1.9)
We-call any element of R(X) a tangent vector of order 2 of ¥ at x. For
the sake of simplicity, we denote the vector bundle over ¥ by the same
notation 2?(X) and call it the tangent bundle of order 2 of ¥. By means of
(1.7), we may identify the vector 6u, with the tangent vector 3/6%' in the
ordinary sense. Accordingly the tangent bundle 7 (X) of X, which is to be
called the tangent bundle of order 1 of X, with the projectionz: T (X)— X%,
may be considered as a subbundle of Z*(X).

Let {®8*(X), %, =.} be the associated principal bundle of 3°(¥), which
is called the principal bundle of order 2 of X. Any point b of B*(X) is a
frame of T*(X) at x = =,(b), such that

e;(b) = 8u; al(p), (1.10)
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en(b) = 0u; il (3) + °uy al(B) ai(P), (1.11)
where 3€ . For any a & £}, the right translation 7»(a) on B°(%) is de-
fined by

e(ba) = e;(b) ai(a), (1.12)

en(bar) =eJ(Z_’) ab () + en (B) al(a) an (), (1.13)
where we simply denote »(«)(d) by ba. Let {B(X), ¥, =} be the associ-
ated principal bundle of T(%). As is well known, any point & of B(%) is a
frame of T(X) at x = = (b), such that

eu(b)= =2 ai(3) (1.14)

where S &). Since T(¥) C T*(¥), we may make use of the same notation
e, for B*(X) and B(X). For and « € L}, the right translation »(«) on B(X)
is defined by

e (ba) = e;(b) al(c). (1. 15)
The natural homomorphism ¢= /9 : B*(X)— B(X) is given by

e((a (b)) = e (D). (1. 16)
For any a € 22, we have

a7 (@) =7(s(a)) o (1.17)

‘For any coordinate neighborhood (U, «') and at each point x € U, we
associate an (n-+n2)-dimensional vector space which is spanned by du' @
du" and the differentials d°u’ of order 2 which are assumed linearly inde-
pendent mutually and of du' ® du". We relate the two vector spaces
corresponding to (U, «') and (V, ¢*), at x& UMV, with each other by

d’ = %d’-’u' + 62’,,’;”, du' @ du™. (1.18)
Thus we obtain the cotangent vector space of order 2 of X at x denoted by
D? (%) which is dual to $2(X) and contain the tensor product T:(X) &
T:(%) of the cotangent space of X at x. The base {du’, du'Q du*} is dual
to the base {0, 8w} of Ti(X). The union
D (X) = U zez Di(X)

is the total space of the cotangent bundle of order 2 of % which we denote
by the same notation. ©°(X) contains the tensor product bundle T°(¥) ®
T"(%) of the cotangent bundle 7*(X) as a subbundle.

In the following, for any vector bundle §= {8, %, p}over X we shall
denote generally by #(§) the vector space consisting of all cross-sections
of § over the algebra A (X) of all scalar fields on X.

We define a natural differential operator
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4: [ITE-TEEO @ TM)
(T E) - (E)

by the equations :
d(Viou) =6"u, Q Vidu'+ou, Q dV', (1.19)
d(Vdu) = Vdu+du* Q@dV. (1. 20)
Let T(X)®*% be the vector bundle over X which is the tensor product
bundle of 7(%)®” and T"(X)®. We denote by
T*(X)® " @ D) ® T*(X)®E
the vector bundle over ¥ which is obtained from 7°(X)® " by extending
the tensor product bundle of its #-th component and (g +1)-th component
to D*(X). Then we can define generally the differential operator

d: r(TE®»?) —
@(é‘. TE)®P¢D @ THE) @ T(X)RP9 Q) T*(X)89+

+ f_Z] TE)® @ T* (X" @ DX ® T(E)™) (1.21)
by
d (Ve ou @ -+ Q duy, @ dih Q -+ R du*)
= Vi d Gu, @ - @ tu, @ dut @ - @du'e)
+ou, Q - Qou, @ duh @ -+ @ du's Q@ d Viip,
and

d@u, ® - Qfu, ® duh Q - Q du)
= 30w, ® - @ ou,_, @ Ty @0, @ -+ @ 5, @

du'r @ -+ Q du's Q du” (1. 23)
33 0, @ e @ O, @ duh @ - ® duhr @ ' @

(dutr1 @ - & du'd),

where we regard the summation in the bracket in the right hand side of
(1. 21) as follows : Any two of them contain 7 (X)®***" as the common
part and so we can construct naturally a sort of direct sum bundle of them
by extending T (X)®'***" in the (p+q) different methods. At each point
x € X, clearly

d@u Q -+ Q ouy, R du'r Q - Q dul),
6”‘1 R Qouy QA1 Q -+ @ dua Q dulers

span an n”'? (1+#n)-dimensional subspace of the fibre over x of the above
mentioned vector bundle over X which is independent of the choice of local
coordinates. We denote the vector bundle over X with this subspace as its
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fibre over x by T(X)®% ", Then the differential operator d of (1. 21) is
in fact as

d: (T (X)B" )= g (T (X)Bir.a+)), (1.24)

§ 2. General connections and covariant differentiations.

We call any cross-section I' of the vector bundle 7T (¥) ® ©°(%) over
X a general connection of ¥ by definition. In a coordinate neighborhood,
let I" be written as

I =0u; Q (Pjd’u’ + I'duw’ @ du®), 2.1)
hence we have the mapping fi, : U— 2 by
as fu = P5, @y fv =T (2.2)

Then, for any two coordinate neighborhood (U, '), (V, 2!, UNV+%@,
we have

(o°gve) fo=rfrgve. (2.3)
Since ¢ is a homomorphism of &; onto L}, we get
(o-grv)(ofv) = (o-fv)(o-gvv) (2.4)

This shows that Pj are the components of a tangent tensor field of type
(1, 1) of X with respect to (U, «'), which we denote by
W) =6u,Q Pldu = P. (2.5)
Now, we define a homomorphism ;= pr: T*(X¥)— T(X) by the inner
product
p(X)=<r, X>, Xe3* (%),
that is ,
#(@uy) = Pjou, u(6up)= I'ybu (2.6)
Since we have
TE) QP H) CT(E QR D®),
TEWHCT(X)R T @)=+ T(X) Q D (F) C T (%) Q D(X),
we may consider as d(1(IN) € ¢ (TEX)RD*(X)). Then we can define a
homomorphism ¢ =¢p: D*(¥)— T7(X)®* by the inner product
¢lo)=<w, dGC(IM)—T>, o< D(X),

that is
o (du') = — Ay d’ @ duc, @.7)
e(du' @ du*) = Pjdv’ @ du’, .
where we put
Jjjk == I“'Jx— GP}V‘) (2- 8)

ou* "

4) See [11], §6.



ON GENERAL CONNECTIONS I 105

Furthermore we put generally

¢(du') = du', (2.9)
o(du' ® -+ ® du'v @ du) = P}} Pj-g du' @ -+ R du's R du”,
g >1 (2.10)
and
e T@ =p, (2.11)

then we get naturally homomorphisms of
TE™QT® @ TR ® T"@P,
TE® @ T (0" Q@ () @ T" @),
S=1, 2, e, D t=l, 2’ ey q,

into T(X)®>*Y by the tensor products of these extended homomorphisms,
which are coincide with each others on T (X)®?-%*D, After the manner in

which the tensor product symbol “®” is defined, we can define also a
homomorphism of

D TERE @ T () @ T@P @ T @

+ 21]‘. T(X)® ® T*(X)® D ® D(X) & T* ()8

into T (X)®"*Y by making use of the above homomorphisms on each terms.
We denote this by the same symbol ¢, thus we get naturally

¢=gr: TE)B®ID— T ()8 +D (2.12)
5, g=0,1,2 -,

Now we define the covariant differential operator D = Dy of the
general connection I' by

D=Dr=gr-d : #(TE) =y (T(ER)P>D). (2.13)
In fact, for Ve v (T (X)®*?),

V= V};:;:};au,] &+ @ oy, Q du’t @ «++ Q du’s,
we get by (1. 22), (1.23). (2,7), (2.9) and (2. 10)

DV=0bu Q- Q ous, Rdu'rQ -+ R du's @ DV,

DViijy = Vi du”, (2.14)

oVike
3o i i 1"
Vi, =Pl - Piy

< ou
»
i i i 1 15 k K h R
+ 23 Puy o Puzy Ten Pasyy -+ P Valoar Pjt - Pl

$=1

h h
1 see
le Pjg

q
i i kol n k qih h R =
'—EP;‘} oo Pk: Vh}u-h‘f PJ; '",Pli_; Aj:),, P_;H" e sz. (2. 10)

=1 - t+1

The last formulas are identical with the ones taken away Pl from each
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term of the right hand side of [11], (7. 4). .
Now, we denote the dual homomorphism of pp | T(X) by pr: T°(%)

—T*(¥), thatis

/T (du') = P du’ (2.16)
and define a homomorphism 1 =7r: T(X)®"?— T (X)®*? by
Ir=(ur @ Q@ pr) Q (ur Q@ ++*  p1), (2.17)

for convenience putting iy | A(X) = the identity transformation.

For any two tangent tensor fields V, W of type (p, ¢), (¢, b), with
local components V}}I:i}g, W,‘;ZII};: respectively, applying the formula (2. 15)
to the tensor product V& W, we get

§, et t vt
(Vf}---f;’ W;g:}-~~;::g),h

fyeed i 1 h ol L3 k
= 1775 PE] ses pta p+1 pta q+1 ese q-+b
le"‘Jq.n P"p+1 P"p v Wi kg +» P-’q+1 P

q+1 q+d

+ Py Pap Vi Pl PRWiniiiit.

that is
(Vizie Wisstijaea),,

= Viie, Qe W)ipsiiese + (Ip V)jis Wipeiiesa (2.18)

which are also written as
D(VR W)=e(DVRAW)+iVQDW, (2.19)

where ¢ denotes the isomorphism of T (X)®® ) Q T (%)% onto

TX)®"2 Q T (X)®***" naturally defined from the above equations. This
formulas shows that the covariant differential operator of general connec-
tion does not obey the classical rule if 2 5 the identity transformation.

Lastly, we consider the relation between covariant differentiations
and contractions. For any tensor field V of type (p +1, ¢ -+ 1), with local
components Vjij#j, by means of (2.15), we get

kg K
P Visghn = Pl Pl TUSHE (PEPY) Pl Ply

r
433 Pl eev Plsct Tisn Plesi e Plo Virkst (PPL) P% -+ P
se1 1 s—1 ] 8+1 » 1" 1 Q
i i i Ryok & h ) )
-+ Pk} ere Pk;f'k,,, V),,]l;i:n P{ _;} b P_,g
q
_ e Pt kykok ( DA DI Ry s Py AR S > )
t-El Pki sz V"}""'x’;"' (P( Pk) Pj} I j;_: A _,:-,,. P":I; jg
i 1 1 Kok K h h h
— 1 ees 1 ; 1 ees
Pk] Pkﬁ Pk hl...h:n Agm le P-’g‘
Putting
’ M= P{Pt (2. 20)

and M= P? we have
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. Pl 0(Viazs M) pw ... phy
aum ?

+ Z‘.P,Z' v+ Pls=1 T Piszl -+ Pin (VIS M2) P} -+ P,

§m=1

Ot le ”jm = Pkl

- §_|Pk. Pk”(Vh,l Mh) P"’l coe Phl 1 lJ‘ijt"""' ’}q

“ t+1
—Pk, P;;,PV);EI‘@PP,C

X PJ} oo ijﬂ.
On the other hand, by (2. 15) we get

Prri.+ A P,ﬁ] X

04 ="Tin P5— PiA, (2. 21)
and by (2. 8)
h i
OPiPi _ prpy. + b, P
ou

=TI} Pi— P{ fi= sk,m.
Hence we obtain the formula
1 V“ }”Jm (Vi ”?;M;é)m
— Pyt -+ Pip Villaemdim Pt -+ Pl (2.22)

where we understand that the covariant derivative of the first term of the
right hand side is the one for the contracted tensor of type (p, ¢). It must
be noted that the covariant derivatives of the Kronecker's & with respect
to general connections do not always vanish. We shall rewrite symbolically
the formula (2. 22). For any tangent tensor tensor field N of type (1.1)
with local components N, we define the following contraction operator
N§ (s, t= positive integers) : For any tensor V of type (p, q) (s<p, t<q)
with local components Vji:j», we denote by N3 V the tensor field of type

(p—1, ¢—1) with local components

(Ngg V)J] _;;’ 1= V}}.;ﬁ‘_ hjf:} _1" 1 Nn (2. 23)
and by A8V the tensor field of type (p—1, ¢) with local components
(A V)jje-1= Vi1 a4 131 B (2. 24)

Then we can write (2. 22) as

IBDV=DMZBV—-9ABV
or

IBD—D-MB+ - A& =0, (2. 25)
where I denotes the identity isomorphism of T(X) and ¢ = ¢r is given by
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(2.12). From (2.25), we get immediately

Theorem 2.1. If and only if P=i(I')is involutive, that is P’=1]
and I is covariantly constant, then the covariant differentiation and the
contraction by I are commutative as operators.

Lastly, we denote explicitly (2. 3) in terms of components Py, I, for
the sake of future purposes. Putting
a}'fv = Pj’ d?n-fv = f}c,

we get immediately

0v' i w; 0V*
o D1 = Pigyr
and
ou %" —; 9v* 9
ou* Ta= Pi ouou' T ou’ ou™
that is 7
= vt ou"
1= " 2.26
Pi auk Ph avi ( )
and
Fi = 6’1}1 ko P 620“' )8“’ ou™
=g 't P *ou™ou') 8v* vt
_avj(kﬁgl k@iﬁum 2. 97
T ou” Py 8v"ov T, ovt 61)")‘ (2.27)
From (2. 26), we get
oP{_ 8y’ 8P; ou' ou™
av"  Au* ou™ 8v' oot
9% . 0ut dum | 0V L. 9%
du™du* " P ot 9t | oul ' 8v'ov’
hence, subtracting this from (2, 27), we get
— 8%’ 8y’ .\ Ou' ou™
h=(—-2¥  pyy 0V 4 )0u Our 2.28
din ( dumou* Pit au* ") 8vt av* ( )

§ 3. Regular general connections and their contravariant and
covariant parts.

A general connection I' is said to be regular when P = (I") is an
isomorphism of T'(X). Let I' be a regular general connection, then, we
get from (2. 3) and (1. 4)

77((17"8'1711).1(17) = '/}(fu),

E(frgvv) = (O"gw)f,(fv)gvv,
hence
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(o-gve) ?(frf)= ?(fv)grm (3.1)
The equation shows that the system {7 (f)} defines a general connection
'T" whose components are
ai(; (fv)) = 64, ah(3(fv) = Qi = T, (3.2)
where Q = P~', Since A('I") = I, 'T" is a classical affine connection, it is
called the contravariant part of I'. The induced connection "I" from 'I"
by the isomorphism @ of the tangent bundle T(X) is called the covariant
part of I, which is also classical and whose local components "', are
given, as is well known, by
wry= Pi(29% 4 i) = (ri -2y
, u 6u
that is
”F{h = Aic’u Qf (3. 3)
Then ¢ for 'T" and ''T" defined in § 2, writing respectively as '
pr=¢', gor=9",
we can write (2. 6) and (2. 7) as
,u(@?ujk) = P! I"0u, =<p90’(6u,,,),
w(@%u*) = —"I'h Phdu’ @ du* = ¢ (6% 41).
Since 'T" and "'I" are classical affine connections, ¢’ and ¢/’ are the identity
transformation on each T(X)®*?®, Hence we have
Theorem 3. 1. For any regular general comnection I', the induced
homomorphism ¢ of I' can be written as product of the transformation ¢
which is the restriction of ¢ on tensor product bundles of order 1 and the
homomorphism i which is the identity mapping on T(X) and T*(X), ¢' on
T*(X) and ¢'" on D*(X), that is
p=g¢m
We call sz = ur the basic homomorphism of the regular general connec-
tion I'. Putting
D=Dr=p-d, (3. 4)
we call this covariant differentiation the basic covariant differentiation
of I'. According to (2.13), we have
D=g¢g-D. (3.5)
In fact, for Ve ¢ (T(X)®*?), with local components Vjijr, analogous
computations to (2. 14) and (2. 15) give

DV = Vil du", (3.6)
oVl

»
rpis Yot kgt
+ 2T Vil i

V{‘m‘!‘ =
Jidg 1
177 auh
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—_ 2 le J,;k}tﬂjq I'Jth (3 7)

t=1
and

Vj’ 7’ = P;,l P)‘c; V)’:]l-::lnp,_;ll ere P’}g' (3. 8)
On the basic covariant differentiation of a general regular connection
I, we shall now investigate the ones analogous to{2. 19) and (2. 25). Firstly,

for any tangent tensor fields V, W of type (p, ¢) and (@, b), by means of
(3.5), we get from (2. 19)
¢D(VR W)=e(¢DVQIiW)+2VQ ¢DW
=¢p(c(DVR W)+ VR DW),
since putting ¢f=¢ | T(X)®*?, 12 =1| T(X)®*™?, etc., as is easily proved,
€'(¢5+1 ® /Tg') = S_Dé’:bm-n'e, ;f ® -sl;?ﬂ = a{:oan-
Furthermore, ¢ is an isomorphism for any regular general connection,
hence we get
D(VQ W)=eDVQR W)+ VR DW, 3.9
which is identical with the well-known formula for the covariant differ-
entiation of the tensor product of any two tensors with respect to a classical
affine connection. By means of (3.7), we have
Vs
MHViishn= 6’;;“

I'in VJ‘u-J”t Vi M
= (V J"i(n) it Vj}---)é’} (Irm - "r't’n)-
Since by (3. 7) we have

q
I3 ak LI PR - iy P I P, ipi k
+ E: I' V1 A j ;_]: VJ1_g RIS i”r‘]th

0“'(’1}. = ’F{h - "Fi’m (3. 10)
hence the above equation can be written as
(}{ V;}:};’s = (V;; ij;) | h + le ’_;81",, (3. 11)

Let AR be the operator defined by (2. 24) replaced bk, DY 8{2,‘“, then we
get generally the following formula

I D-D-IS— AB=0, (3.12)
which shows that the basic covariant differentiation does not necessarily

commute with the contraction operator by I and does so, when and only
when 8{,,=0or 'I"="T by (3. 10). Now, by (3. 3) we get the equation

HPL, P = PYT% + P;‘ZQ;: Py
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o P!
— ptipx 05
Pl ou*
that is
8P _ upt, pr_ pirrk. = 0. (3.13)

a h
Accordingly, we have
()j;,,—— Pk01|hPJ
= Pk(’Flh'— ”F;h) P;

k
- Pk(’.i“ Pi— PEITY, + gf,g)

= PV, P} (3.14)
and analogously

i . .
ot = (258 4 1t P — P "I'%) Py = P{"<, P
0 B

where we denote by 'V, and ""{/, the covariant derivatives with respect
to #" for the classical affine connections 'T" and "I’ respectively. Hence
we get the formulas :

AV P;=5}:mP’}: (3.15)
and
"N P = P;c(yglh- (3.16)
In connection with (3. 13), we write explicitly P, by (3.7):
s =200 L ips, Py pinrs, 3.17)

ou

Thus we have proved the following
Theorem 3. 2. In order that the basic covariant differentiation of a
regular general conmection I' commutes with the contraction by I it is
necessary and sufficient that one of the following conditions which are
equivalent to each other is satisfied :
i) The Kronecker's 6 = the identity isomorphism of T(X) is covariantly
constant with respect to I,
ii) P= (I") is covariantly constant with respect to the contravariant part
'T' of I which is a classical affine connetion.
iii) P=/(I") is covariantly constant with respect to the covariant part ''I"
of T which is a classical affine connection.
iv) 'r="r.

Now, by virture of (3. 8), we get from (2. 22)
81 Pl + Pz PLVirisk,, Pl - P'}g P
= Ph . PkP(Vh] hph M) Pt -ee ?jzg

1
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- Pl - P‘p Vi ,,p,':,;gm B e gg,
hence
Viiiarhim M = (Viyziek M2) i
— Virien 6km. (3.18)
Accordingly we have generally the formula
M@-D—D- M@+ 48 =0. (3.19)

Thus we obtain the following theorem analogous to Theorem 3. 2 :

Theorem 3. 3. In order that the basic covariant differentiation of a
regular general .connection I' commute with the contraction by M= P?, it
is necessary and sufficient that one of the conditions in Theorem 3.2 is
satisfied.

Furthermore we get easily from the formulas (3.12) and (3. 19) the
following
Proposition 3. 4. I[f P*=clI, where c is a constant==0, then

Bia+cdln=0. (3. 20)

Theorem 3. 5. Let I" be any general connection. A homomorphism N
of T(X) such that
P.N=N-P=cl, (3.21)

where P= ,(I') and c is a constant, is covariantly constant with respect
to I'.
Proof. By means of (2. 15), we have

6N;

P,i P,-’r]’i.,,,N{"P}—Pi-N{‘

K
P‘a(N P)) Pt NEP,— PLNET.

Hence using (3. 21), we get easily
5.2=0.
Corrollary 3. 6. For any regular general connection I', the inverse
“Vof P=(I") is covariantly constant with respect to I'.

§ 4. Covariant differentiation along curves and geodesics.

Let C be a curve of class C! with parameter . Let be given a tangent
tensor field V of type (p, ¢) along C with local components lelifi}g (). Then
we can define the covariant differentiation of V by

DV AV
dt =Pl Pi—ar

QP§|. g
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{ P Pl-1]'} du" Plsst eoe Plp VErEp phyoo. h
+§ % e Puzilin di  Fsn by Vongend 73 Ja
2 P Plo VEEp Py oo Ploy it du" Bt ves PR (4 1)
__I-EI k} .oe k; h}u-h: A Jl—-ll in dt -’LI] j?{ .
Hence, we have for the tangent vector of C the equation
D du’ _ 1d2uk__._ { d_u"@_'_‘
'EE)_ varw T g (4.2)
If we take another parameter s for C, then we get
D du‘)= AUt e du* du"
ds\ ds ¥ ds? ™ ds ds
_ pef duF(di\ du“d_’{) + du® du ( diY
PG (%) + G 3e) ~ TG i ()
that is
D (duty_(dtyD(dut), d? pdu
a7 )=(50) &G+ =P (4.3)

This equation shows that the condition for a curve C with parameter ¢
that the equations

1 J

dt \ dt T dt
are satisfied by a function + defined along C is intrinsic, that is a
property of curves independent of the choice of its parameters. In fact,
from (4. 3) and (4. 4), we get immediately

D (dut\_[(dtY ., dt\ds p du*
ds( ds)—{ ds)‘lr+dsz}dt P ds 4.5)
that is, + for ¢ is to be replaced with
dt \ d’t \ds
{(4) v+ &)a (4.6)

for another parameter s.
Definition 4. 1. A given curve C with parameter t that the equations

(4. 4) are satisfied with a function r defined along C is called a geodesic
with respect to the general connection I'.
The parameter s for a geodesic such that

D (du'

L 71?) =0. (4.7)
is called an affine parameter of the geodesic.

Theorem 4. 2. For a geodesic C such that at any point of C

k
;‘fi—‘;sé 0,

its affine parameters is determined uniquely affine transformations.
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For a geodesic C such that at any point of C

X
;‘fi—‘;= 0, (4. 8)

any its parameter is an affine parameter.

Now, let us suppose that I" is a regular general connection. Then we
get immediately

DVl DV
djtl . Pl Plp—— 7 P’j{ s Pl (4.9
and
DV dVi du®
p ; = d ; A +§ 'Tin di Viipamitien o
.................... d
—EVJJ “—1kdy e -’ ’Fk dZ; (4. 10)
Since P is an isomorphism, the condition (4. 4) is equivalent to
D (du'\_ |, du'
W(dt)—"’ dt , (1D

For contravariant tensors, D coincides with the covariant differentiation
with respect to the contravariant part 'I" of I, hence we have the follow-
ing

Theorem 4. 2. A geodesic in X with respect to a regular general con-
nection I' is also a geodesic with respect to the contravariant part 'T of
I" and the converse is also true.

§ 5. Eigen functions and eigen curves of general connections.

Let I" be any general connection. A function = on ¥ is called an eigen
Sfunction if = is an eigen value of P = i(I") at each point of ¥. A curve C
is called an eigen curve belonging to the eigen function r, if its tangent
vector is an eigen vector belonging to - at each point, that is

i du’ . du'
P,—Et——Ldt. (5.1)

Now, let V be a contravariant tangent vector field with local com-
ponents V' such that it is an eigen vector belonging to an eigen function
r at each point of %, that is

PiVi=zV: (5.2)
Let assume that V is also an eigen vector of another tensor field N with
local components N} at each point of ¥ such that

NijVi=pV. (5.3)

By means of the formula (2. 22), we get
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NIV = (NS V*MD o — PE NV
By (2.18), (5.2) and (5. 3), the above equation can be written as
the left hand side = o} { N¥... P V' + P{ N} P} V%.}
= N4 . P/ V'+ PN, P}V
=N\ V' + P, N, PV,
the right hand side = (z*p VYm— PAN3V*6i
=Zp Vi +(P2p)n PLV— PLNV dim
hence
N, V! + PENL P}V,
=2pVh +z("p) V' — Pi N4 V*6l e (5.4)
When N, V are defined only along a given curve C, we get analogously
the equation

J
DNy pivy Py 22

2 DV‘ d( p) i [ h kDai 5
=p g te TV — PANVESE (5. 5)

Here, we suppose that

NP=PN=cl, (5. 6)
where ¢ is a constant. If V50 at each point, it follows that
pr==¢c (5.7)

By means of Theorem 3.5, (5.5) can be written as

DV _ DV‘
P g c{ ( }
If c5%0, we have
¢DV DVt D()j 3
Prar = (dt V) Ve (5. 8)

In fact, if c5=0, it must be that I" is regular. But for any regular general
connection I', we can take P~'as N. Thus we have proved the following

Theorem 5.1. Let I" be any regular general connection and V be a
contravariant eigen vector field of P= i(I') belonging to an eigen func-
tion © defined along a given cvrve C. Then, the covariant derivative of
V satisfies the equation (5. 8).

Corollary 5.2. Let V be a contravariant eigen vector field as in The-
orem 5.1. If I satisfies the equation

DOJ — 8;

dt £o; (5' 9)

or
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Doy _

dt
with a scalar field p on C, then the covariant derivative DV/dt belongs
to the eigen space of the eigen value « at each point of C.

Corollary 5.3. Let V be a contravariant eigen vector field as in
Theorem 5.1 and I satisfies (5.9) or (5.10) along C, then the tangent
subspace spanned by V and DV/dt is invariant under the homomorphism
P and the two-dimensional measure of the subspace is multiplied by <, if
V and DV/dt are linearly independent.

o P (5. 10)

Theorem 5.4. Let I' be a regular general connection and C be an
eigen curve belonging to an eigen function - of P= )(I'). If « is a simple
eigen value at each point of C and I satisfies (5. 9) or (5. 10) along C, then
C is a geodesic.

Proof. Since we have

(du __dut
Pigr = dt
and
Do}

a7 = pdj or pPj,

from (5. 8) we get the equation
(D (du'\_ (D (du'l, dc du') f du' = du ‘
P’W( dt )_T{dt( dt )+ dt dt } {P a7 O P* dt} (5.11)

By the assumption that r is a simple root of the characteristic equation
of P, the above equation follows that
D ( du' ) _ ., du
dt \ dt dt
with some function + defined along C. Since C is an eigen curve, the
right hand side can be written as

du' _ V5 du’
¥ dt _er dt '

Hence C is a geodesic. The proof is finished.

(5.12)

Furthermore, putting (5.12) in (5. 11), we get easily the equations

=97 o ,= b7
T or p ar (5.13)

This follows immediately

Corollary 5.5. Let I' be a regular general connection and C be an
eigen curve belonging to an eigen function = of P = A(I") which is simple
at each point of C and is not constant. Then I can not be covariantly
constant along C.
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Let us suppose that an eigen function = is simple at each point of a
domain. Then at each point of the domain the eigen .direction belonging
to = is uniquely determined. And so the domain can be simply covered
by the eigen curves belonging to =.

Theorem 5.6. If P=A(I") has a simple eigen function t in a domain
which is not constant everywhere to the eigen directions, then I is not
covariantly constant in the domain.

Lastly, we investigate eigen curves for a regular general connection
T such that I is covariantly constant with respect to I', that is its contra-
variant part 'T" is identical with its covariant part *I" by (3. 10) and (3. 14).

Let C be a given curve and V be a contravariant eigen vector field of
P = (") defined along C belonging to an eigen function . Since I is
covariantly constant, (5. 8) can be written as
DV’ =*(DV‘ d- )
dt  “\dt = dt
Setting N = P! and making use of (2. 22), we have

)

DV* )
(N dt
Making use of Corollary 3.6 and (5. 14), this equation can be written as

P

(5.14)

. DN} DV* 2y¥

the left hand side = 4 { dtj P; 77 ,N},P',‘%}
—  D*V?
P

. . «DV?
the right hand side = 9 (P g
_2{ DV! dr
at " ar Tar }

D*V', dr p DV’ _dz DV (
dff  dt "’ d: dt dt = dt

DEV’_’_‘dr DV'  d- V‘)+ d- DV! d( dr) 1

l

I
o

R

af " Tar\dtr " dt dt dt dt \* dt
hence
D*v/ D*V! d DV! dr dr
(B s B (G 12 )
T dr dt* k2 dt dt +( dr’ +2dt dt)V : (5.15)
Inductively, we suppose that
«D*V! _ (DPV! P Dyt
P ar _°{ de’ q..,( )"’”' dtre } (5.16)
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=12 ..., m,
where 4} are polynomials of = and its derivatives with respect to #. And
so, applying the formula (2. 22), we get, by caluculation$ analogous to the
above ones, the equation as follows :

oty (N3 5 ) = (35 )

We get easily

m+1 17
the left hand side = P! Ddt—mff,
D(p D"V
the right hand side = d t( o )

(% 20w )

p=l

Dm-l-] Vl ” m Dm——)H—] Vi
a1 20) 6 Gt
-p VJ

o dt p D"V ( .
tar Pt +,§ )dz("' ) PP arr

,Dm-ﬂ Vl m m Dmﬂ P Vl
¢ dtm+] p-l 1!"1’ dfm+i-»

+—{DJ;Y 3 )w T

pm=l

SG) a5 ) )

hence
Dm-i-]v; Dm+] V( m+1 772+]. n Dm+1 pvt
Pj dtm-x—l = {dtm+1 +}’2=1( )\1,‘”4»1 dtm+1 p}
and
(m+ 1) = myp + 2, | (5.17)

(") = (29,7 ) v
p.,( ) r—1- p) (Wf)«,bu i (5. 18)

r=23...,m,
'\!1-:::} = % \]Pm +§( ) (‘. '\!"p) 1!1'31_,,, (5. 19)
where we put

=1, p=12,...,m
(5.14) and (5. 15) show that
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_yr=dr e dt odr de
“’"—‘;”-dt’ 2 -dt2+2dt ar
Accordingly, we get from (5. 17)
o= *”7‘=%’ m=1,23,... (5. 20)

Analogously, we have

("3 1) =(3)# +(’”)%% + (”f) (%)

= () (m)< dt Z;

hence
d d- dr
==t — =23.... 5.21
== zdtdt m=2 (5.21)
Furthermore we can prove that
¢o=1pm m=p, p+1,..., (5. 22)
and ¢, ¢....., are determined inductively by
dr m
bmet = ¢m+§( )dt( ¢ ) bm-sp- (5. 23)
In fact, putting ¢,=1, \p‘:"”, r=12..., m+1, are determined

uniquely by (5. 17), (5. 18) and (5. 19). If we put
P =, Y= ¢, Y= dr
APrals = ¢r-1-»

in (5. 18), we obtain the equation

("7 o= (7)o (20) G
2 (L) G 6 b
which is written as

(,” 1)"" ( )Z} ¢,_1+2( ” )(rgl)d%(rm)esr-‘_p,
that is

ér= dz ér *E ) ;t(w,,)qs,_],,,. (5. 24)

dt * P
On the other hand, if we put

Yl = mty Y =y s = by Jrm=p = $m-p
in (5. 19), we get the equation

buir =t 5355 65) b
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which is the one replaced r with m»+1 in the above equation (5. 24). There-
fore, the system of «; defined by (5. 22) and (5. 23) are the solution of the
system of equations (5.17), (5.18) and (5.19). Thus we have obtained
the following

Theorem 5.7. Let I' be any regular general connection such that 1
is covariantly constant with vespect to I'. Let V be a contravariant eigen
vector field of P= (I') belonging to an eigen function - defined along
a given curve C. Then we have

PiVi=-V,
D"V _ D"V T (m D”‘"” | %
P dr" { a T2 1( - } (5. 25)
m=12,3,.

where ¢o=1 and ¢«, m=1,2,3,..., are defined by (5. 20), (5. 21), (5. 23)
and polynomials of

4 a
dtTT T drm

of order m. At each point of C, the vectors
. DV' D*V!

Vo Ta dt’ df T

belong to the eigen space of «. »
Corollary 5.8. Let I' be a regular general connection as in Theorem
5.7, Let C be an eigen curve belonging to an eigen function r. Then the
vectors
du' Ddu' D'du’
dt’ df*’ drf’’’
belong to the eigen space of - at each point of C.

§ 6. Torsion and curvature forms of general connections.

In this section, we shall introduce the torsion forms and the curvature
forms of general connections so that they are natural generalizations of
the classical ones.

Let be given a general connection I' of . In order to find the dif-
ferential forms on B(X) for I', as in the theory of classical affine connec
tions [2], we regard a4} as functions defined on a coordinate neighborhood
(U, »*) and take b{ such that

b;‘ a,{ = r?ﬁ
for a moment. Then, for the contravariant tangent vector field
er = a\ou,,
we have by virtue of (2. 14) and (2. 15) the equation
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De, =0u; Q Da; =o6u, Q (Pjdai + I'naldu®)
=e. Qb (Pidal + maidu®).
Now, in the principal bundle {B(X), X, =} of the first order, making use
of local coordinates #', 3, @€ L), of x7'(U), we define #* differential
forms by

0% = b4 (8) { Pi(u)dai(d) + I'in(n) al(B)du™}, 6.1)
where &) are functions on GL(n, R) = L;, such that
bj(e) = aj(a™). (6.2)

Lemma 6. 1. 6% are defined on the whole space B(X) and are inde-
pendent of the choice of local coordinates of X.
Proof. For any point b €=z (U) CB(X), putting

ex(b) = ar(3) 0uy,
we have

f=hy: U— L, (6.3)
The system {A;} has the property as follows: For any two coordinate
neighborhoods (U, #'), (V, ¢'), UNV+# @,

(o0« gvo) hu=hy (6. 4)
where gy is the mapping defined by (1.9). By (2. 2), 0% can be written
as

k= (bf ‘ hU) {(aj * fv)d(a)ju * hv) + (afm . fy) (di . /lu) du"} (6. 5)
or
6% = (af - k' fo)d (@l - hy) + (@ b7’ fo) (aX - ho)du®. (6. 6)
From (2. 3) and (6. 4), we have immediately
hi' fo=hi'fegvo 6.7)

and putting this into (6. 6) we get
6% = (af - by fr gvu)d (aX - (gurhv))

+ (@l « By frgvo) (@i - (gov - By)) du®

=(af - by fr)d(ak - hy)

+ (af - h;lfvgvu) (@l - gov) (&l - hy)dV"

+ (@ » b7 frgvo) (@)« gov) (@l hy) (ak - gov)do*

= (at - h' fr)d(as - hy)

+ {(at - b7 frgvv) (@ - guv) + (@l - h7' fir gvo) (@5 gvv) (@k - gur)}

X {ai + hy)dov*

= (at « k7' fr)d (ah- hy) + (@ - b7 fr) (@d - hy)do,
by means of (1. 1) and (1. 2). The last equations show that 4§ do not depend
on the choice of local coordinates of X.
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We call these differential form 0% on B(X) the connection forms on
B(X) of I On B(X), as is well known, there are » differential forms:

6* = bt (3) du' = (at - h3'") du?, (6. 8)
which do an important role for the developement of curves in the classical
affine connections.

Lemma 6.2. For a right transiation r(a) of B(X), a € L,, we have
r{a)* 6" = ak(a™") 6%, (6.9)
r(@)* 0k = a5 (a7) 0; al(a). (6. 10)
Proof. (6.9) is evident, For any a« € L), we have
ex (7 () (b)) = ey (bar) = ax (Bar) Buy,
hence hy: U— L! is replaced by #,«a. Therefore, by means of (6. 6), we
get
r(a)* 08 = (af - ()™ fu) d (ah - hor)
+ (& - (hya)™ fv) (@ - hyat) du”
=ay(a™") (@ - hy' fv) d (aq - hy) &5 (a)
+ a4 (@) (@h - hi' fo) (@i - he) & () du”
=ab (a™') {(@%- hy' fu) d (s ho)
+(ah » b fo) (@ ho) du"} a (@)
= a} (o) 63 a5 ().
Now, in the following, we shall denote the components of the tensor

field z© P, P=(I"), of the vector bundle =*(T(¥)) over B(X), with re-
spect to its # canonical cross-sections, by P} with Greek indices, that is

Pi=1b45(3) Pi(u) ai (B), (6.11)
which can be written as

P{=a - (hg' fu ho).. (6. 12)
Then, we calculate the following differential forms:

Pidor + o5 N0
= (a% - h5' frhy) d (b« hy) Ndu'
+{(at - b5 fr) d (ah - hy) + (@ - b3 fu) (ah - hy) du} (B h) du’
= (aty * h5' fo) 8idu" ndu’
= —(al - hg' fv) du' ndu"= — (b - hy) (al - fv) du' Ndu®.
Therfore, putting
P=—(ab- fy) du' Ndu" = — T'hdu' ndu”, (6.13)

we have the equations

5) See [8], §1 or [11], §8.
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ot = Pido* + 65 A0 = b4 (5) &, (6. 14)
which shows that the vectorial differential forms #* of the second order
defined on the whole space B(¥) are induced ones by = from vectorial dif-
ferential forms of the same kind on X, whose components with respect to
u' are @/, according to the following lemma.

Lemma 6.3. &’ are vectorial differential forms of X.
Proof. By means of (2. 3) and (6. 3), we have
(@« fv) dv* NdV*

= (ah* fr) (@i gvv) (an - gvv) du' Ndu™

= {(@ln frgve) — (@l fv) (Gin - gvo)} du' Adu™

= (aly* frgve) du' Ndu”

= (ah+ (agvy) fo) du* Ndu" = (al - gvy) (ahy + fr) du' Adu”,

that is

1
(@~ f7) dv* NdD" = % (@ - fo) du* ndu™ (6. 15)

We call &’ the torsion forms of the general connection I' and the corres-
ponding tangent tensor of type (1, 2), with local components

T{’h = Fiin - I’ii, (6. 16)
the torsion tensor of I'. we heve easily
=— % Thdu' ndu" 6.17)

Nextly, we shall look for the curvature forms of I" which are identi-
cal with the classical ones when " becomes a classical affine connection.
At first, we have

Pidor= Ptd{bi(Plda. + I'h a'du™)}
= P4{dbjA Plda. + dby A Tlhatdu™}
+ Piby{d Pindal + dIh Aabdu™ + Dhdal ndu'},
G NOL = b4 (Pldal + I'l.at du™) \bL (Pidal + Téatdub)
= — Pidbi N Pidal— PLdbi A Thakdu'
+ b4 Tindu™ A\ Pidat + b4 Tl du™ ATk aldu',
and hence
Pidey + 045 N6y = b4 { PldTiu Adu® + Ihdu® AT du*} ot
+ b45{Pld Pinda, — PII'ydu® Ndal + T Pidu" ada'},
that is
Pidoy + 05 N0y = b5 { PldTh Ndu* +Thdu* A T'idu*} a}
+ b4 (I'hdu” Pt — P! Adu™) ndd. (6. 18)
making use of (2. 8). Now, we put
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X = 0% — d P%, (6.19)
which can be written as
4 (Pldai + I'haidu®) — d (b4 Pial
= —dby Pla\ + b4 (I'hdu" — d P)) a',
= —db4 Plal + b4 4 dual,
hence '
k= (—dbY§ P} + b4 A du™) ak (6. 20)
or
mh = b4 (dai P+ Ala\du™). (6. 21)
If we regard b as components of a covariant tangent tensor, then we have
Dby = db4 P{— b4 Al du™.
Therefore —x% are the differential forms on B(X) derived from the above
forms on ¥. Now, we have
6% Pt — Piyzi=b4 (Plda; + I'latdu™) P
— PYbY (dalPh+ dbvaldu®)
= b4 (Il du™ P} — Pl AW du®) al,
and substituting these into (6. 18) we get
Piday+ 65 N0y =b5{P{d s Ndu*+ I'lydu™ A T'indu*} a.
+ (65 P, — Piay) Abiddt.
Comparing the second term of the right hand side of the above equation
with (6. 21), we have
(Pydoy + 05 N OY) P3
=y {P{dI'x Ndu* + T du A Mordu®} Plal
+ (0% Py — Pimp) A(=f — 0 A du @),
Therefore, we define differential forms of the second order on B(X) and in
% respectively by
= (P{'dog + 05 NO;) P — (08 Py — Pimy) A=S (6.22)
and
(M = (PldTIiw ANdu® + Thdu® A Ty du®) PT
— (Tfdu™ Py — Pi Ay du) A A5 du®, (6. 23)
which, using (2.21), can be written as
2 = (PldIricndu® + Thdu" A Tiwdu®) PT
— D& A AR du®. (6. 24)
Then, the above equations can be written as
O = b4 al, (6. 25)
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which shows that @] are tensorial differential forms of the second order and
of type (1,1) in %, -If 2 (I") = P=1, 2] are clearly the curvature forms in
the classical sense for the classical affine connection I. And so, we call
Q) the curvature forms of I' and the corresponding tensor of type (1, 3)
with local components R

.@;= 3 Riwdu” ndu, (6. 26)
where .
R = — R, (6.27)
the curvature tensor of I'. In fact, R/, are given by

1hk— P)(al;nzk _ 6]_'mh + I‘l 1-11 Fllc mh.) Pm

A

— O dlk + ()m.kAih, (6. 28)

where
P 1]
’}i.h = F?’n P — P{A}h.

§ 7. Curvature forms of regular general connections.

In this section, let assume that I' is a regular general connection. Let
‘T" and "I be its contravariant part and covariant part respectively.
Substituting (3. 2) and (3 14)

Pl 1h’
az,,,, = P} 'V Pi
into (6. 24), we have
0} = {P{d (P{'T:x) NAu* + P{'Thdu" A PL s du*} PP
— P{'DPi NP} T du* — d PT)
= {Pld PiN'Thwdu®+ M1d' Ty Ndu*+ P{Th du \ Py Thdu®} PT
+ PI'DP, AN('D P} — 'T'iidu” P})
={Mi{d'I'su Nndu* + Pld PiA'Thdu*+ P du PPN TS du®
— P{'DPA'T b du*} P+ P!I'DPL A'DPY
= {M{d'Ti.Ndu*+ P! P'T'yduN'T%du*} Py
-+ P{'D P}, N'D PT,
hence
2= M{d'Twndu* + ' Thdu N'T hdu®} PP
+ P{'DP;, N'D P
Denoting the curvature forms of the contravariant part 'I" by
"9l =d'wl+'wiNol, 'wl='Thdu", 7.1)
the above equations can be written as
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2= M{'Q,, P} + P{'DP.\'DP}". (7.2)
‘With regard to the covariant part "I", we have from (3. 3)
"wi="T},du" = Pl (dQ%+ v Q). (7.3)
Denoting the curvature forms of the covariant part ''I" by
"Ql=d"wl+ "wh NT, (7. 4)

we get
"Qy=dPIndQs+ dPIN Qi+ Pld'wfQ:— Pilwi AdQ!
+(Pld@Q:, + Pi'w; Q) N(PPdQ} +P wr Q1)
= Pl(d'wy+'wf Nwi) QF = Pi'2%
that is
"= P{'2; Q1. (7.5)
Then, we have
"DP{=dP|+"wi P.— P{"w:
=dP{+ (PldQi + Pl'wyQ}) Pi
~ PHPLAQT + LT @)
= Pi(dP;+ ot P, — P}'uk) Q= Pi'D PLQ
that is
"DPl= P}'DP:Q. (7. 6)
Substituting (7. 5) and (7. 6) into (7. 2), we get
2= M{Q}" 2 P;, P7 + P{Q,("DP}) P AQ*("DP}) P}
= P}"Q: Mi + "D P}, \"D P} Ff,
that is
2= Pi"QL Mi +"DP,A\"DP} P 7.7
Furthermore, let us denote the curvature forms on B(¥) of 'I" and "'I"
by '@% and "0} respectively, then we have
= b4'21al, "0k = b4 Qlal,
therefore, we get from (7.2), (7.7) and (6. 25)
A= M4L'e5 P+ PY'DPAN'DPY (7. 8)
= P95 M+ "DPsA"D P} P} (7.9)
where M} are the components of z© M, M= P

Lastly, we shall investigate the Ricci formula for the basic covariant
differentiation of a regular general connection I".

For instance, we take a tensor field of type (1, 1) with local compo-
nents U{. By means of (3.7), we have

6) Formulas (7.6) and (7.7) are special ones which generally hold good for the
induced connection derived from another classical connection by a bundle mapping.
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5
U= ?-U; +'rh U — UM,
ou

j
U= 2080 4 P4 Ul — Ul T~ Ul "I
— 62U{ 6 Pm j 6U{_~ aUlHP
= outour T bu Ui+ out ™
npto U™ N "
- U'{aaz];m T F;’nk( ﬂu': +'11m Ui—-U: "I“in)

~(We + ry vt~ Utri.) T

— Uﬂmﬁpm

Now, let the components of the curvature tensors of 'I" and "I" be 'R
and "R}, respectively, that is

193= 3 'Rl du® A du?,

(7.10)
"= % " Rfdu™ A du®,
'R .=6,F{k_ a’rifn_l_ PRI — T T
T Ut ou* ’ 7.11)
1npy "pJ
MRI, = aai;ik _ aazftlm PR — LT

and the components of the torsion tensor of 'I" and "I" be 'T}, and "7},
respectively, that is

Q) = ’w{i/\du’ =— 3 '"Thdu' Ndu", (7.12)
not=tydndut=— % "Thdu' ndu™ '
and
"Th= - o "Th="T—"T (7.13)

Then, we get easily
2U = Udine — Uden
= 'Ri’kh U‘ - U'Z”Rzlkn - U{;,,,”Tﬁ.
As is easily proved, on the basic covariant differentiation, we have
the formulas
(Vjiiie Wissrl pra)n= Vs Wierijera+

a+1"q4bd 2 1b
+ Ve Wiptijeray, (7.14)

which are identical with the classical ones on the covariant differentiation
of the tensor product of two tensors. Making use of the formulas, we can
generally obtain

Lemma 7. 1. For any tensor field with local components V};:::jg, the
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Sollowing Ricci formulas™ hold good :

Jyedy, —_ byt Ry
ZVJ}---J’;:LM':J = VJ,‘-»jg’im - V,]l...;;’mu.

— V};:z:;g,l T (7.15)

In connection with curvature tensors and Corollary 5. 2, we shall prove
the following theorems.

Theorem 7.2. Let I' be a regular connection. In order that DI/dt is
similar to I or P along any curve in X, P must be commutative with each
element of the infinitesimal homogeneous holonomy groups® of the con-
travariant part 'I’ and the covariant part "'I" of T

Proof. In order that DI/dt is similar to I along any curve, there
must be a covariant vector field with local components pn such that )

A= 3§ pne (7. 16)
By means of (3. 15) and (3. 16), we get
PLNJ, Py = P3N, Pi= i pn.
Denoting P~ by @, the above equation can be written as
Vi Py = Q}pa or "o Pi=Q}om, (7.17)
from which we get

1 1 1
Ph=7P{'VnP}=2—n'Vn(P{P}) =%‘"Vn(P4P}),

since 'I" and "'I" are classical affine connections. Hence p, must be a gra-
dient vector field such that

on = Zin aiuh (trace M). (7.18)
The first of (7. 17) is clearly equivalent to
ViQi=— Q.QnQ7 pn (7.19)

Covariantly differentiate (7. 17) and using (7. 19), we get
V'V Pi= Q}'Vion + pr'Vi Q)
= Q' Vipn — ppn Q1 Q5. Q7.
By the Ricci formula of /I", we have
2'Vu'Vi P; =— "R/ Py + P:'lehlc Y P}'Tim

1 3 i 1
= 'Rzin)c P} T Pz ,RJ e Qj,ﬂt ’Thk-

7 When I" is not regular, we can not introduce its curvature tensor in this manner,
because the singularity of P produces an obstruction to obtain a tensor of type (1,3) to
be called its curvature tensor,

8) See A. Nijenhuis [5].
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Since p, are the components of a gradient vector, we have
2'Vupu=—p'The
Accordingly, from these equations, we get immediately

P: IRJZ;,,); b ’Rgink P_l; = 0- (7. 20)
Now, we assume inductively that the equations
P ;’R jlhk.-ml-"mr —'R zi'nk,-m,---mr P ; =0 (7. 21)

hold good for » =1, 2, -+, p, where we denote by the symbol “mymg-m,” the

covariant derivative by «™, ™, ---, 4™ 'in this order with respect to the
connection 'I". From these equations, we get

Q { ’lehk;mlmmr - ,Rtthk;mlwmr Q; =0
r=12 - p

Covariantly differentiate the above equations for » =7, we get

P;’R_,lhk,-m‘...mpm - 'Rzi}uc_-ml..‘m?m P}

= Pl‘.-'m. ’lehk.-mj-"mz, + ,Rl(lu:;mr--mp P.li.'m

= Pm {Q: ,lehk:m]mmp - ’Rlihk:mf»mr Q}} = 0'
Thus we have seen that (7. 21) holds good for all »=0, 1, 2, ---. Since
Rj‘n,‘,.,,.]...,,.r, r=0,1, .-+, are the generating elements of the Lie algebra of

the infinitesimal homogeneous holonomy group of 'I", P must be commuta-
tive with each element of this group at each point of X.

In the next place, in order that DI/d¢ is similar to P along any curve,
there must be a covariant vector field with local components p, such that

6in=Pjpn, (7. 22)
from which we get the equivalent equations
,vh P; = O\jph, and ”vh P; = 3} Phe (7. 23)

Hence we have

_1 9
= auhtrace P.

In this case, p, must be also a gradient vector. From the first of (7. 23),
we get easily

"' NIn P = 33N/ Ore
Since we have
Z'Vn: 'Vn P} = - ,Rl’hlc P; + Pi ,lehk - IVL P}'T;m
= — ’Rl‘hk P} -+ P; ’lenk - 6} P 'Tﬁk,
we get easily
Pi'Riw — 'Rine P§= 0.
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Once more, assume (7. 21) for r=1, 2, «+-, p.
P: ,leh,k; m]mmpm - ,Rl‘hk,-m,---rnpm P.ll
= — P:,,,, 'R}lhk_-m]...mp -+ 'R;im;_.m‘...m’, P_;;,,.
=" Pm (’Rj‘hkpnl-nmp —'Rjiht;ml---mp) = (.
Thus, we obtain the same result of the first part.

It is clear that the same fact must be hold good for the covariant part
"I of I' as easily seen from the above calculations.

Corollary 7.3. Let I'" be a regular general connection such that the
infinitesimal homogeneous holonomy groups of its contravariant (cova-
riant) part 'T" ('T") is irreducible at each point of %. If DI/dt is a homo-
thety along any curve, then P=i(I') is everywhere a homothety and its
magnification is constant if and only if 'I’'="'T".

Proof. Making use of Theorem 7.2 and the Schur’s lemma, it must
be

Pj = ¢q}. (7.24)
Substituting this into (7. 17), we get
On the other hand, from (3. 2) and (3. 3) we get

"Pho=Qil% = %m,

”Pijh = ghQ': = idi'n

¢ ou ou™ ’
that is
M ="Th— "Il =4é] 613‘5,“’ (7. 25)

Hence, 'I"=""I"if and only if ¢ is constant.

§ 8. The semi-group €2 D 22

In the paper [11], the author could not succeed in making the cano-
nical mapping® of a general connection I' when it is not regular. In the
following three sections, he will show that making use of an associated bun-
dle of T(¥%) containing its associated principal bundle of the second order
B%(X), we can define the canonical mapping of I" which goes over into

9 See [11], § 9
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the one in [10] when I" is a classical affine connection.

At first, we prepare some concepts. Let 5:?,'3, be a semi-group whose
any element is written as a set of real numbers (@}, @/, pi) such that |}
== 0 and its multiplication is given by the following formulas : For any

a, B8y

al (ap) = ai(a)af (3), 8.1)
ah (af) = al(a) @t () + ali(a) pi (3) arn(3), 8.2)
2i(ad) = pl(a) pt (), (8.3)

where we regard ai, afy,, p} as coordinates of €2 and so €2 may be a dif-
ferentiable semi-group'®. It is clear that £ satisfies the associative law

(@@ y=a(3y), because £} has a natural representation gt 25 GL(n+n,
R) defined by

V(4@ an() )

#@0=(0 " e ®9

The group £: of all generalized infinitesimal isotropies of order 2 at the

origin of the n-dimensional coordinate space R*, whose any element is

written as a set of real number (@, @}) such that |a] |0, can be con-

sidered as subgroup of é,": which is the set of all elements « of Q, such that
al(a) = pi(e). Analogously, we may regard Li=GL(x, R) as subgroup of

fé?,, for L) may be identified with the subgroup of £: which consists of all
elements « such that af, (a)=0.

Let ¢ be the natural mapping of f!” onto L, given by
g (a{, a{h) {) = (a{): (8. 5)

(8. 1) shows that ¢ is 2 homomorphism. Let 2 be the kernel of s, thatis
the semi-subgroup consisting of all elements « such that a!(a)=4{- Then

=N

is a subgroup of 82 Then we define two mappings 77l é,—-)ﬁ; by
y(a@) = (o(a))'a, (8. 6)
7(a) = als(a))™. 8.7

Any element « of 2 can be written uniquely as products of an element of
L) and an element of N? by

a=c(a)y(a) =y(a)o(a). (8.8)
Then, putting

bi(a) = ai((e(@))™)

10) We do not demand that [#J10, and so any « has not always its inverse
a-l,
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on ¥, we have
(b, 0, bl) (a, ah, p)
=(01, bl al, bip)
and
(al, @i, p) (64,0, bY)
= (0, alib’bi, pibY),
hence
7 (@) = (51, bl(e) @i (a), bi(a) pi(c)),
7 (@) = (3}, au (@) b5 (@) bi(a), pi(a)bi(a)).

(8.9)

(8.10)

Now, we shall make some formulas on £2 in order to utilize in the fol-

lowing theory.
For any two , 3 € 92, we get from (8. 2)
ah (af) = ab (@) pt (3) + ah (3).
For any a € €2, we have
al(a™") ab, (@) + ey («7') df (@) &, () = 0,
hence
ah (") = — bl () @i (@) B} () B (@),
For anya€e;, & ﬁ;—;, we have
ai (@™ '3) = al (a™),
al (a™'3) = al (™) @i (3) + alu (") p5(B),
pi(a'B) = al (@) p§ ()
and furthermore
al(a™'fa) = al(a™ ') i (a) = 4,
ah (™' 3a) = al(a™ B) aiv (@) + ab (a7 3) & (@) @k (),
=al(a™) ain(a) + {al. (a7 a3 (3) + ahu(a™) pi (D} & (@) @i ()
=bi(a) ali() + bi(a) diu () at (@) @i ()
— b)) @nn (@) b7 (@) p5(3) @l (),
plla™"Ba) = pl(a™ B pila) = blla) pi (9) ai (),
that is, for any a € 23, g Eﬁf, we have
ai(a™ Ba) =4},
ai(a™' Bar) = bl(a) am(B) & (@) @i, ()
+ bi(c) @i (ce) {07 — b7 () p(9) ai(a)}
= bi(a) am(3) ai* () @i ()
+ @t (@) {2 (3) — o1} @i (@) ai (),

(8.11)

(8.12)

(8.15)

(8.14)
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plla Ba) = bl(a) pi(3) di(a). (8.15)
Accordingly, .for any a € L!, 39, we have
ah (7' 3a) = bi(a) @5 (F) @i () ah (@), (8. 16)

since af,{x) =0.
Lastly, for any two @, 3E €2 we have
plad)=cl@f) 'af=c(@ e} "af
=a(3) ' 7(a) ()7 (3).
Since 7 (), 7 (3 € 5'3;—;, we get from (8. 11)
a7 (@ B)) = abh (e (3) 'y (a) 0 (B)) pi (5 (8)) + @t (5(3)).
By means of (8.9) and (8. 16), the first term of the right hand side of the
above equation can be written as
b () am (7 () a7 (B) @i (3) i (7(3))
=b1(B) an (7 () £ (3) @ (B).
Analogously, we have
@) =apelaf) =ape(@) ' o(a)™
— 7@ e@7 @@,

hence

a7 (a 3) =ah (7 (@) pi (e (a) 7 () o () )

+ab (o ()7 (B o (a)™).
Thus, for any two a, 3= 22, we have
al G (a 3)) = bL(R) @l () 7 () @n () + @l (3 (3)) (8.17)

and

a5 (o B)) = atn (7 () @ () 1. (7 (A7 ()

+ al(a)an. (7 (3)) bi(a) by (). (8.18)

We get also easily
PG (a D) =bi(3) pa (5 (a)) 1 (3), (8.19)
21G (a @) = pl(a) pr G () bi (a). (8. 20)

§ 9. General frames and general principal bundles of the second
order.

Let X be any n-dimensional differentiable manifold. At any point xE¥%,
we call a set {e,, e,,} of n+n" tangent vectors of the second order at x such
that

e, = duyai(a), (9.1)
i = au_; ai’), (ll’) -+ 82 ujkp{ (ﬂ) a;’i (O'), (9. 2)
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where we take any a Ef!,"f, a general frame of the second order at x. For
any two coordinate neighborhood (U, «*), (V, #%), UNV Sz, we get from
(1.7) and (1. 8) the equations

e = 6‘vk ai(ﬂ) = ov,a{(pP),

u J

A O
€ = O'U];ijai’h, (a) +

%' 0v" 0
+(avl La J + 62 Vi avj av )p] (a)a’b(a
_Ovh'{a Jam(ﬂ’)"l‘ ,, ipi(a)ah(a }

0] 01)
+ 8 vlm'@pi( )6 kaﬁ(a)

=8, (,’3’) + 6% v pi(9) @i ®.
Hence, putting

gve: UNV-oLIC 2

al(gve) = pilgve) = 2L,
5% 9. 3)
ah (gv) = Farm
we have
f=grra. 9. 4)

The above equation shows that the general frame of the second order is
defined without depending on the choice of local coordinates.
The set of all general frames of order 2 at the point x may be con-

sidered to be equivalent to £2 - By means of (9. 4), the set of all general
frames of order 2 of ¥ is the bundle space of an associated fibre bundle of
T*(X), which we denote by (532 (%), ¥, 7.) or simply B (¥), which we:' call
the general principal bundle of the second ovder of X.
By means of its definition, B%(%) is clearly a subbundle of B%(%). For

any point b e ¥ (%), we denote the corresponding general frame by {e,(d),
en(d)}. {e.(b)} is clearly a frame of order 1 that is a point of B(X) over 7(b).
We define a mapping

F: BE)—-BE)
by

3‘({61 (b)y em(b)}) = {ei(b)}v (g- 5)
which is a natural extension of o: B°(¥) > B(¥) given by (1. 16).
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Since 27 (%) is the space of all general frames, any element of §3, ope-
rates on it as a right translation which in general, a homomrphism of this
bundle covering the identity mapping of ¥ and an isomorphism when it

belongs to 82. That is, for any be B (X), a €2, 1(a)(d) = ba is defined
by
{e‘ (ba) = e;(b) ai(a), ©.6)
en(ba) =e (b)ah(a) +eu(b) pia)as(a).
Using local coordinates ('), we put
e.(b) = ou,al(f),
en(d) = 5”10%’);(!9) + 62”17:1’3 ((3) a:(ﬁ)“),
then
e((ba) = du,al(Ba)
en(ba) =06u;al(P)akh(a)
+ {0, @' (B) + 6° wum p (B) a¥ (B)} p1(a) @i (a)
= ou,{al(P) ah(a) + al(8) pi(a) ar(a)}
+ 0% um 1 (8) pila) ak (B) ai (a)
= 0usah(fa) + 6" ur. pi(Ba) ar (Ba),
which shows that {e;(ba), en(ba)} is a general frame of order 2 of X at
72(b) in the above mentioned sense.
It is to be remarked that properties, which principal bundles have,

are not always maintained in B (%), because it is not a principal bundle.
B2 (%)

B*(%)

B(X)

X

T(X) c T2(%)
Diag. 1

<1
)

11) We denote also the point & by (#%, 8) in the following.
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Any b€ B*(X) defines a homomorphism
b8 —> 7 (3.(0))
by
bla)=r(a)(b) =ba, 9.7)
which is called an admissible mapping for a principal bundle and we call
it also so in this case.
Using local coordinates %', we put b=(x!, ), 3 £, then the set of

the last coordinates of all elements of b(22) is 322 Accordingly, in order
that

b(82) = #7 (7(p)),
it is necessary and sufficient that
pR2=22
Therefore. 3 must have its inverse and conversely if 3 has its inverse then

the above equation holds good. This property does not depend on the choice
of local coordinates.

Now, we put
2= {a| [pl(a)| 0, a2
then this is a group and the set of all elements which have inverses. 1t is
evident that
HE@

We denote the associated principal bundle of $°(¥), regarding its structure
group as £, by {B*(X), X, 7.}, then it may be regarded as a subbundle of
B (¥), which consists of all point b of B (%) such that the last coordinate
3 of b= (', 5) belongs to €. Thus we can say the above mentioned fact
as follows.

Lemma 9. 1. In order that for a point bE B (X), the corresponding
admissible mapping b : €2 77'(7()) is an isomorphism onto, it is neces-
sary and sufficient b < B (X).

§ 10. Canonical mappings for general connections.

Now, we shall show in this section that we can define the canonical
mapping for any general connection.

Let I" be any general connection of X and ¢ be the corresponding
mapping defined in § 2. Utilizing ¢ = ¢r, we calculate some equations as
follows. From
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6u; = 5;‘{62);,
we get
P
ov
pOu = Wsoav.h
herce
d (pBus) = '*a ,wv Qdu” +"” d (¢0v;). (10. 1)
From
v . av’ 60" _,
= Gt Ot Gt pur T
we get
o v ov! av*
@O Uy = W 9’)67)_;‘ + — P a ¢ @0 L’Jk,
hence

00" un Q@ du"= 66"" ; 00v;Qdu” + 1 (,oa 03 Q dv”. (10. 2)
Subtracting (10. 2) from (10. 1), we get the followmg vectorial equations
d(pous) — ooun Qdu* = 6” L {d(gov) — pPPn@dvt}.  (10.3)

These equations yield immediately

M_ 2 =MU_J)_ 2 a_vlﬁ)f )
5 (du") @0 U { 8(d") @0 L.n.:} o7 ou (10. 4)
od (0buy)
o(du™)
@ T*(U)). In fact, in the coordinate neighborhood (U, «*), we have
I = 6u;Q(Pld*' + I'hdu* Q@ du"),

goau, = P{Suj, <p62241n= I‘i’nauj,

where we denote by the coefficient of du" of d(pou,) € ¢ (T (U)

hence we obtain from these equations
d (pou;) — ¢0*un Q@ du" = d (Piou;) — I'hou;Qdu”

1
= Pl6%*u;nQ du" + g:;‘auj®du" — I'hou;Qdu"

3
= {P{(??u,h "(]_'i’n‘ 65;) 'u;}@du".

Therefore, we define for the coordinate neighborhood (U, #') a local cross-
section /iy of the fibre bundle B°(x) by
{e{ - hy = 0uy,

o 10.5
Cin * IIU = 6“14,7. P’{i _ 6u_; A{h. ( )
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(10. 3) shows that for any two coordinate neighborhoods (U, %), (V, v%),
UN Vs, we have
hy (x) = hy(x) o (gro(x))
by means of (9.6). For any « € L), we have
ho(x) e = hy () o (grv(x)) a = Ay (2) B,

hence
#=0(grv(®)a. (10. 6)
Now, for any b €= (U), e;(b) =0u al(a), if we put
p () = hu(x) o, (10.7)

then (10. 6) shows that this definition of p» does not depend on the choice
of local coordinates. Hence, by (10.7) we can define
p=pr: BE)—B(X), (10. 8)
such that '
ap=1. (10.9)
Since we can regard {%’(.‘i), B(X), o} as fibre bundle with fibre gﬁ?’., p=pr
is a cross-section of this fibre bundle. From (10.7) we have the equation
pt{a)y=r1(a) - p, aEL, (10. 10)
that is pr commutes with any right translation r(a), a €L,. We call the

mapping pr the canonical mapping for the general connection I.
Theorem 10. 1. For any general connection I', there exists a map-

ping pr: B(X) —>‘:’§2(£) with the properties (10. 9) and (10. 10). Conversely,
for any mapping p with such properties, there exists a general connection

I’ such that p=pr.
Proof. By the above exposition, the first part is clear. We shall prove

here the second part.
Let us suppose that a mapping p : 28(%)—>§32 (¥) with the properties
(10.9) and (10. 10) is given. For any b€z (U), b = p(b), we put
e (b) = 0u;ai(B)
and
e:(b) = 6u, al(®),
en(B) =0u,ah () + 8 u,upi(3) ai(p),
where BEL!, fe &,
From (10.9), we have
p@ =43
From (10. 10), we get for any a = L},
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pba) =ba,
of which local coordinates are (#’, Ba). By the definition (8. 7) of the map-
ping 7, we have
7(Ba) =Pa (o (32))" = Ba(e(B)a(a))™
— e (@) =RE =7 ().
Hence, if we put
piG (@) = Pl ah(7 (D) = — dh, (10.11)
these functions PJ, A} depend only on the coordinate neighborhood (U, u*)
including the point x=m(b), that is, they are functions defined on U.
If we take another coordinate neighborhood (V, #*), UNV 5% @, then
the corresponding last coordinates of 4 and b are
O'(gvv(x))ﬁ and gvu(x)ﬁ
respectively. By means of (8. 20), we get
f){ (2 (gvv (x) ,_3)) = Pi(gvu €NV A (B)) bt (gVU (x))
=ax (gn (2)) Pii(u) bi(gvv (x));
hence

Pi() fg—z’i;Pn( ) (10. 12)

Fl
where P%(x) and Pi(v) denote the corresponding functions defined on U and
V by the first equations of (10. 11) respectively.

Analogously, by means of (8. 18), we get

al (5 (gro (%) 3)
= a7 (grv (¥)) at (grv (x)) 0 (7 (3)) b7 (grw (%))
+ al(gru(x)) aln (7(»3)) bi(gvv () b (gvo (%))

_ x
= az,,(r,(gw(x»)@’% Ph(u f’a“‘

__611’ ou' ou™
z i (1 )av o’

By means of (8. 10) and (9. 3), the first term of the right hand side can be
written as

"' ou’ ou' 61)

. 6u 0°v ou’
ou'ou’ 0v° ov" ¢ P (2 = ou'ou’ av" Po(u )6 i
hence the equation goes over into
Ah() =— ah (;/’ (gvu(x)p))
_ov . ou' ou™ Pr(y) O ou”
ou* Aim (1) vt ot mau Pitu) 50 v a0 (10. 13)

By virtue of (2. 26) and (2. 28), the equations show that P/, '}, = Af +
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oP] .
5 u,,‘ are the components of a general connection I" with respect to local

coordinates #'.
For this connection I', we make %y for each coordinate neighborhood

(U, 4'). Then, for the point b = (du;), we have 3=1. Accordingly put-

ting b = p(b) = (u', B), we have 7(3)=j5. Hence, by (10.11), we get
e(b) = o,
en(d) = 0u, al(3) + 8*u.u pi(3) ai(B)

: = 0%y P{ 0% — Bu,d, .

Accordingly we get .
p() = hy(x), x = =(b).

Since p and gp satisfy (10. 10), it must be

p=pr
The proof is finished.

§11. Some mappings on B(X) and %(’E)
For any P (T (X)Q T'(X)), we define a mapping
P: B(%) > R, = L(R", R"),
where R, denotes the space of endomorphisms of R”, as follows. For any
b e BY(F),
elb) = du;al(fB), en(b) = du,ah(F) + 6%uupl(8) ar(B),

we put
B(b) = (BNB) Pi(w)ai(3)) = (PAB)). (11.1)
Now ¢ be the imbedding of R, into § defined by
N o(pl) = (61 0, pi). (11.2)
Combining P and :, we define
P=:.-P: B®-L (11.3)
and furthermore a mapping P : %‘Z(Ti) — ﬁ‘(?é) by
P(b) = r(P.(6))(b) = bP.(b). (11. 4)

Clearly, the mapping P maps each fibre of %"’(E) into itself, that is a
mapping of B*X) covering the identity mapping of X.
Theorem 11. 1. P is not a bundle homomorphism of Sg"’(i), but it is

commutative with the right translation r(a) of %"’(k‘) for any a € L}, Pis

commutative with r(a), for any a € 8% if and only if P= L.
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Proof. For any a € &2, b= ), ,95333, we have

P(ba) = ba P.(ba),

P(ba) = (3% 0, Piba)),

Piba) = bX(3a) Pial(fa) = b)a) P2®)aila),
and hence

aP(ba) = (a)a), ahla), Pk O, b)) Pib) @)

= (ai(a), eMa)by(@)Pa(b)ai(a), pNa)B;(a) Pab)ai(a)).

On the other hand, we have

P(b)a = bP.(b)

Pb)a = (3 0, PAo)(@@), ahla), pMa)

= (@a), ai(a), PH)HAa)).
Hence in general, we have
- aP(ba) 5= P{b)x
that is
P-r(a) # r(a)- P. (11.5)
Thls shows that P is not a bundle homomorphism of B x).
Especially, if a € L), then we get
aP(ba) = P(b)a,
since ai(a) =0, pila) = ai(a). Hence
P-rla) =t(@)-P, a €Ll (11.6)

Nextly, if « € L], we have

aP(ba) = (&), aMe)BiPB)a(e), PABIatla))
PB)a = (@), ab(@), B)b)aw).

Hence, in order that a P.(ba)= P,(b)w, it is necessary and sufficient ﬁ,’;(b)
=43, The proof is finished.

Now, for another RE ¥w(T(¥)Q T'(X)), we make }, R. and R as P.
By means of (11.1), (11.2), (11.3), we have
P(b) = bP(b),
R(P(b)) = R(bP.(b)) = bP.(b)R, (b P(b)),

PB)R(BPD)) = (33 0, Pxb)R.(bP.(b)),
and

RXB) Ra(b P(b))
= RO b P.(6)) (B ai( P.BY)
= PAb)a: Ro(b) a2 = PAB)RL(B) = PRA®).
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Hence, we have
R(P(b)) = b(PR).(b) = PR(d).
Thus we have proved
Theorem 11. 2. For any P, RE ¥ (T (X)R T*(X)), the isomorphic
equation

R-P=PR 11.7
holds good. If P is an isomorphism of T(X), then
P =P,
Now, let P: B(X)— R, be the mapping defined by
P (b) = (6}(8) P4y a(P)), (11.8)
where b = (6u,a}(5)). Then
P=3P=P-; (11. 9)

If Pis an isomorphism of 7'(X), we cah define a mapping P, : B(¥)
— B(X) by

P.(b) =1 (P®)) ()= b P(b). (11. 10)
Lemma 11. 3. For any a € L], we have
Per(a)=adj(a™) - P (11.11)

Proof. From the definition (11.8) of P, we get
P(ba) = (63(a) P5(b)ai(a))
=q! 13(b)a.

Therem 11. 4. P, for any P v (T(X)Q TXX)), which is an isomor-
phism of T(X), is a bundle mapping of B(X) and P, is the identity map-
ping, when P=1.

Proof. For any a € L}, by (11.11) we get

P.(r(a) (b)) = P.(ba)
=ba P(ba)=b P(b)a
= P.(b)a =r(a)(P.(b)),
that is
Porla)=r{a): P.. (11. 12)

Theorem 11. 5. For any P, R (T (X)X T*(%)), which are isomor-

phisms of T(X), the isomorphic equation
R.- P,=(RP). (11.13)
holds good.

Proof. By (11.13), we get
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R.(P, ()= R.(b P(p))
= R, (3) P(6) = b R (b) P(b)

= b(RP)(b),
since we can easily prove that
R@) B(b) = (RP) (b). (11. 14)
Corollary 11. 6. For any isomorphism P of T (%), we have
(P)"'=Q. (11. 15)

where Q= P,

Lastly, for any isomorphista P of T(X), we define a mapping P, :
B (%)~ B(3) by
P.(b)=bP(b), (11. 16)
where we regard as
P(b) e Lic-22c e
Lemma 11.7. For any isomorphism P of T(X) and any aEZﬁ, we
have
P-t(a) = adj(o(@))- P. (11.17)
Proof. It is evident from the equation
P(ba) = (53(@) Py(b) ax(a) =a (@) P(b) o ().
Theorem 11.8. For any isomorphism P of T(X) and any a = f!,'i, the
Jollowing equation
P,-r(a) =r(s(@)) P, 1 (z(a)
holds good.
Proof. By means of (11. 16) and (11. 17), we have
P.(ba) =ba ;(ba) = baeo () ! ;(b)a(a)
= b7 () P(b) o (ct).
On the other hand, since
ez (@) =1,
we have always
P(b) = P (b7 ().
Accordingly, we have
P, (bar) = b7 () P(o7 (@) o ()
= P, (b7 ())& (a).
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Corollary 11.9. P. is commutative with r(«), if and only if « € L2
Theorem 11.10. For any two isomorphisms P and R of T(%), the

isomor phic equation
R, P,=(RP), (11.18)

holds good.
Proof. By means of (11. 16) and Corollary 11.9, we have

R.(P.(b)) = R, (bP(b)) =R, (b) P(b)
= bR(b) P(b).
Since we have easily

pu—

(RP)=R P. ' ' (11. 19)
Therefore, we get '
R.(P.(b) = b RP(b)= (RP).(b).
Corollary 11.11. For any isomorphism P of T (%), we have
(P)"'=Q.,
where @= P\,

§ 12. The relation between the canonical mapping for a regular
general connection and the ones for its contravariant part and cova-
riant part .

Let I" be a regular general connection, then P= i(I") is an isomor-
phism of T(¥). By virtue of Theorem 11. 2, the mapping P on %°(%) is a
homeomorphism covering the identity mapping of X and

P'=Q, (12.1)
where
Q=P (12. 2)

Theorem 12.1. Let p= pr: B(X)— BX) be the canonical mapping
for a regular general connection I' defined in § 10 and p''=p.r: BE)—
B*(X) c B (X) be the one for the covariant part ''I" of I'. Then.

p= P P (12. 3)

Proof. For any beBX), b= 8), 3 L), we put

p(b)=b=(u'P), Fe .
Then we have

B=7@e@ =703
since ¢(3) = 3. By (10. 11), we have
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7 (B) = (3}, — A, PY.
Now, we have
Q(p(®) = p(8)Q.(p(®)),
Q.(p(8)) = (@% 0, Qi(p(®)),
Qe (5)) = b33 Qlal(d),
and
BQ.(p(5)) = (@i (R), 0, au(3)) (52, 0, b3(3) Qi an ()
= (ar(A), 0, @ @.(3))
= (3}, 0, @A
Hence, the last coordinate of §(p (b)) can be written as
3Q.(p(®) =734 0, @3
(8h, — Ab, PH (34, 0, QD3
= (64, — 45 Q% oD,

which is
= (62’, - ”I-‘ijk) 6{)‘8

by (3. 3) and so the last coordinate of p'’(b). Therefore, we obtain

Q(p(d) = p"(b).

By means of (12. 1), we obtain the equation

p=P-p"
Theorem 12. 2. For any regular general connection I', we have
p*P.= -F,'p (12. 4)

where p = pp, P=2(I").
Proof. For any beB(X), b= (@, 3), 3= L), we put

b=p(b) =G, ), A= L
By (11. 10), we have
P,(b) =b P(b).
Since P(b)e L), by (10.10), we get
p(P.(8)) = p(bP(b)) = p(b) P(b).
Since ¢(#) = 3, it must be
P(b) = P).
Hence we have
p(P.(8)) =p(b) P(o(5)) = P, (o(b).
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Now, 'I' be the contravariant part of a regular general connection I".

'T" is a classical affine connection, hence for any b & B %), b= P), pe
22 we have the equation

Pl (6) = B3(3) Pl (3) db(3), (12.5)

where the notation “; ” denotes the covariant derivative with respect to
'T" in the right hand side and the one with respect to the induced connec-
tion 74 'I" of the induced vector bundle 74 T(%X), 7, being the projecton of

{%—‘(&), X, m.}. By means of (3. 14), (12.5) can be written as

Pl (6) = b3 (3) Qiatadk (3t (3) . (12. 6)
Let P/ %’-’(})—»Q,‘—: be the mapping defined by
P/ (b) = (3% Pliy(b), P2(B)) (12.7)
and P, : %9(3’,)—?%2(?5) be the mapping defined by ‘
Pi(b)=bP/!(b) (12.8)

which are analogous to P, and P. By (12.6), we get easily
P(6) = (@4(b), 0, @(8))(PL(b), 3%, (b), ML(B)),
where M= P’ and we put
3.5 (6) = B3 (A olnal(3) 2L (A). (12.9)
Let the mapping
j = fr : %2@)—;5%
be defined by
T(0) = (Bi), 35 (8), M), (12. 10)

which is defined by using only I and D, that is even though I' is not
regular. Then, the above equation can be written as

P (b) = Q1) J(b). (12.11)
Lemma 12.3. The mapping P, has the inverse and the equation
P '()=bP/! () (12.12)

holds good, when I' is regular.
Proof. For any b & B (%), we put
P (b) = b, = bev.
We have
b = P,(ba) = ba P, (ba),

hence
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1=aP//(ba)
= (@ (), @ (@), ph(@)) (33 Py (bar), Pi(ba)),

that is

an = ap(a),

0 = & (a) Py (ba) + @by (o) Pa(bav),

52 = p(a)) Pa(ba).
Using the first equation, we have

PA(ba) = PA(B), Ph(ba) = P, (b).
Hence the second equation of the above yields
0= P} (b) + ah(a) P2(b),
that is
@l (@)=— P}, (b) Q(b)
=~ Q)(b) "V, P3(b)
by means of (3. 14). From the last equation we get
ok = ph(a) Pa(b),
hence
pi(@) = QX (o).

Thus we obtain

a= (3 — Py, () Q2(0), QA(6) (12.13)

= (P ().
Theorem 12.4. For the canonical mapping p = pr of @ regular ge-

neral connection I'" and the one p' =p.r: B(X)—> B*(X) of the contravariant
part 'I"' of I', the equation

p="Pip' (12. 14)
holds good.
Proof. For any be B(X), b = (!, 3), we put
b=p(b) =", B
We have
7@ =3B =337 =8} — A, P,
and by the above lemma
P () =b P (b)" = (&, BP." (b)™).
Therefore, we have
a(BPNB) ) =Ba(PI(b)) =3
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by (12. 13). Hence we have
7(BPI(B) ) =3P!/(®) 3
=, (AAP ()3,
and
API(D)7 87 = B — Ph,, Qu(6), Q) A~
= (0}, — P, Qi Q).
Accordingly, we get
V(IQP I(b) ]) = (”ir - lih: P") ("b - Pi’;hQ:’ Q{)
= (l? B Pi'; hQi - Azn Q{, 3{)-
Since we have

Pl YGQ( lh (_ (P {h)Q:
{ﬁP‘ T PP — PLITR A T'h — ‘”“p’}Qi
=,Fu,,.

Thus, we obtain

T(BP '(b) )= (Ob —'Th, 01)
which is the last coordinate of p'(b). Hence we have
P (p(5)) = p' ().
Now, from Theorem 12. 1 and Theorem 12, 4, we get
p=T3.PH=ﬁ].p1,
hence
p” = F—] . 1.5.1 . p’.
For any point b e B (%), we have
P7'(Py(b)) = P (b P! (b))
= QP! ()
= bP&'(b) Ql(bPL, (b))‘
On the other hand, since we have
a(P/(b))=1,

hence

Q.(b P/ (b)) = Q.b).

Accordingly, we have
P (6)Q.(b) = (8% P2, (b), PAD)) (32 0, QA(b))
= (@3 P2, (D) Qu(b), &),

(12. 15)

(12. 16)

(12.17)
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that is
P/Q.: B®—- ()N =N (12.18)
Theorem 12.5. Let 'I" and ''T" be the contravariant part and the cova-
riant part of a regular general connection I'. Then, the canonical map-
pings p' and p’' of 'T" and "I satisfy the equation
p" — ’p—l. 1?1 . p'-
The mapping P~' - P, on B2 (%) is written as
P71(P,(b)) =bP!(b)Q.(D)
and the mapping P’ Q. : %3(2{)4 N2 is written as (12. 17).

§ 13. The universal general connection.

In [11], the author defined an affine connection for the induced vector
bundle =} (T (%)) over B°(X) which was said the universal affine connection
of X, because the differential forms on %(Ij for any classical affine connec-
tion of X can be induced from the ones of this connection by the canonical
mapping of the former defined in § 10. But, for general connections, it
has the geometrical meaning through their contravariant parts or covariant
parts which are classical affine connections of X, if and only if they are
regular.

In this section, the author will show that this concept can be extended
so that for general connections, even though they are not regular, the

differential forms on B(¥) for them can be induced from the ones on B*(¥)

of a connection for the induced vector bundle 7z} (7 (X)) over % (%) by their
canonical mappings which were defined for these connections too.
We call anew the induced vector bundle

U(x) =z4(T X)) - (18.1)
over B (%), which is induced from the tangent bundle T (X) by the projec-

tion 7, of the general principal bundle of order 2 of %, {% (®), X, =.}, the
universal vector bundle of X.

We may consider as

1 (%) c (T (X)) (13.2)
since T (%) C T%(X).
Let
v U@E)—» TE),
Tar ARE(X)) - T2(X)

be the induced bundle mappings which are determined by 7, It is clear
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The vector bunble 74(Z*(¥)) over B (%) has » + n® natural cross-sections
G Gt B(F) o 2T

uE) c AA(TA(x)

17

i'(T(’c)) B2(%)

| A

7 -

B(X) < ——5—3B*(X)

X
T

T(%) c T2(%)

v

Diag, 2
such that
2+ €x(b) = ex(d), roe Eae(b) = s, (b), (13.3)
where we may regard as
& B(E) - U (13. 4)

Since .%2(%) is not a principal bundle, for a point b, b = (', 8), & e,
e (b) out of {€,(b), €x.(b)} are mutually linearly dependent mod {€,(d)},
if A= @2 — g2

Now, we denote the natural cross-sections of the vector bundle
=*(T (X)) over B(X) induced from the tangent bundle 7(X) by the projec-
tion = of the associated principal bundle of order 1 of X, {B(%), X, =}, by

en: BE)-=HT X))

and the induced bundle mapping by

(T (X))— T (%).
Then, we have
v+ ex(b) =e\(b). (13. 5)

In § 6, we introduced the connection forms on B(X) for any general
connection I', which are written in terms of local coordinates (#/, #),
pBeLl, as
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6% = b5 (3) { P{(u) dai(8) + 'l (u) ai (3)du"}
= b4 (b) { P{(w)dax () + Af(u) ah(3) du* + d Pi(u) aX(B)}
= b4 (3) {d (P{() ai (D)) + Al () ak(B) du’}.
Let p=pr: %(%)—)532 (%) be the canonical mapping of I" and put
b=p(b) = 7, F€L
By means of (8.10) and (10. 11), the right hand side of the above equa-
tion can be written as
0% = b5 (B) {d (1 () ah(3) — abu (7 (A)) @k (3) du}
= b5 (3) {d (pL(®) - i (3) bZ(T?)dzt"}-
Hence, ¢% may be considered as they are induced from the #° differential
forms on %2(§) :
ok =v(dpi—ado”) (13. 6)
by the dual mapping p* of p, where ¢ are the differential forms on B(X)
defined by (6.8) and we regard them as differential forms on B2(X) by

transforming them under 4"

Lemma 13. 1. 6% are defined on the whole space %f(i) and do not
depend on the choice of local coordinates.

Proof. Let (U, «') and (V, v') be any two coordinate neighborhoods of
¥, such that UNV+ . Let (', 8) and (2%, y) be the corresponding local

coordinates of B (%) on 7. "(U) and 7.~ (V). In .- (UN V), we have
7=8vrv 3
by (9. 4). Accodingly we have
V() {d (p1() — adu () bEG) dv*)

= 045(gvu B) [dpi(gve B) — adu(gve B) bi(gve 3) do*)

= bt (N ai(ger) [d(al(gre) L(P) —

—{al(gv) @l (D + ah(gr) r(3) @i ()} br (9 ai (gvv) dot]

= b (P as(guv) [al(gvi) d (Pr(D)) + ah(gve) Pr(3) du”

— {al(gvv) @ (3) + adu(gre) A (3) @i () } bin (3) du™]

= b (A {d (Pr () — ar(B) b (3) du™},
which shows that the forms % are determined on B° (%) without depen-
ding on the choice of local coordinates.

Analogously, corresponding to the differential forms
2t =% — d Pt

on B(X), we shall determine other » differential forms on %"(&). Putting
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BE) b=, 3), 3€L), and b= p(b) =, §), B &, we have
dP% = d(8:(9) Piw)ai(®)
= d (B9 piG BN ar(®)
=d (053 2L (9)).

Hence, if we introduce # differential forms on B° (%) as follows:

=08 —d (B4
= b5(dp{ — al8”) — d (¥ p)
= — (db5pl + b5al,6"),
that is
7h=— (dbipl + Vai,0”), (13.7)
then the differential forms =4 for the connecticn I" are induced from #% by
the canonical mapping p.

Lemma 13.2. The functions
¢k =b5(B) (D) = pi(; (B) (13.8)
are defined on the whole space %7(35) without depending on the choice of

local coordinates (u’, B) and they are the components of a homomorphism
of the universal vector bundle U(X).

Proof. Using the notations in the proof of Lemma 138.1, we have
VG piG) = b5(gve D) pi(gve B)

- out 8v’ /5
= 0B 35 5 (D) = KA ().
By means of Lemma 13. 2, 7% can be written as
e (13.9)

Now, we define a natural differential operator
d: TEHTE)-FE(TE)Q T (B ®))
by
de, = 6. Q0 + 6. Q0" (13.10)

On the other hand, let @ be the natural cross-sections of the dual
vector bundle

(%) = 2(7T* (%))
of the universal vector bundle U(X)=zi(T(X)). Let v,: 1'(X)— T*(¥) be
the induced bundle mapping, then

v1(¥(d)) = e*(d), (13.11)
where we put
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e“(b) = b4 () du’ (x), (13.12)
and B2(X) Db =, B, € L2, x =7.(b).
Now, we define a general connection of the universal vector bundle
(%) of X by the equations
D& =20, (13.13)
D = - Qxrk (13.14)
We call this connection of U (X) the universal general connection of X, by
virtue of the following

Theorem 13. 3. The differential forms 0%, =% defined on B(X) by (6. 1)
and (6. 19) for a general connection I' of X are induced from the diffe-
rential forms 0% 7 on B(X) defined by (13. 6) and (13. 9) for the universal
general connection of X by the canonical mapping p=pr: %(?c’.)—>§39(}‘) of
this connection I" defined in § 10.

This theorem is evident from the above mentioned facts.

Lemma 13.4. For any right translation r(a), aE L2, of @(?&), the
Sfollowing equations hold good :

r(a)* 6" = bi(a) 0, (13.15)
r(e)* 6 = 05 () 05 p3(a) — @t ( () 1 (2)* 0 (13. 16)
= (@) {5.8%() — a2, (7 (a)) 0" a3 ()},
r(a) *¢h = b (a) @b p3(a) (13.17)
and
r(a)* 7% = b () $5(a) — b ( (@) 1 (@)* 0", (13.18)

Proof. (13.15) and (13.17) are evident from their definitions (6. 8)
and (13. 8). By (13.6), we have
r(@)* 6% = b5(3a) [d (6 (Ba)) — al () r ()* 0°)
= by () b5 (R) [d (02 (AN 15 ()
— {az(B) @y () + az.(B) 7 (@) a3 (@) } 1 () * 0]
= b () b5(8) 1d(p2(3)) — a2.(3) 07) pR ()
— by (@) @b (@) r (a)* 6"
= b5 () 05 13 () — @t (p () r (@)* 0%,
(13. 18) follows immediately from (13.9), (13. 16) and (13. 17).
In the last place, we define mappings on 1(X) and W (%X) such that
they cover the right translation r(a), a € 22 on B (%), by
() (e (D)) = &.(ba) By (), (13.19)
F () (e (0)) = (br) & (). (13. 20)
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Lemma 13.5. For the mapping 1(a), a € 2~, we have
voi(@)=v and »,-1(a)=r1;. (13. 21)
Proof. By means of (13. 3), we have
v (1 () (3 (0))) = ¥ (€. (b)) bk ()
= e (ba) b () = ex(b)
=1i(&(®)
and
5 (£ (a) @ () = 1 (" (b)) ak ()
= e (ba) ak(a) = e"(b),
since from (13. 12) we have easily
e*(ba) = b () e*(b). v (13. 22)

§ 14. The covariant differentiation with respect to the universal
connection.
Making use of ¢4 defined on 1(X) by (13.8), we define a homomor-
phism of the vector bundles U (¥) and U"(X) by
@ e (b) =e.(b) ¢5(d), (14.1)
@ (D) = ¢i(b) & (D). (14. 2)
Extending this homomorphism to any tensor product bundle of 11(¥) and
11*(X) by the well known method, we define the covariant differential

operator for tensor fields of 11(X) as follows.
Let

N2 = 187 Q) (113", (14. 3)
n=0(), u'=1u'®)
be the vector bundle over B° (¥) which is the tensor product bundle of p
copies 11{X) and ¢ copies of W' (¥). The covariant differential operator

D: (u@(p.q))_) w(USPOR T (%2 (%))
is given, by means of (13.13), (13.14), (14.1) and (14. 2), for
V= Vﬁ;:::ﬁé,é)‘] ® vee ®EAP®€F~1 ® sen ®E“ﬂ,
by the equations
DV=¢(E Q& '~-®5,\p®é"l®---®€“a)®dV,’t}ZIﬁ§
P - -~ ~ s -~
+ V,t;:::ﬁ;é‘,,(% R Ra,_JIQURIE,,, B Q&
QR -+ Qe )R8,
q
56,006 QMR Q)R PR

— Vi)
1 q tem]
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®¢(El‘t+] ® ®§#q)®;r:;z, (14. 4)
which can be written as, putting
DV=¢ R Q& RNQ- Qe QDVITr, (14.5)

DVt = ¢fi - ¢Xpd Vilipgrt - o'

P
+ 290,\1 9”:—1 0‘{8 SOA“' . ¢K: V;\L}::za.u Spfr‘lj .ee ¢¢g
- ,‘.49” @Sn Ve gt e Qo1 gt oo gl (14. 6)

Tt+1

Furthermore, we extend naturally the covariant differential operator
D so that

D: (US> Q.4 (T (FE))—-
v (U@ 4™ (T" (B (®))-
For
V=5 Q& QMQ Qe Quwu i
where w,ill::,’:;' are exterior differential forms on %2(?,) of order », DW is
defined by
DW=5(t,Q Q& QR Q&) Qdwuliip
+ 3356, @ @b, )OLBHE,, B 08,8
Q1 Q) - Q) @ (6% Awplur) (14.7)
~3$56,80 06, QMR Q)R TR
Q¢ (1@ Q)R (@t Awpluz)
=&,Q Q& Q1R Q¢ °®Dm‘:1, 0.
Now, for any two
ve rueroQ 4 (T (B (1)),
we v U .1 (T" (B (X)),
we define a product of Vand W
vewer (u@(p+».q+t>® Ar+w(T“ (‘5\}'31 (70)),
by
Q- Q& Q" RE“Qu,)®
Q- Qe QMR Q"R b.)
=6,8 Q6 Q&R Qe Qe 1R Qe
Q1R QTR (w-Ab),

where w, and ¢,, are exterior differential forms of order » and w. The pro-
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duct ® goes over into the tensor product X and the exterior product A
when r=w=0 and p=g=s=¢=0 respectively. By virtue of (14.7) and
analogous calculations to the ones done to obtain the formula (2. 19) in § 2,
we can prove the formula
DVOW)=DV®e¢W-+(—-1ypV®DW, (14. 8)
where we regard as ¢ operates only on the parts of the tensor product
bundles of U (%) and " (¥).
For any fidre bundle {3, X, 4}, a differential form  on B of order
r >0 is said to be primitive, if for any r-dimensional tangent hyperplane
H at any point bE®B such that dim dy-(H)<7, the restriction » on H
vanishes always, that is «» can be written locally in terms of differentials
of functions on X only +» through. A tensor field W of U of type (p, q;7),
r>0, is said to be primitive if its components w,’:}:::ﬁ: are all primitive, as

differential forms on BAXE).

§ 15. Relations between ¢, T («)and the covariant differentiation.

Here, we discribe some notations on bundle homomorphisms of vector
bundles. Let §=1{38,%, 7, 9} and §'={8', ¥, =", '} be two vector bundles
and 4: 3'—3 be a bundle homomorphism covering a given mapping - :
¥'—X. We denote the dual vector bundle of ¥ by §". Then, we can define
naturally a transformation of #(§) into #((F)*) denoted by #® as follows :
For any £ 7 (§"), 2 €3’, we put

<2z, RPE>=<hz' E>. (15.1)
When §=T (%), § =T (&) and # is the differential mapping d+- of », A°
=(d+»)® is 4 in the ordinary sense. Furthermore, when dim 9 = dim pJy
and % is a bundle mapping, that is an isomorphism on each fibre of &', we
define naturally a transformation of # () into #(§') denoted by #©O as
follows : For any £ € 7 (), we put

ROE(2") = (1| Da) ' (Z (g (2N))- (15.2)
When / is the induced bundle mapping of +», we denote #O by °. ™

Now, for the bundle mapping (), a E 22, by means of (13.19) and
(13. 20), we have

(F(@S&) (0) = (T (@) | W)™ (€r (bex))
= &, (b) ak(a),

where 11, is the fibre of U=U(X) over bE %ﬂ(i) which is an »# dimensional
vector space. Analogously, we have

12) See |11], § 8.
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< (F(a)® &) (D), ex(d) >
= < ™(ba), t(a)(@r(d)) >
= < e(ba), t.(ba)bi(a) > = Vi(w).
Hence, we obtain the formulas
(o) & = e ak(a), (15. 3)
I(a)®? = bi(a)e (15.4)
(15. 4) shows that ¢* may be regarded as 6* by means of (13. 15) but they

are different with each other because they are considered on different
spaces.

Lemma 15. 1. The tensor field & @ & of W(X), which represents
the identity isomorphism of WX), is invariant under (o), for any a2
Proof. By means of (15. 3) and (15. 4), we have
f(a)(&®e) = ((2)B R 1(a)®) (8. ® &)
= & al(a) @ bia)e”
=R =¢Q .
Theorem 15.2. In order that a tensor field W of U(X) of type
(Byogs7):
W=7% Q&R Q“Qai, (16. 5)

and
wuur are exterior differential forms of order r on B° (%),

is induced from a tensor field of T (X) of the same type by the bundle
mapping 7 : WE) — T (X), it is necessary and sufficient that it is invari-
ant under ©(a), any a € 82 and primitive when r> 0.

Proof. Sufficiency. By means of (15. 3), (15. 4) and (15. 5), we have
) W = ((@)ORF(@)OQi (/) W
—,® 0L,V QT (15.6)
@ {afi(a) - (@) r{a)* wiizie Bila) -+ biz(a)l}.

Let us suppose that T(a) W= 13[7 which is equivalent to

a)f]‘ P = a,\l(a) a‘{g(a')r(a')* ‘;:} > b“'(“ "(Cl
that is ‘
r{a)*ahi; ; = bgi(cr) - bf;;(a)mi’llii'.i; ail(e) -+ aga(e). (15.7)

Let (#’, 8), BE &;, be the local coordinates of %?(?é) and put
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wiizie = ati(B) - alp(B) @uyziz b3(B) - Bia(B). (15. 8)

For any « €22 we have
r(@)*wjije = ad(Ba) - ais(Be)r (@)*wuriebi(3a) -+ bl fr)
= afi(3a) -+ axp(Ba) bi(a) - bixl@) @315 agila) -+ ain(ar) X
X b5(Bat) -+ blja( Bex)
= aJi(3) -+ asr(B) wiisr b31(B) -+ ()
o= ll)_ﬂ..._)"

which shows that wji ,r is differential forms of order r on BX%) dependmg
only on the local coordinates »‘. This fact and (15. 8) show that W is
induced from a tensor field of type (p, ¢ ; r) of T(%)

W=cu, @ Qiu,Q du1@ -+ dulr @ wjise, (15.9)
that is

W=; W=(G0Ri®QW. (15. 10)

The necessity is easily proved, because we can obtain (15.7) from
whzie = B3E) - iz wiiie ala(B) - ais(d).

Lemma 15.3. db = ¢, Q6" is invariant under T(c), aegf..
The proof of this lemma is evident from (13. 15) and (15. 3).

Now, we shall investigate the relation between t(«) and the covariant
differentiation of 11(¥). From (13.13), (15.3) and (13.16), we have, for
any ¢ € 53,.,

() D& = ©(a)(2.Q %)
= (f(0)© @ r(a)*)(&. ® 8%)
= ()9 & ® r(a)* &%
% () ® {bi(a) 65 p(cr) — abe(7 () v () * 6%}
=% ® 62 p%a) — & & ax(a)r(a)* 6,

that is
(@) D%, = (DE,) pi(a) — & ® aXola) T (a)* 6", (15.11)
Let W be a tensor field of W(X) of type (p, ¢ ; r) which is invariant
under (@), ¢ € L,., and is written as

W= e,\l R é—)\p Rt R - @ e & (u,)},}::ﬁ;’ .

By means of the assumption, we get from Theorem 15. 2



ON GENERAL CONNECTIONS T 159

r(a)*mﬁ;:ﬁg = boi(a) -+ bf;;(a)(u‘,f}Zii;': ana) - a;g(a) (15.12)
for the element ««. By the definition (14. 7) of D, we have

DW=6 Q@ Q& Q- @ ® Duitisz,

DaStlizr = ALK 2 ¢ dm# -y @r1 e gl

e

A+ 2‘,@; (Pgs:],jg, gt e g2 A WhlTM gy <o gl
—(=1y Z(,B U’w“] /\gc z l~"zq;”t+1 “g. (15. 13)

Making use of (13.17). (13.16), (13.18) and (15. 12), we have
r(a)*Dm‘:;iI'::
= bgia) -+ bga(a)gdy -+ rpiG (@) -+ pRe( (@) X
X dowing ¢t glapii(a) -« pldla)
+ é () -+ bep(a)gly -+ o168 ¢lert oo @he A
PG () - pXe(r(a))wprie ¢ft -+ gha prila) +o pig(a)

Ld —_—
— 23 Bia) - Bz (@) ¢l gt b (a)) O gl < A A
PG (@) =+ pXe=1 (5(a)) peri (7 (@) -+ pXa(y () wptiinr
X @t -er gha pri(a) -+ prale)

q - —
- (— 1) 2 biia) -+ Bypla)giiee ghr X1 (7 () »+ pXo( (a)) X
")u n A ‘P . ": 1 *‘z SGP:H cer 901“.; p::(a) ves pig(a)

ft+1
+ (- l)r 25 551 -+ Baa) ¢l - ¢l A (@) - PRa((a)) X
“)"1 /\ R et N .,(r () 6" gl e gl X
X i) o pii=H @) aia) (@) -+ plala). (15. 14)

t+1
This equation shows that D W is not invariant, in general, under {(«),
o € L2 evenif Wis so.

If we take especially any « € &, then since we have

() = alla), piG; (@) = o,
and so the above equation (15. 14) goes over into
r(@)*Dw5ise = bii(e) -« bip(a) [D wiizir—
P

- Pl wee rPs—1 aPs (7 Y P see P Ageed Floeee o
> gﬂa: EAE } aﬁ-,(r, (a))ﬁ @8+l gD,\;: A w,‘}...,,,z’ q:',,; ¢

=1 - 3 3+1
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q
+(—1) :5:"1 sp)’:ll ...‘pf;:,,):l""\p A 9,,’;‘: oo -1 a?‘y(?}‘(d))b’* %

174q t-1 " Fg
X gherr oo glie] aj () - aig(a). (15. 15)
Furthermore, if « € € and a.(;(a)) = 0, thatis ¢ € L!, then (15.15)
goes over into

r(a) Dafiife = bli(a) »+ b7 (a) Dwiilr asi(a) -+ afs(a). (15. 16)

From the above consideration, we have obtained

Theorem 15. 4. If @ tensor field W of WZX) is invariant under T(c),
a €L, then DW is transformed by t(x) as (15. 14).  Especially, -if
o EL; or L, then (15. 14) becomes (15. 15) or (15. 16) respectively.

Theorem 15. 5. If a tensor field W of U(E) is invariant under the
group of isomorphisms T(a), a € L), of W(X), then DW is also invariant
under the group. This property of W(X) can not extend to the group
DL

§ 16. The torsion and curvature forms of the universal general
connection.

In the first place,” we shall make some formulas for the sake of the
consideration in this section. By means of (14. 1) and (14. 6), we have

¢ Doy = p(e. @ 6%) = & @ ol 6%,
Dge, = D(%,¢8) = D&, ¢f + ¢& Q dgf
= 2. ® (¢t dgf + 64¢Y),
hence
(Dp — §D)er = B @ (6% 9% — ¢ 08 + ¢ dgf)
=L @Uhel — ¢ 7)) = L. QD
Analogously, we have
(D§ — $D)¥ = D(¢h¥) + #(¥ @ 72)
= T @ (dgh ¢f — ¢hnf) + @ Q@ =hek
=P QR @hek — ¢had) = ¥ Q@ Dok
Thus we obtained the formulas :
(Dg — D)oy = €. Q DY, (16. 1)
(Dg — ¢D)&* = & Q D4, (16.2)
where Da} is exactly obtained as follows :

DEHRW =Rt RR —seQ@ R
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=L@ TR U — ¢ = & ® ¥ ® D,
that is
DE QR =2 QR Dok, (16. 3)
Dot = 628 — gt 2. (16. 4)
By virtue of Lemma 15.1, & ® @ is invariant under all £(x), € 22,
hence we get, from Theorem 15.5, for any a € £2
r(a)* D7 = b3(a)65 pi( () ¢ piler) —
— by (@) ady(7 () 0"¢t pi(ar) — bi(a) ¢l pi(()) 22 pila)
+ b3() ¢% PX(7()) a5 (a)) 67 @)
= by(e) {65 Gl @} — o (7@} i (er)
— by () {a(7 (@) 6" ¢X pr(7())
— ¢ R(Ga) as(y(a)) 0"} ai(a),
hence
r(@)* Da7 = bi(a) [D (5 (aN) (G (a))
— {@(7(a)) (X D2 (5())) — (g% P5(G(@)) ay(7()) 0} ] a3 ().
(16.5)
Now, we covariantly differentiate dp = &, ® ¢* which is invariant
under all F(a), « €22 By means of (15. 13), we have
Ddb =& QDo
Do* = ghdo* + 0% NO* = &,
which we call the torsion forms of the universal connection of X.

For any a € 22, we have by (13.16), (13.17)
r(@)*0* = b)) ¢ D)) do*
+ ba) {85 A pr7() 0" — aby(7(@)) 0" A 6%
= by(a) [{ebd (pL((a)0*) + 65 A pi(p(a)) 0%}
+ aly(7(a))0” A 6],
that is
r(@)*6* = bi(a) [D(Z pG(a)8”) + aa((@)) 6 A o7]. (16.7)
We can obtain an identity as follows :
DH®@P =R PR
=85 QT Q@ + dgh)
= —5.@D¢ + QPR dek,
that is
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DE®P+ B @D - 6. Qe Qdph = 0. (16. 8)
Covariantly differentiating this identity, we get
0=D(De,® ) + D@ D) —D (8. ® & @ dgh)
=D(DE, ® ) + DE ® D) — D@ ¢ ) @ dgh
— ¢(%) @ D¥* @ dgh,
hence
{D(D& @ ) — ¢(8) © D& @ dgh}
+ {D(E ® D) — D¢, ® ¢(&") ®dgi} = 0. (16.9)
The quantity in the first parenthesis of the left hand side of the above
equation can be written by (13.13) and (16. 1), as
D(DHE® ) + §(8) ® (0 — &) ® DT
= D(D& @ ¥) + ¢(D&) ® D?* — ¢(3) @ =2 © D&
= D(D&{®@%) + D($é,) ® D — 8. @ Dot ® D& — ¢(8,) @74 @ DE.
On the other hand, since we have
L@ DX+ PR O = L® (0 gk — ¢h R + ¢h R
= 8. Q@ 0 ¢} = ¢4 DT,
the above equation becomes
= D(De, ® ") + D(¢&) ® D — ¢k D, ® DT (16.10)
Analogously, the quantity in the second parenthesis of the left hand side
of (16.9) can be written as
D@ ® D) — DE. ® () ® (% — )
= D(5® D?) — D& ® (D¥) — D& @ $(¥) ® 64
= D(% ® D) — Di, ® D3 + Di, ® © @ (Dat — 6 ¢}
=DE ®D®) — D, @D — DE.® & ® ¢h 78
= D(E,.® D) — D&, ® Dg @& + ¢X D&, ® D@ (16. 11)
Accordingly, the identity (16.9) can be rewritten as
{D(D% ® @) + D(¢é) ® D&
+ {D(&, ® D?¥) — D&, ® D(¢ ")} =0, (16. 12)
of which the first and the second parts are symmetric with respect to the

contravariant and covariant parts.
Now, we put

DDH® ) + Dpa) ® DY = 6. Q P ® ¢4 (16. 13)

and call 0% the curvature forms of the universal general connection of X.
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<

We shall write 8% in terms of 8%, 5, ¢). Since we have

D(D% ® &) + D(¢d) @ DY
=D&, ® 3¢ — §(D&) ® DE* + D(§t) ® DB
=D ®@¢¢ + (Dg — ¢D)&r ® D
= D(E.® 08 ® §¢ + (c. ® Dé%) ® D
= (36 Qd0t + DE. Q) @5 + (6. QDY) © D
= (LD ® {¢hdih gl + 05 A 05 g% — Dot A78),

it follows that

0% = (¢t d + 08 A B¢t — Dok A wh. (16. 14)

The formulas (16. 6), (16. 14) and Theorem 13. 3 follow immediately

Theorem 16. 1. The torsion forms #* and the curvature forms 6% on

B(X) of a given general connection I' of X are induced from the torsion
forms 0" and the curvature forms 0% on BYX) of the universal general
connection by the canonical mapping pr : B(X) — B*(X) of I'.

(1]
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Page Line for read
100 38 22 onto L, ¢, onto M, (the algebra of all
# X n — matrices)
104 9 2 pITE
” 14 % onto L} IME onto M:
” 23 (02 3x) 12(0%u 5x)
108 11 i—‘z‘; n %ﬁ T'h
109 1 7(fv)grv 7(fv)gre
113 28 uniquely affine uniquely within affine
121 14 U— L} = (U)— L}
122 11 U— L, = {U)— L}
131 11 §f.—> GL(n+#°, R) g,,—) M:,.»
138 34 p (@) 16

An addendum below (1. 2) of p. 100: And we denote by 9% the semi-group
defined by the same formulas but |a!|5£0.
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