ON RIEMANNIAN MANIFOLDS ADMITTING
A CONCIRCULAR TRANSFORMATION

SHIGERU ISHIHARA and YOSHIHIRO TASHIRO

In 1940 to 42, K. Yano" introduced the concept of concircular trans-
formation of Riemannian manifolds, developed the theory of concircular
geometry and obtained many suggestive theorems. A concircular trans-
formation of a Riemannian manifold M to a Riemannian one 'M is by de-
finition a conformal transformation of M to 'M, which carries geodesic
circles in M to geodesic circles in ‘M [CG, I]; a geodesic circle in M
with metric tensor g, is a curve x* = x*(s) satisfying the differential
equation

0% a*x* &%t dx*
ds R ge dst ds

s being the arc length of the curve and é/ds denoting the covariant dif-
ferentiation along the curve in M.

The purpose of this paper is to study the structure, topological and
differential-geometrical, of compact or complete Riemannian manifolds
admitting a concircular transformation. In §1 we shall recall the argu-
ments developed by K. Yano [CG, I, II] as preliminaries. In §2, we
shall discuss the local structure of the manifolds in a neighborhood of an
isolated stationary point of a concircular transformation. §3 will be de-
voted to the study of compact manifolds and §4 to the study of complete
manifolds of constant scalar curvature, which admit a concircular trans-
formation. The principal results are Theorem 2 in §3 and Theorem 4
in §4. In§5, the holonomy group of such manifolds will be discussed.
Speaking in short, Theorem 2 states that a compact manifold admitting
a non-homothetic concircular transformation is conformal to a sphere, and
Theorem 4 states that a complete Riemannian manifold of constant scalar
curvature admitting a non-homothetic concircular transformation onto
itself is a sphere.

1) K. Yano, Concircular geometry,
1. Concircular transformations, Proc. Imp. Acad. Tokyo, vol.16 (1940), pp.195
—200.
II. Integrability conditions of puv = gguv, ibid., vol.16 (1940), pp.354—360.
III. Theory of curves, ibid., vol.16 (1940), pp.442—448.
IV. Theory of subspaces, ibid,. vol.16 (1940), pp.505—511.
V. Einstein spaces, ibid., vol.18 (1942), pp.446—451.
These papers will be referred to as CG.
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§1. Concircular transformation.

Let M and 'M be n-dimensional Riemannian manifolds®. We denote
by {4}, K& K. and k the Christoffel symbol, the curvature tensor,
the Ricci tensor and the scalar curvature (¢ =K/n(n—1), K= K.,g"") of
M respectively, and by preceding primes the corresponding quantities of
IM3)

A conformal transformation

(1.1) 'Gun = PBur
of M into 'M is concircular if and only if the equation
(1- 2) Pur = ¢ gnh

holds for a certain function ¢ [CG, I], where p is a positive valued scalar
function on M and

1.3 pur = Fuor—pu pr T Fgux pup’,
( * ) P = 6,\Iogp,

7 denoting the covariant differentiation with respect to {i}. For a con-
circular transformation, the following formulas are known [CG, I]:

(1.4) s = {&} + 8L pa + & pu — gurp
(1.5) "Kpa® = Kyl — 20 (65 gur — 85830,
(1. 6) IK;u\ = KI.LA_Z (n—l) d’ &ur
(1. 7) = L (k—24).

‘0

If the function p is a constant, the conformal transformation is a
homothety, and a homothety is a concircular transformation. However,
throughout this paper, we shall be concerned only with non-homothetic
concircular transformations, and the term “concircular” will always denote
“non-homothetic concircular”.

The equation (1. 2) is equivalent to

(1.8) VuPr — pupr = r g,

2) Throughout this paper we shall suppose that manifolds are connected and of
dimension greater than 2, and that the differentiability of manifolds, transforma-
tions and quantities is of class C=,

3) Greek indices run from 1 to 2 and Latin indices from 1 to 2—1, unless other-
wise is stated.
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where we have put

(1.9) ¥ =¢— +g" pupr
If we put = = 1/p, then the equation (1. 8) is reduced to
(1. 10) PulPrxs + e gua = 0.

Differentiating covariantly the both sides of (1. 8) and taking account
of the Ricci formula, we have

K,,,u\"p,‘ = (\[r oy — 61.\]/') gur — (1[1"0,,_ - a#'\!") Evn

and, transvecting this equation with p", we see

(1.11) Ovyr = a py,

where « is a proportional factor. Putting

(1.12) y = — q,

we obtain

(1.13) Koo = 7 (pv 8ur — pugw)-

A point of M is called a stationary point or an ordinary one of a
concircular transformation if the gradient vector field p, vanishes at the
point or not. In a neighborhood of an ordinary point we consider the
integral curves of the vector field p*. By means of (1.8), we can easily
see that such an integral curve is a geodesic arc. A geodesic is called a
p-curve if it contains such an arc. [CG, II].

Let P be an ordinary point in M and U a coordinate neighborhood of
P which contains no stationary point. Then we can define in U a family
of hypersurfaces by the equation p = const. The hypersufaces will be
called g-hypersurfaces in U [CG, II]. Given a point @ in U, there exists
in the family one and only one p-hypersurface V(Q) passing through Q.
The p-curves form the normal congruence to the family of the p-hypersur-
faces in U.

Let ¢ be the unit vector field of the vector field p*, which is defin-
able in M except at the stationary points. i*is given by

w1«
= o=Vl

From this equation and (1. 8), we have
(6,‘0‘)1',\ -+ O'V,‘i,\ = ‘l’l‘gp.)\ + o'giy.ip\)
and, by transvection of this equation with *,

(1. 14) duo = (Y + 6 i
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The two above equations imply
(1. 15) Putr = % (gun — Zuta).

Let @ be a point in U and V(Q) the p-hypersurface in U passing
through the point @. Then the vector :* is the normal unit vector of V(Q)
at any point of V(Q). We choose a system of local coordinates #" in
V(Q) and suppose that V(Q) is expressed by parametric equations

2 = 2 (u®)

in U. The second fundamental tensor %y of the p-hypersurface V(Q) is
given by

(1. 16) kjl = B’Jl B? Fu i)u

where Bf = 8. Denoting by g, the induced metric tensor B B} g, of
V(Q), we see on account of (1. 15)

1.17) hy = h g h= %

because of B} iy = 0. Therefore the p-hypersurface V(Q) is totally umbili-
cal. Moreover, in virtue of the Weingarten equation, we obtain

(1. 18) 9,B& + {,fl} B;B} - | ]f;} By = hgui,

where { ]hz} denotes the Christoffel symbol constructed from gy in V(Q).

From the Codazzi equation it follows that
Pohy — Vs = BiB% B K i

p denoting the covariant differentiation with respect to {.ﬁ} in V(Q).
Taking account of (1. 13) and (1. 17), we have hence

@xh) g5 — (95h) gre = 0.

Provided » > 2, this implies ;2 = 0, which means that the function %
is constant on V(Q). On the other hand, (1. 14) implies 8,0 = B%d,¢ =0,
that is, ¢ is constant on V(@), and consequently so is ., because of
(1.17). This means that %4, ¢ and + are functions of p in U.

Now we can choose a system of coordinates #" in U such that the
hypersurfaces defined by u” = const. are the p-hypersurfaces in U and
the curves defined by the equations #" = const. are the p-curvesin U.
The p-curves being normal to the p-hypersurfaces #” = const., we have
at first
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&ni = &m = 0.

Since the p-curves are geodesics, we have
4o dv | (el dwdd_ gdw A
du dw p du' dut T du dw O

# being a function of #”, and hence

K ax
= Oy
{nn} A o,

In particular, we obtain

h } — l RA ag)m ag}m - agml) —_
{nn 0 or & o ow out 0.

Taking account of g,; =0 and g"* =0, we have

0gun _

out ’
from which it follows that g,, depends only on «”. Hence, by a suitable
transformation of the »-th coordinate, we may suppose from now that g,
is always equal to 1 in U. Then we have

(1.19) {} =0,

nn

and the variable #” is the arc length of p-curves in U. Therefore the arcs
of p-curves cut off by two p-hypersurfaces #” = s, and #* = s, have a
constant length s, — s, that is, p-hypersurfaces in U are geodesically
parallel to each other.

If we take the variables " as local coordinates in each p-hypersurface
in U, then we have

Bf = 6¢u" = 6{‘ and Eﬂ = gjh

on each p-hypersurface. Therefore the equation (1. 18) is reduced to
FAT T P

{7} -
ji ji

because the unit vector * has 45 as components with respect to the local
coordinates #*. For x = n, the above equation is reduced to

(2] = Lpn(28s 1 Oew _ 38 _

ji 2 ou’ ou' out
On account of g™ = g,, =0 and g., = g" =1, we have
1 9
(1. 20) 5 aif = hgs

Since the function % is constant on each p-hypersurface in U, % is a func-
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tion dependent only of the variable #” in U. Thus, integrating the equa-
tion (1. 20), we obtain

(1.21) gn = 2 fi (),

where fu(u") are certain functions of the »—1 variables %" such that the
matrix (f) is positive definite, and 2(x") is a positive-valued function of
the variable #”. Consequently the line element of the Riemannian mani-
fold M is written in the form

1.22) ds* = gudu” du* = 1(u"Vfy (W) du’dut + (du™)?

with respect to the system of coordinates #* in U.

In the following, primes on the right shoulder will indicate the deri-
vatives with respect to the n-th coordinate %" in U, i.e., with respect to
the arc length of the p-curves. By means of (1. 22), we have easily

(1. 23) {;’i} = — 2! fa
Since p is constant on each p-hypersurface in U, the function p depends
only on the variable #" in U. Hence, putting 1 =14, p=; in (1.8), we

have
[
~E = van

Comparing this equation with (1. 23), we have

)II

(1.24) ==L,
v =3
On the other hand, putting 2 = = # in (1. 10) and taking account of
(1.19), we obtain
n

(1. 25) Y= — .

From (1. 24) and (1. 25), it follows that

Al

A 7!

and consequently
(1. 26) A =ct,

¢ being a non-zero constant. Writing f instead of ¢*f; from the bigin-
ning, we have from (1. 22)

(1.27) ds® = ('Vfu() duldu' + (du').

Summarizing results, we have the following theorem [Cf. CG, II] :
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Theorem 1. If a Riemannian manifold M admits a concircular
transformation into a Riemannian manifold 'M, then, for any ordinary
point of the transformation, there exists a coordinate neighborhood U
of the point, where we can choose a system of coordinates u* having the
Jollowing properties . The function p depends only on the n-th variable
u"in U. The line element of M is given by (1.27) in U. The hypersur-
faces defined by the equation u" = const. are the p-hypersurfaces and
the curves defined by the equations u" = const. are the p-curves and u”
indicates the arc length of the p-curves.

A systsm of coordinates #* having the above properties will be called
a system of adapted coordinates, and a coordinate neighborhood U of an
ordinary point, where we can introduce a system of adapted coordinates,
will be called a regular one.

With respect to a system of adapted coordinates, the Christoffel
symbol of the line element (1. 27) has the components

{]‘hi} {,771}’ {an} - {an} = =<' fa
I e A R R
{nhn} =0 {nnn} =0,

where { ].hz.} denotes the Christoffel symbol constructed from f;. More-

I

over we can verify that the curvature tensor K,,," of M is given by

Kt = Kiy"— (2" (63 fr— 0% fia),
(1. 29) Knj{“ = — Kj,,{ To= —Tl’.‘,"" fji,

i
T

h [ h
ijn - _ijsb — ( ) 61,

4
T
the other components being zero, and the Ricci tensor K, of M by

Ky = Eji_ [(n—Z) (7-'”): + ] i

(1' 30) Kni = Kh: = O,
i
Kn; = —(n_]-) :,_l‘,
and the scalar curvature £ by
(13D b= oy (=2 k= 1=2) () — 2o,

where Ek.ji A K 5 and k are the curvature tensor, the Ricci tensor and the
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scalar curvature of the (n — 1)-dimensional metric fyu; K; = K and
k= K/(n—1) (n—2), K =Knf*.

Since the function p depends only on #" in U, the gradient vector
field px has the components (p’/p)é3, and its length is given by

1. 32) o= p\pt = (%)Z’

with respect to a system of adapted coordinates.

§2. Concircular transformation with isolated stationary points.

In this paragraph, we suppose that a concircular transformation of
a Riemannian manifold M has an isolated stationary point O in M. We
take a sufficiently small spherical neighborhood W of O, such that it
contains no stationary point except O and, for any point P in W, there
exists a unique geodesic arc joining O to P. As it is noticed in §1, the
function v~ in (1. 4) is a function of p in W—0. However, since the sta-
tionary point O is isolated, v is a function of p in the whole neighborhood
W, because of the continuity of + and p. Along any geodesic curve, the
equation (1. 4) is reduced to the ordinary differential equation

a’log p _ (dlog p\ _
2.1) ds* ( ds ) = wlp),

s being the arc length of the geodesic. In particular, we consider the
solutions of (2. 1) along the geodesics issuing from O, and make the value
s = 0 correspond to O. Since the vector field p, vanishes at O, we have
(dp/ds), = 0 along every geodesic issuing from O. In virtue of the uni-
queness of solution of an ordinary differential equation, the solutions of
(2.1) along all geodesics issuing from O, with initial conditions p(0) = po
and (dp/ds), = 0, are given in W by a same function p = p(s) of the arc
length s. Moreover, since such a geodesic curve in W contains no sta-
tionary point except O, the function p(s) is monotone and is a univalent
function of the arc length s along any geodesic arc issuing from O.
Therefore it follows that every Riemannian hypersphere of radius s with
center O in W is a p-hypersurface and every geodesic curve issuing from
O is a p-curve. Conversely, since through a point P 50O in W there
exist only one p-hypersurface and only one p-curve, we can state the
following

Lemma 1. If a concircular transformation has an isolated sta-
tionary point O, then, in a sufficiently small spherical neighborhood
W of O, the p-hypersurface V(P) through a point P#0 in W is a
Riemannian hypersphere with O as center and the p-curve through P
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coincides with the geodesic arc joining O to P in W.

We may also introduce in W a system of normal coordinates y* with
center O. The metric tensor g, has components 4, at O with respect to
the system of normal coordinates y. The coordinates y“of a point P in
W are expressed in the form »* = st*, where ¢* satisfy the equation

ﬁ t*t*=1 and s is the geodesic distance of P from O. Consequently, the

k=1
p-hypersurface V(P) through P in W is the Riemannian hypersphere de-
fined by the equation ‘

2.2 %1 )y =75

with respect to the system of normal coordinates.
On the other hand, we take a regular neighborhood U contained in
W and denote by «* adapted coordinates in U. The transformation

(2.3) w o= u(y, ..., ¥)

from the adapted coordinates #“ to the normal coordinates y* has the fol-
lowing properties : The functions #"(»*) are homogeneous of degree zero
in »9 and

(2.4 w = {30

in U. Hence the derivatives 8x"/8y* are homogeneous of degree —1 in
y* and 8u"/8y* are homogeneous of degree zero in y*. Accordingly we
can easily see that the derivatives 9y*/du' are homogeneous of degree one
in y~

Now we consider a parallel vector field »(s) along a p-curve /, s being
the arc length of /, and denote by »*(s) and £*(s) the componenets of the
vector field »(s) with respect to the adapted coordinates in U and to the
normal coordinates in W respectively. If the p-curve / is given by #"=
c"in U, then, by taking account of (1.25), the components »*(s) satisfy
the equations

12 " ”n
___dz‘)is(s) + —f—,— v"(s) = 0, —dzc)ls(S) = Q.

Integrating these equations, we have the following

Lemma 2. With respect to a system of adapted coordinates, the
components v*(s) of a parallel vector field v(s) along a p-curve I are
Sfunctions of the form

(2.5) v"(s) = 7%32)", v (s) = v*,
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where v* are constants and s being the arc length of .

In particular, if the parallel vector field »(s) is tangent to one of the
p-hypersurfaces in U, then the vector field v(s) is always tangent to the
p-hypersurfaces, and its components are given by

(2.6) " (s) = 71(3 " - v'(s) = 0
in U.

If a parallel vector field »(s) along a p-curve / is tangent to the
p-hypersurfaces in U and the p-curve / is expressed by the equation y*= st
with respect to a system of normal coordinates in W with center O, then,
under the coordinate transformation (2.3) in U, the components &“(s) of
v(s) with respect to the system of normal coordinates are given by

E5(s) = (a_y v‘(S))v

ou'

I3
=4t

27

Sl () e s (o)
/() \0ut/f=ux ! (S)\ DutJyr= e

in U, because #y*/6u' are homogeneous of degree one in y* If we put

e oy oo ()

then we have
(2.9) E5(s) = »(s) E~

We notice here that £ are constants and the function »(s) does not depend

on the choices of p-curve / and of parallel vertor field »(s) along /. Since

the vector field »(s) is parallel along /, the limiting values lim £*(s) have
-0

to exist and these limiting values, say £*(0), define the vector of the field

v(s) at the stationary point O. Since £* are constants, we see that the

limiting value limy(s) = lims/:/(s) should éxist and the value, say
0 30

»(0), is non-zero finite. Summarizing the results, we say

Lemma 3. Under the same assumption as that in Lemma 1, we
consider a parallel vector field v(s) along a p-curve l in W and tangent
to the p-hypersurfaces in W. Then, with respect to a system of normal
coordinates in W, the components E*(s) of the vector field v (s) are given

by
E(s) = v(s) &,
where t* are constants and s is the arc length of | such that s =0
corresponds to the stationary point O.
The function v(s)=s/c'(s) is independent of the choices of p-curve
! and of parallel vector field along 1, and the limiting value »(0) =
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lim v (s) exists and is non-zero finite.
80

In the spherical neighborhood W of a stationary point O, we consider
a transformation ¢ defined by

(2. 10) ly = a\" y‘

with respect to the normal coordinates with center O, where the constant
matrix (2\") is an arbitrary orthogonal one. The transformation @ leaves
the stationary point O invariant, and preserves also any p-hypersurface
in W, because a p-hypersurfaces in W is a Riemannian hypersphere

with center O expressed by > (*)*=s% The group G of all transforma-

K=]
tions such as defined above is isomorphic to the group O(n) of all ortho-
gonal transformations of the tangent space of M at O. Thus we have
dim G = n(n — 1)/2. The group G may be considered as a group of
transformations of a p-hypersurface in W. Now we shall prove the
following

Lemma 4. Under the same assumption as that in Lemma 1, the
group G is a group of isometries of a p-hypersurface in W.

Proof. Let V be a p-hypersurface in W, P a point of V, and / the
p-curve joining O to P. Let / be expressed by y"= s¢* with respect to a
system of normal coordinates with center O, and suppose that s =0 and
s = s; correspond to O and P respectively. We take two tangent vectors
v and w to V at P, and construct from » and w the two parallel vector
fields »(s) and w(s) along the p-curve /: v(s;)) =» and w(s;) = w. We
denote by £*(s) and 2*(s) the components of v(s) and w(s) with respect to
the system of normal coordinates respectively. By means of Lemma 3, we
have

(2.11) E(s) = v(9) & 7(s) = v(s) 7,

where £ and 7" are constants. Since the inner product of two vectors is
invariant under a parallel displacement, the inner product (v, w) of the
two vectors », w at P is equal to

(2.12) @, w) = @(0), w(0) = »(0) 21,57;

Let @ be an element of G. Putting 'P = @ (P), we see that the point
'P lies in V and the curve '/ = #(J) is the p-curve joining O to 'P. We
denote by ‘v(s) and ‘w(s) the images d#(v(s)) and d@(w(s)) by the dif-
ferential mapping d@ of the transformation ¢. In virtue of the linearity
of the transformation @, we see from (2. 11) that the components of ‘v (s)
and 'w(s) are given by
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'E<(s) = ax EMs) = v(s) ‘&

2.13
@139 '7°(s) = @\ M (s) = v(s) 'p"

respectively, where we have put
(2. 14) T arE, = et

Hence the vector fields 'v(s) and ‘w(s) are parallel along the p-curve '/
and tangent to the p-hypersurfaces. Therefore, the inner product of the
images 'v = d¢(v) and 'w = d®P(w) at 'P is equal to

(2. 15) (v, 'w) = »(0) Nzil Tty

Since the matrix (a)) is orthogonal, we have

n

(2. 16) Kgﬂ‘ gx ‘0“ —_ E IEK va’
and, from (2. 12) and (2. 15),
(v, w) = ("v, 'w).

This means that the transformation @ preserves the inner product of any
two tangent vectors of the p-hypersurface V, that is, ¢ is an isometry of
V. Thus the proof of the lemma is completed.

As a direct consequence of Lemma 4, we can prove the following

Lemma 5. Uuder the same assumption as that in Lemma l, any
p-hypersurface V in W is isometrically homeomorphic to an (n—1)-
dimensional spherical space S._., that is, a hypershere S,_, of an n-
dimensional Euclidean space, which is endowed with the naturally
induced Riemannian metric of positive constant sectional curvature.

Proof. By Lemma 4, the p-hypersurface V admits a group G of
isometries, and G is of dimension n(n»—1)/2. Hence V is a Riemannian
manifold of constant sectional curvature. On the other hand, V is ho-
meomorphic to an (»—1)-dimensional sphere S,_;. Combining these facts,
we obtain the lemma.

§3. Compact manifold.

In this paragraph we shall confine ourselves to a compact Rie-
mannian manifold admitting a concircular transformation. Let P be an
ordinary point of the concircular transformation. We consider the hyper-
surface defined by p = p(P) in M, and denote by V(P) the connected
component of the hypersurface containing the point P. M being compact,
the hypersurface V(P) is also compact. If U is a regular neighborhood
of an ordinary point of V(P), then V(P) N\ U is a p-hypersurface in U.
As is proved in §1, the length + of the vector field p. is constant on
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V(P)YN U. Therefore ¢ is constant on the hypersurface V(P) and con-
sequently any point of V(P) is ordinary. We call V(P) the p-hypersur-
face passing through the point P.

Since V(P) is compact, it follows from Theorem 1 that there exists a
positive number ¢ such that any point of the e-neighborhood W, of V(P)
is ordinary and the p-hypersurface V() through any point @ of W is
contained in W,. Moreover the e-neighborhood W, has the following pro-
perty : R is a point of V(P)and / the p-curve through R, then each
connected component of the set /M W, has one and only one point in
common with V(@), because the function p is monotone along a con-
nected arc of //\W.. Denote by 'R the point of intersection of V(Q)
with the connected arc of / N\ W, containing the point R. The corres-
pondence R — 'R defines a homothetic homeomorphism of V(P) onto
V(Q).

Let P be an ordinary point and / the p-curve passing through P. We
consider the set of all ordinary points lying on /, and denote by L(P) the
connected component of the set containing P. Now we put

M°= U V(Q).

QEL(pP)

The set M° is open and connected, and any point of M° is ordinary.
From the above arguments, it is easily seen that, starting from another
point of M °, we obtain the same set M°, Moreover the set M° is homeo-
morphic to the product V(P) X L(P).

Since the manifold M is compact, there exists at least one stationary
point of the concircular transformation. Then the set M° is not closed.
In fact, if M° were closed, M° would coincide with the whole manifold
M, because M is connected and M° is open. There exists hence a sta-
tionary point O belonging to the boundary of the open submanifold M °.
Therefore there is in M° a sequence {P,} (m =1, 2,...) of points which
converges to the static:nary point O. We denote by ¢, the values of the
function (g"* 9"z 0xr)? at P,, where - = 1/p. Then the sequence {ou}
tends to zero.

If we denote by 4., the diameter of the compact p-hypersurface V(Py),
then, in virtue of Theorem 1, we obtain

An: om = dy: o

for any integer m. Hence the sequence {d,} of the diameters tends to zero.
Since the sequence { P,} converges to O, the sequence { V(P,.)} of the p-hy-
persurfaces converges to the stationary point O. Consequently, for any
point P of M°, the connected arc L(P) of the p-curve / passing through
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P has the stationary point O as its boundary point and hence the p-curve
! contains the stationary point O.

Let @ be a point of the p-hypersurface V(P) and / the p-curve pass-
ing through . The p-curve / passes also through the stationary point
O, and let us denote by e(Q) the unit tangent vector of / at O. The
correspondence @ — ¢(Q) defines in a natural way a continuous mapping
of V(P) into the unit hypersphere S,_; of the tangent space of M at O.
The mapping is obviously one-to-one. Since the p-hypersurface V(P) is
compact, the mapping is therefore a homeomorphism of V(P) onto S,..1.
Thus the set M° is homeomorphic to the product S,_; X L{P).

Since the sequence {V(P,)} of p-hypersurfaces, which are homeomor-
phic to an (z—1)-dimensional sphere S,_;, converges to O, the stationary
point O is an isolated stationary one, that is, there is a neighborhood of
O whose points except O belong to M °, This implies that any boundary

point of M° is an interior point of the closure M?° of the set M°. Hence

the closure M° is open in M. By the connectedness of M, the set M°
have to coincide with the whole manifold M. Since any stationary point
is isolated and M is compact, the manifold M is the union of the set M°
and a finite number of stationary points.

It is easily seen that, if two geodesic curves issuing from a stationary
point O have in common a point O' different from O, the point O' is also
a stationary point. If there were in M only one stationary point O, then,
by means of the above arguments, there would exist no conjugate point
of O on any geodesic curve issuing from O, and consequently the mani-
fold M would not be compact. It is a contradiction to the compactness
of M. Therefore there exist at least two stationary points in M.

As is mentioned above, for any point P of M °, the connected geodesic
arc L(P) possesses any stationary point as its boundary point. It is how-
ever obvious that the arc L(P) has at most two boundary points. Hence
there must exist exactly two stationary point O and O’ in M. Since M° is
homeomorphic to the product S, X L(P) of an (# —1)-dimensional sphere
S.—; and an open interval L(P), the manifold M, which is the union of
M?® and the two stationary points O and O/, is homeomorphic to an
n-dimensional sphere S,. The homeomorphism ¢ of M onto S, can be
defined in a natural and differentiable way. Summarizing the results in
this paragraph, we have the following

Lemma 6 If a compact Riemannian manifold M admits a concir-
cular transformation, then the manifold M is differentiably homeo-
morphic to an n-dimensional spherve S, and there exist exaclly two
stationary points O and O' in M. When S, is represented by the unit
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hypersphere
@+ @ +... +E@E)=1

in an (n+1)-dimensional Euclidean space E,., (&, 2% ..., x") being
rectangular coordinates in E..., the homeomorphism 0 of M onto S,
maps a p—hypersurface on a sphere

P+ + .o F @Y =1 2P = —1<e<l,

and a p-curve on a great circle passing through the antipodal points
0, ..., 0, )and (0, ..., 0, —1), which are the images of the two sta-
tionary points.

We have seen that, in a compact manifold M, the p-hypersurfaces
are homothetically related to each other. On the other hand, since the
stationary points in M are isolated, it follows from Lemma 5 that a
p-hypersurface is isometrically homeomorphic to an (# — 1)-dimensional
spherical space, if it lies sufficiently near to a stationary point. Therefore
any p-hypersurface of the compact manifold M is homothetically homeo-
morphic to a unit hypersphere S,_; of E,. Accordingly we may now
assume that the line element fu(u*)du’du’ appearing in (1. 24) has con-
stant sectional curvature 1: & = K/(n—1)(n—2) = 1.

As is mentioned in- §1, the arcs of p-curves cut off by two p-hyper-
surfaces have the same length if they contain no stationary point. This
implies that any p-curve has a constant arc length, say s;, between the
two stationary points O and O'. We denote by s the arc length of a
p-curve joining O to O’ such as s =0 at O and s = s, at O. s is the arc
length in common with the p-curves joining O to O'. Along each of such
arcs, we define a parameter ¢ by

3.1) t = 2 tan™! X{s), 0=s< sy,
where we have put

_ * ds
3.2) X(s) = exp L 5.

When s varies from O to s,, it is obvious that the parameter ¢ is a mono-
tone function of s, and, by use of Lemma 3, it is verified that # runs
over the range 0 < ¢t < 7. We obtain
(3. 3) ds _ <! (S)

dt sin ¢ °

From this equation and Theorem 1, it follows that, in a regular neighbor-
hood U, the line element of M is written in the form
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(3. 4) ds* = Nu") fu(u")du'du' + (Ts—lgl—“t) f (s

We shall now define a function « on the manifold M as follows: For
an ordinary point P at distance s from O, we put

_sint
(3.5) o(P) = 70

and, for the stationary points O and 0,
li
o o (3)

lim 80¢ 5f p = 0,

L ’E’ (S)

(3.6) w(P) =

where ¢ is the parameter defined by (3. 1).
By use of the function », we effect a conformal change

(3. 7) Euh = (l)2 F47

of the metric on the manifold M. In a regular neighborhood U, the new
line element ds* = g,. dx*dx" takes the form

(3.8) ds® = (sin #) fi(u™)duw’du' + (dt)’

with respect to the coodinates «", ¢ where u" are parts of the adapted
coordinates in U and ¢ is defined by (3.1). Since the line element
Fiu™ du’ du' is of constant sectional curvature 1, we see, from the similar
equations to (1. 29), that the new Riemannian metric (3. 7) is also of con-
stant sectional curvature 1 except at O and O'. However, by the continuity,
the exception for the points O and O' are removed. Therefore the compact
manifold M with Riemannian metric g, is isometrically homeomorphic to
a sphereical space of curvature 1. Thus we have established the following

Theorem 2. If a compact Riemannian manifold M admits a con-
circular transformation, thew it is conformally homeomorphic to an
n-dimensional spherical space of curvature 1. The homeomorphism of
M onto the unit hypershere S, in an (n + 1)-dimensional Euclidean
stace E,., is given by the mapping 0 in Lemma 6. The ratio of the
meltric tensor at a point P of M to that at the corresponding point of S,
by 0 is constant when P moves in a p-hypersurface of M.

Conversely, if a compact Riemannian manifold M is conformally
homeomorphic to S, in such a way, the manifold M admits a concivcular
transformation.
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§4. Complete manifolds of constant scalar curvature.

We shall determine a complete Riemannian manifold M of constant
scalar curvature %, which admits a concircular transformation into a
Riemannian manifold 'M of constant scalar curvature k.

From the equation (1.7), we have

(4.1) = (k—24)%,
or

'R s
(4.2) 24 = k— % = p— Tk,
Putting
4.3) o' = prp" = Tlg— &"M0.7)(0r 1),
we have, from (1.9) and (4. 2),
(4. 4) 2¢p =2¢ — o

=k —'kp" — &

Since % and 'k are constants, we have from (4. 1)
Pvp = % (k—' 2¢) v

or, taking account of (1. 8), (4.2), (4.3), (4.4),

Pop = B o
Integrating this equation, we have
(4.5) p= 1 (kc—a) = k — ap,

where @ is an arbitrary constant. Therefore the equation (1.10) is
written in the form

(4.6) Pulre + (b — a)gun = 0.
Let 7: z* = x"(s) be an arbitrary geodesic curve in M, s being the

arc length of /. Then, along the curve /, the equation (4.6) is reduced
to the ordinary differential equation

4.7) It +hi-a=o.

According to the sign of the constant scalar curvature k, we put
D 0,

(4. 8) k= (1) e’

I - ¢
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¢ being a positive constant. Then, by choosing suitably the arc length
s of 7, asolution of (4.7) is given by

D
I

r = (1)
1II)
111"

(4.9)

$as® + A, if a0,
As, if a =0,
A cos ¢s + a/c’,
A cosh ¢s — afc’,
A sinh ¢s — a/c?

in the respective case, where A is an arbitrary constant.
If the geodesic curve / is a p-curve, the length & of the vector field
o is given by

o= lpde) = | 280 Lo
along /, i.e.,, by
D 1Zsl
v 14y,
(4.10) s = |10 [% sin cs|,
I1I) I% sinh ¢s/,
1119 |—“3—c cosh cs].

The functions ¢ and ¢ are given respectively by (4.9) and (4. 10) with
respect to a system of adapted coordinates, if we put #* = s.
Comparing (4. 4) and (4. 5), we have

2(k — ap) = k — "kp* — o,

and, substituting (4. 10) and (4. 11) in this equation, the constant A is
equal to

I) 'k[2a,

) Vv —"k,
(4.11) A= (1) = vVa&—ck]c,

o)  *= va+ck/c,

1) = v — (@ +ck)/c

for any p-curve. For the concircular transformation to be real, the fol-
lowing inequalities should hold :
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1) 'k < 0,

1) a > c?'k,

I &> — &'k,

1 &< — &k

(4. 11) emphasizes that the constant A is independent of the choice of
p-curves. Accordingly, along any p-curve, the function ¢ is given by

(4.12)

I) —‘2’—(32 + 'R),
I') V' = ks,
(4. 13) z = ({II) —zl,a(i Va® — c*'k cos ¢s + a),

III) %(i V'@ + ¢®'k cosh ¢s — a),

11" %g(i V' — (@® + c*'k) sinh ¢s — a).

In the following, we shall always assume that the manifold M is
complete. We shall call the point, where - vanishes, a singular point
of the concircular transformation. In order that a concirculrar trans-

formation be defined on the whole manifold M, it is necessary that there
exist no singular point in M.

From (4. 13) it is seen that, in Case I') or Case III'), there exists a
singular point on a p-curve. Hence Cases I') and III') do not occur for
a complete manifold. In CaseI), if 'k < 0, then there is also a singular
point on a p-curve. Hence the constant scalar curvature 'k of 'M should
be positive. Moreover, since ¢ is positive valued, the constant a should
be positive. Therefore we have the following

Lemma 7. Let M be a complete Riemannian manifold of constant
scalar curvature k, and assume that M admits a concivcular trans-
formation in a Riemannian manifold 'M of constant scalar curvature
'k, Then the function © is given by

1)) %(52 + '8, if B=0,

(4.149) - =1{m) —iﬁ(i V@ — kcoscs +a), if k=c

III) —::y_,(i V& + c¢'kcoshes —a), if b= —¢%

along a p-curve in M, where s is a suitably chosen arc-length of the
p-curve.

In Casel), the constant scalar curvature 'k of 'M and the constant
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a should be positive.
By means of (4. 10) and (4. 11), the length & of the vector field p, is
given by

D Zisl,
z.-——___
T
(4. 15) g={1I) ZaTH |sin ¢s|,
m YZ % o,
ct

along a p-curve / in M, where r is given by (4. 14) in the respective case.
In Case I) or Case III), there exists a point corresponding to s = 0, where
o vanishes. That is, the point is stationary, and the other points on / are
ordinary. While, in Case II), there are two points corresponding to s=0
and s=x/c respectively on /. These two points are distinct, because the
function - given by (4. 14, II) has different values for s =0 and s ==/c.
Since « vanishes at these points, they are stationary points. Thus we
have the following

Lemma 8. Under the same assumptions as those in Lemma 7,

I) if k=0, there exists one and only one stationary point on a
p-curve,

I) if k=c*>0, there exist at least two stationary points on a
p-curve, and

IID) if k= —c*<<0, there exisis one and only one stationary point
on a p-curve.

Let O be a stationary point, / an arbitrary geodesic issuing from O,
and s the arc length of / such that s =0 at O. Then the function =
along the geodesic / is the solution of the differential equation (4. 7) with
initial conditions - (0) = 7, and (dz/ds);-o = 0, where =, is a non-zero
constant :

I a'k(2,
= {I) (xVa —c"k+ a)/c,
) (£Va + ™k — a)/c
Solving (4.7), we have
I) a(s®+'R)/2,
(4. 16) 7(s) = ( II) A coscs + a/c?, A=z —alc
III) Acoshes —ale’, A=z + alc,

along the geodesic /. From (4.16), we see that the function r = 1/p is
constant on any Riemannian hypersphere with center O. Therefore a
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Riemannian hypersphere with center O is a p-hypersurface, if it lies suf-
ficiently near to the stationary point O. Hence the point O is an isolated
stationary one, and, in a spherical neighborhood W with center O, any
geodesic curve issuing from O is a p-curve. Combining these facts with
Lemma 5, we have the following

Lemma 9. We keep the assumptions in Lemma 7. In either Case
1), II) or III), a stationary point O is isolated and there is a spherical
neighborhood W with center O such that a Riemannian hypersphere in
W is a p-hypersurface and is isometrically homeomorphic to an (n—1)-
dimensional spherical space.

First we deal with CaseI), £k =0. Let O be a stationary point and
N the union of all geodesics issuing from O. Then the set N is an open
submanifold of M and may be regarded as a Riemannian manifold with
the restriction of the metric of M. Moreover, in virtue of Lemma 8, N
contains no stationary point except O. If a point P of M lies sufficiently
near to O, then the p-hypersurface V(P) through P is contained in N
and V(P) is isometrically homeomorphic to a hypersphere S,_, of a Eucli-
dean space E,. However, from the definition of N, it follows in more
general that, for any ordinary point P of N, the p-hypersurface V(P)
through P is contained in N and is isometrically homeomorphic to a
hypersphere S,_;. Therefore, the set N — O is homeomorphic to the
product S,_; X L of an (#—1)-dimensional sphere S,_; and a straight line
L. Consequently the set N is homeomorphic to an n-dimensional Euclidean
space E,. The homeomorphism is obviously differentiable,

Now consider a sequence of points of N converging to a point P of M.
Then, by use of the projections of N — O onto S,_; and onto L, and by
taking account of the infiniteness of length of geodesic rays issuing from
O, we can easily see that N contains the limiting point P. That is to
say, the set N is closed. Hence the manifold M has to coincide with N,
and M is simply connected.

From (1.27) and (4. 14), we see that, in a regular neighborhood of
M, the line element of M is given by

(4.17) ds’ = (u)’gx(w™)du'du' + (du™)?,
where we have put
En = afan
The metric g; is that of an (# — 1)-dimensional spherical space and has

a positive constant sectional curvature k. Since k= 0, we have £ =1

easily from (1.31). Therefore the curvature tensor K" of the metric
g is equal to
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(4. 18) Kt = 6 gn — &% g

From (1. 29) and (4. 18), we see that the manifold M is locally euclidean
in any regular neighborhood. Since M is complete and simply connected,
the manifold M is isometrically homeomorphic to an »-dimensional Eucli-
dean space.

Next we consider Case II), £ = ¢’ By use of Lemmas 7, 8 and 9
and the same arguments just as the proof of Lemma 6, we can prove that
there exist exactly two stationary points in M and the manifold M is
differentiably homeomorphic to an s#-dimensional sphere S,. Moreover,
from (1.27) and (4.14), we see that, in a regular neighborhood of the
manifold M, the line element is given by

(4.19) ds® = (sin cu”)’ g (uduw’ du' + (du™),
‘where we have put

_ 2 _ W

En = a—cgc k e
The metric gy is that of an (# — 1)-dimensional spherical space and has
a positive constant sectional curvature k. Since k = ¢?, we have easily

k= from (1. 31). Therefore the curvature tensor K of Z, is equal to
(4. 20) I_{k_ﬂh = c’(6k gun — 0% Gu)-

Substituting (4. 20) into (1. 29), we see that the manifold M is of positive
constant sectional curvature ¢®. Since M is homeomorphic to S,, the
manifold M is isometrically homeomorphic to an n-dimensional spherical
space of curvature ¢’

Finally we consider Case III), 2 = —¢°. By the same arguments as
the first half of the arguments in Case I), we can also prove in this case
that the complete manifold M is homeomorphic to an n-dimensional
Euclidean space. Moreover, from (1.27) and (4. 14), we see that, ina
regular neighborhood of M, the line element is given by

(4. 21) ds® = (sinh cu")’ gu(u") du’ du' + (du"),

where we have put
= a+ "k
gn=——=—"rsn
¢
The metric g, is that of an (# — 1)-dimensional spherical space and has
a positive constant sectional curvature k. Since k = —c°, we have easily

k = ¢ from (1.31). Therefore the curvature tensor Em" is also given
by (4.20). By means of (1.29) and (4.20), we see that the manifold
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M is of negative constant sectional curvature —c¢°. Since M is complete
and simply connected, the manifold M is isometrically homeomorphic to
an n-dimensional hyperbolic space of curvature —c".

Thus we have established the following

Theorem 3. We assume that a complete Riemanian manifold M of
constant scalar curvature k admits a concircular transformation into a
Riemannian manifold 'M of constant scalayr curvature 'k. Then the
manifold M is isometrically homeomorphic

I) to an n-dimensional Euclidean space if k = 0,

11) 20 an n-dimensional spherical space if k>0, or

II) to an n-dimensional hyperbolic space if k <<O.

In addition to the assumptions of Theorem 3, we suppose now that ‘M
is also complete and the concircular transformation is a homeomorphism
of M onto 'M. If CaseI) happened, then, in virtue of Lemma 7, the
scalar curvature 'k of 'M should be positive and consequently, by the
above theorem, the manifold 'M would be homeomorphic to a spherical
space, which was compact. This contradicts to the existence of a homeo-
morphism of M onto 'M. Therefore the constant scalar curvatures k
and 'k are not equal to zero.

If one of the manifolds is of positive scalar curvature and the other
is of negative scalar curvature, then the former is homeomorphic to a
spherical space, which is compact, and the latter is homeomorphic to a
hyperbolic space, which is non-compact. There cannot exist a homeo-
morphism between the manifolds.

‘Therefore, under our present assumptions, ‘2 should have the same
sign as k. We put
(4. 22) = { D <

III) —'c?,

'c being a positive constant. Since we have supposed for ¢ to be positive,
we can see the following facts from (4. 14) : Along a p-curve in M,

in Case II), a should be positive, and, without loss of generality,
A may be taken as positive : A = Va* — ¢'¢c? /c? and

in Case III), A should be positive, A =1V'a&’ — cc*/c*, and a should
be negative.
Therefore the function - is written in the form

1) l2(1/a2 — " '¢> coses + a), (a>0),
(4. 23) T =

1II) —-(1/a‘ ¢*'c* cosh ¢s — a), (a<0)



42 SHIGERU ISHIHARA and YosHiairo TASHIRO

along a p-curve in M.

From the definitions of stationary points and p-curves, it is obvious
that the image of a stationary point of a concircular transformation of M
onto 'M is also a stationary point of the inverse concircular transforma-
tion and the image '/ of a p-curve / in M is also a p-curve in ‘M. There-
fore the image '/ is a geodesic in ‘M and has infinite length, because of
the completeness of ‘M.

The change from the arc length s of a p-curve / in M to the arc
length ’s of the image '/ in ‘M is given by the equation

d's 1

4.24 as _
( ) ds z’

where ¢ is given by (4. 23) in the respective case. The solution of this
equation with initial condition ‘s =0 for s =0 is

2 -1 c'c
4.25) ¢ D g oy a—aeh @>0,
o S = - -
III _1 V—-a+clct+V—a-c'c (a < 0)
) 8 v_a—cict+V—-a+c'c ’
where we have put
_ cs
(4. 26) II) { = tan 'E,

III) ¢ =-expecs

in the respective case.
In Case III), when the arc length s tends to the infinity, ¢ tends
monotonely to the infinity and we have

(4. 27) lim 's = L jog¥—atcle

s e V—a-—-c'c’

This implies that, to a p-curve of infinite length in M, corresponds a
p

p-curve of finite length in ‘M. This is a contradiction. Therefore Case III)

does not happen.
From (4. 25, II), we obtain

(a < 0).

'c!s clc cs
(4. 28) tan 5 T aav o tan >
By means of this equation, we can illustrate the concircular transforma-
tion as follows: We realize M and 'M on hyperspheres of radius 1/¢
and 1//c respectively in an (# + 1)-dimensional Euclidean space E..,
which are tangent to each other at the common south pole O. Let T be
the hyperplane tangent to the hyperspheres at O. Let O' and 'Q' be the



CONCIRCULAR TRANSFORMATION 43

north poles of M and 'M respectively. Denote by = and 'z the stereo-
graphic mappings of M from O' and of 'M from ‘O’ onto T respectively,
and by ¢, the similarity of manification ¢*/(a + V&> — ¢* '¢®) on T with
center 0. Then the product ‘="', x is the concircular transformation
of M onto 'M, for which the poles O and O’ are the stationary points in
M, the longitudes are the p-curves and the function - is given by (4. 25, II)
along any longitude in M.
Thus we have established the following

Theorem 4. Let M and 'M be complete Riemannian manifolds of
constant scalar curvature. If there exists a non-homothetic concircular
transformation of M onto 'M, then the scalar curvatures are positive,
and both M and 'M are isometrically homeomorphic to spherical spaces,
and conversely.

Corlloary 1. If a complete Riemannian manifold of constant scalar
curvature admits a concircular transformation onto itself, then the
manifold is a spherical space.

Corollary 2. If a homogeneous Riemannian manifold admits a con-
circular trnasformation onto itself, them the manifold is a spherical
space.

If an Einstein manifold M admits a concircular transformation, then
we have from (1. 6)

Kon = (n—1)(k—2¢) gur
=m—1)(k—28) " 'gur

because of K,» = (n — 1)kg,... By means of this equation, K. Yano [CG,
V] proved that, under a concircular transformation, an Einstein manifold
is transformed to an Einstein one. Then the scalar curvature ‘2 of ‘M
is also constant. Hence we can apply the results of this paragraph on
complete Einstein manifolds admitting a concircular transformation. In
particular, we have

Corollary 3. If a complete Einstein manifold admits a concircular
transformation onto itself, then the manifold is a spherical space.

A Riemannian manifold is said to have the parallel Ricci tensor if the
covariant derivative of the Ricci tensor vanishes identically :

Vy K,‘A = 0.

In such a manifold, the scalar curvature % is constant. Hence we have
the following

Corollary 4. If a complete Riemannian manifold with parallel
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Ricci tensor admits a concircular transformation onto itself, then it is
a spherical space.

§5. Holonomy groups.
In matrix notation, we put

(5' 1) Evu = (Bu)\ 6’” - 31{)\ 5}4;«)
and, at a point P of the manifold M,
(5- 2) Rvu(P) = (Kwu\x(P) )

for any pair of indices ;2 and ;. Then we recall the following theorem
due to A. Nijenhuis” : The local homogeneous holonomy algebra at a
point P is spanned by the matrices arising from the matrices R,.(Q) at
the points @ in a suitable neighborhood of P by a suitable parallel trans-
port from Q to P.

Now let P be an ordinary point, U a regular neighborhood of P and
u* adapted coordinates in U. We may take a system of local coordinates
in the p-hypersurface V(P) such that f(P) = . First we suppose that
7/'" does not identically vanish in U. Then, from (1.26) we have

(5. 3) R,;(P) = CE,,

and hence the bracket product of R.; (P) and R,, (P) is

(5' 4) [Ra.k(P)y R:!J(P)] = 02 [Enky Eﬂj] = C2 Ek‘jv

where C= — ¢/ (P) "' (P)s=0. Since the matrices E,, span the Lie

algebra of the orthogonal group O(x), the local homogeneous holonomy
group of the manifold at an ordinary point is the special orthogonal group
SO(#n), in virtue of the Nijenhuis’ theorem. We have thus the following

Lemma 10. If a Riemannian manifold M admits a concircular
transformation and, in a regular neighborhood of an ordinary point P,
! does not vanish, then the local homogeneous holonomy group at P is
the special orthogonal group SO (n).

If /" vanishes identically in a regular neighborhood U, then by a
suitable choice of «”, we have

T = %(a(u”)2 + b),

a and b being arbitrary constants. For a non-homothetic concircular
transformation the constant a does not vanish. From (1. 10) it follows

4) A. Nijenhuis, On the holonomy groups of linear connections, IA. Proc. Kon.
Ned. Akad. Amsterdum, 56 = Indag. Math,, Vol,15 (1953), pp.233—240.
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4o = —afz. If we substitute this into (1. 10), we have in U
(5.5) F,‘F,\T=ag,,,)p

The last equation shows that the vector field F,c is a concurrent one.
Now we assume that a complete Riemannian manifold M admits a
concircular transformations such that /=0 at any ordinary point. Then
the set F of all stationary points contains no open set. In fact, if F con-
tains an open set, denoting by F° the maximum open subset of F, we
see that F,r = 0 holds in F°. Then the function = satisfies '

(5. 6) FueFrz =0

in #°. Therefore, by means of continuity, we see that both of the equa-
tions (5.5) and (5.6) must hold in any boundary point of F. This con-
tradicts the fact that the constant z does not equal to zero. Thus, the
set F contains no open subset. Hence, the equation (5. 5) holds through-
out the manifold M. That is to say, the vector field F,: is a concurrent
one in M.

It is, however, well known that, if a complete Riemannian manifold
admits a concurrent vector field, then it is flat.” Consequently, if a com-
plete Riemannian manifold admits a concircular transformation such that
/" = 0 holds at any ordinary point, then it is flat. Thus, taking account
of Lemma 10, we have the following

Theorem 5. If a complete, non-flat Riemannian manifold admits
a concircular transformation, then its local homogeneous holonomy group
at any point is the special orthogonal group SO (n).

We shall next consider a conformally flat Riemannian manifold M
admitting a concircular transformation. The conformal curvature tensor
C,\" is given by

Cwu\x = Kvw\x - ﬁ(aﬁ K#J\ - 6;‘:- K.+ K Spr — Ku" gw\)

+

k aK AKX
nn_z (ov 8ur — Op g‘vk)'

From (1.29), (1.30) and (1. 31) the tensor C,.,* has the following com-
ponents with respect to adapted coordinates u* :

Con" = K" —~ 1 50k K= 0} Ko+ Kif— K foa) + k(3 =0} fur),

(5- 7) C«n_ﬂ" = - CJy.in = - 71—-—1——2 E_ﬂ + Efﬂ,

5) S.Sasaki and M. Gotd, Some theorems on holonomy groups of Riemannian
manifold, Trans. Amer, Math. Soc., vol.80 (1955), pp.148—158,
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1 1 = 7 a
C:rj:nh = - Cj:mh = (T)l (n—_é th — k ()Jh>
and the other components vanish identically. From these equations we
can see that

Kin" = & (3% fu — 6% fu)

holds if and only if the tensor C,,." vanishes identically. Thus, we have
the following

Lemma 11. A Riemannian manifold admitting a concircular trans-
formation is conformally flat, if and only if any p-hypersurface has
constant sectional curvature.

We now suppose that a conformally flat Riemannian manifold M
admits a concircular transformation such that </’ = 0 holds at any ordi-
nary point. By virtue of Lemma 11, we have

Ekﬂh = E(’;: fﬂ - 3} fki)'

Taking account of (1.29), by means of '/ = a we obtain in any regular
neighbourhood

(5. 8) Kl = (k—a) (3% fn — & fu),
If k = a* we see easily from (1. 29) and (5. 8) that manifold M is {lat.
If k5 &% then we obtain from (5. 8)

.(5- 9) RkJ(P) = (E - a’) Ey;.

by a suitable choice of coordinates at an ordinary point P The matrices
E,; span the Lie algebra of the orthogonal group O(n# — 1). Therefore, the
local homogeneous holonomy group H at P contains the special orthogonal
group SO(n—1) imbedded naturally in SO (#n).

It is well known that”, provided n=£4, there exists no closed sub-
group G of O(n) such that

(n—1)n-—2) < dim G < n(n—1)
2 2
and that there exists no proper closed subgroup of O(4) which contains
0O(8) as its proper subgroup”. Hence the local homogeneous holonomy
group H is SO(n —1) or SO(n) for n > 2.

6) D. Montgomery and H. Samelson, Transformation groups of spheres, Ann.

Math., vol. 44 (1943), 454—470.
7) See for example, S.Ishihara, Homogeneous Riemannian spaces of four dimen-

tions, Jour. Math. Soc. Japan, vol. 7 (1955), 345—370.
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However, the group H does not coincide with the group SO(n—1).
In fact, there exists a neighborhood U of the point P such that the homo-
geneous holonomy group of U coincides with the group H. We may sup-
pose that the neighborhood U is a regular one, because the point P is an
ordinary one. If the group H is SO(n — 1), the normal unit vectors 7* of
p-hypersurfacs form a parallel vector field in U, since the matrices E,,
given by (5. 9) generate the Lie algebra of the holonomy group H. Hence,
by means of (1.15), the function +» vanishes identically in U. Therefore,
taking account of (1.10), we see that the constant ¢ appearing in (5. 5)
vanishes. This means that the given concircular transtormation is a
homothetic one. Consequently, taking account of Lemma 10, we have
the following

Theorem 6. If a non-flat, conformally flat Riemannian manifold
admits a concirvcular transformation, then the local homogeneous holo-
nomy group at an ovdinary point is the special orthogonal group SO(n).

If the manifold M 1is compact and /" vanishes identically in any re-
gular neighborhood, then (5. 5) holds in any regular neighborhood. Since
the stationary points are isolated, (5.5) is necessarily valid throughout
the manifold M. By the well known Stokes’ theorem, we can easily see
that the constant ¢ appearing in (5.5) is equal to zero and the function
7 is constant in M. Hence the transformation is a homothety, Thus we
have the following

Theorem 7. If a compact Riemannian admits a concircular trans-
Sformation, then the local homogeneous holonomy group at any point is
the special orthogonal group SO (n).
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