SOME REMARKS ON STRICTLY GALOIS
EXTENSIONS OF SIMPLE RINGS

NoBuo NOBUSAWA and Hisa0o TOMINAGA

Let K be a finite dimensional Galois (normal and separable) extension
field of L, and & the Galois group of K/L. Then the following is well-
known as a theorem of Noether-Speiser : The 1-dimensional cohomology
group H'(K*, ®) is trivial, where K* is the multiplicative group con-
sisting of all the regular (non-zero) elements of K. On the other hand,
considering K as an additive group, H'(K, ®) is also trivial [4], and this
fact is of use in studying Galois extensions of degree p° over a field of
characteristic p.

In this note, we shall try to extend these theorems mentioned above to
simple rings. In fact, under the assumption that the extension considered
is strictly Galois with respect to an F-group, these are still true (Theorem
1 and Theorem 2). And in the final section, as applications of these
generalizations, several abelian extensions will be treated.

Finally, as to notations and terminologies used in this note, we follow
[2] and [3].

1°. Let R be a simple ring (with an identity elemenet and minimum
condition), and @ a finite group consisting of automorphisms of R. If the
subring V(®) generated by all the regular elements of R which induce
inner automorphisms contained in @ is a (two-sided) simple ring [division
ring], then ® is called an F-group [DF-group]. Here, needless to say, if
R is a division ring then every finite & is a DF-group necessarily. For
F-groups, the following fact will be most fundamental [2] : Let ® be an
F-group, and S=J(8, R). Then R is Galois over the simple ring S,
[R:S]Z order of ®, V(®) = Vu(S) which is finite over Vi(R), and
Homy, (R, R) = GR,. By the light of this fact, we have introduced the
following definition [2] : Let & be an F-group, and S= J(®, R). If
[R: 8] = order of &, then we say that R(or R/S) is strictly Galois
with respect to ®. In what follows, we always assume that R is a simple
ring which is strictly Galois with respect to &, and set S = J(&, R).

Now, for the sake of the later use, we set here the following lemma
whose second assertion is [2, Theorem 4].

Lemma 1. (1) R, = Dot D oR,, and they are simple rings.
(2) R possesses a G-noram! basis element, that is, there exists some
¥ € R such that R = St & (rs)S.

Lemma 2. Let M be a unitary (right) R-module finite over R. If
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for each s €O there correspond semi-linear automorphisms belonging to
o 0., 8, and there hold 6.6,=0,, and 6,0, =0, (6, - E€G®), then we
can find an R-automorphism  of M such that Oo=17""0o7.

Proof. Evidently, R = Sy 6.R and R = D EGR are subrings
of A=Hom (M, M)which are homomorphic images of the simple ring GR,
=>@oR,. (Lemma 1 (1)). Thus, i and R are isomorphic simple rings
(containing R), and then ¢: X 6,7, — >, .7, 1s a (ring) isomorphism of
R onto R. Then, by [1, Theorem 1 2)], there exists an automorphism
7 € such that 1¢ = »7"2y» for 2 R. Noting that » = rp = 4~ #; for
r € R, we obtain 5 € Vg (R), as desired.

The next lemma may be more or less known, however, for the sake
of completeness, we shall give here the proof.

Lemma 3. Let D be a division ring, and K a subfield of D. Then
the equation f{x) = dox™+dix" '+... +dn=0 (d,ED; dy50) possesses
at most m different roots in K.

Proof. Suppose ki, ..., kn.1E K be m+-1 different roots of f(x)= 0.
Then the simultaneous linear equations >}y, 2™ /=0 (i=1,... ,m+1)
possess a non-trivial solution (do, d;,..., d.) in D. Since all the ks

are in K, the last equations possess a non-trivial solution (cq, €1,..., €m)
in K too. Thus, the (non-trivial) equation g(x) = cox”+cx™ '+ ... +¢n
= (0 of degree at most m possesses m-+1 different roots k;’s in K, which
is a contradiction.

Lemma 4. Let AD B be simple rings with the same identity ele-
ment 1, and D = {6} a cyclic group of order n generated by a B-(ring)
automorphism o of A. If(the field) Vs(A) contains a primitive n-th root
Eof 1, and ais a regular element of A such that ac = al, then there
holds [Bla) : Bl, = n.

Proof. It suffices to prove our lemma for the case where a is a root
of a (non-zero) polynomial with left coefficients in B. We take here such
a polynomial of the lowest degree : f(x) = box™+b:2a™" + ... + bu(b:;E
B; by, b.50). Then,

f(@) & = boa™ ¢+ bya” ¢ "+ ...+ b, =03G=0,1, ..., n--1).
Now let A = 304 ., Dey,, where e,,’s are matrix units and D = V.({en}) is
a division ring. Since b,g™ 5= 0, one of the components of its representa-
tion in 3 Dew:, say,the (p, g)-component is non-zero. Noting that D 2
V=(4) € £, we obtain

dol™+di8t ™ + ... +dn=0({=0, 1, ..., n—1),
where do, dy, ..., d.E D are the (p, g)-components of ba™, ba" ...,
b,. respectively. Hence, d, being non-zero, Lemma 3 shows m=#.
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Consequently, we have [B[a] : B].=n.

To be easily seen from the proof of Lemma 4, we obtain

Corollary 1. Let ® = {4'} be cyclic and of order n. If Vs(R) con-
tains a primitive n-th vroot & of 1, and x is a regular element of R such
that xo = x¢, then R =i @ Sx'

2° Speiser’s theorem can be generalized in the following way*:

Theorem 1. Let R be strictly Galois with respectto ®, and S =
J(®, R). If for each o EO there corresponds a regular matrix y, of the
nXn matrix ring (R), over R, and there holds
(%) 77 (oT) =7or (o, - EG),
then we can find a regular matrix o € (R), such that y,= a™ (ag), and
conversely.

Proof. Let M=u,R+ ... + u,R be an R-module with %, ..., #,
as a linearly independent basis. Then 6,: uw; — Du; > 7i(a)(x; )
where (7,;(s)) = 7. is evidently a semi-linear automorphism of M belong-
ing to &, and by the light of (x) one readily see that 6,6, = 6,.(s, = € Q).
Similarly, 0rt Suyx,— Sudz; o) is also a semi-linear automorphism
belonging to ¢, and there holds 006, = 0,.(c, z E ®). Hence, by Lemma

2, there exists an R-automorphism 7 of M such that 6,5 = -/;5,,. Setting
here u;7 = 3ju.ay, one can easily verify that « = (ay)) is a desired one.

Corollary 2. If o — s, is an anti-homomorphism of & into the

multiplicative group of all the regular elements of S, then there exists
a regular element x € R such that x¢ = xs,.

3°. Our generalization of the second is the next

Theorem 2. Let R be strictly Galois with respect to &, and S =
J(®, R). If for each o €O® there corresponds an element x,E R, and
there holds

(%) Ko7+ X = Xor (o, —€G),

then we can find an element x € R such that x,= x—x0, and conversely.
Proof. By Lemma 1 (2), R possesses a &-normal basis element 7.

Noting that s = T(r) € S is a regular element, we obtain Tg(r) =1

where 7' =rs™. Now we set x = 3,y x- (#'z). Then, by (¥%), xo =3

(@0) (7' <0) = 3 (o= 2) (7' 20) = Sty (Fr0) =2y D #lco=%— %0
Corresponcfing to Corollary 2, v:re obtain ’

Corollary 3. Let o — s, be a homomorphism of & into the additive
group S. Then there exists an element x € R such that s, = x—xa.
Further, the following will be also easily seen.
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Corollary 4. Let ® = {s'} be cyclic. If Tg(r)=0, then there exists
an element x € R such that r = x—xo.

4° If R is strictly Galois with respect to an abelian DF-group G,
then we may say that R is abelian with respect to & (or R/S is abelian
with respect to & where S =J(®, R)). The following remarks will be
readily seen from [2] and [3]: Let R be abelian with respect to &, and
9 an arbitrary subgroup of ®. Then R is abelian with respect to 9,
furthermore 7 = J(9, R) is abelian with respect to /9, where ®/9 and
&, may be identified.

Theorem 3. Let R be abelian with respect to & of exponent n, and
Vs(R) contain a primitive n-th root of 1. If 8 =@, X ... X &, where
G ={s/} is cyclic and of order n,, then there exist regular elements x,,

ey % E R such that: (1) x4 €S, @) R=S1{x;, ..., z], (3) S[xIN
Slx, ooy Xiony Xivn, oovy %) =3S, (4) S[x]1/S is abelian with respect to
®, and (5) if G is the subgroup of R*(= the multiplicative group con-
sisting of all the vegular elements of R) generated by x,, ..., x., lthen
GN\ S is a normal subgroup of G and G/(GMS) is isomorphic to .

Proof. Let &, be a primitive n,th root of 1 contained in Vs(R).
Then @ = ¢ = lls,'s — 't defines a homomorphism of & into the multi-
plicative group of Vi(R). Thus, by Corollary 2, there exists a regular
element x; € R such that x; o, = x: {; and x; ¢; = x, for j5 ¢ Evidently,
2t =(x; o)™t = (™) ¢ for all ¢ =@, whence we have x, & S. Noting
that J(®, X ... X ©,, R) is strictly Galois with respect to &, and con-
tains x,, Corollary 1 shows at once J(@&:X... X®,, R)= S[x;]. Repeat-
ing the similar arguments, we obtain J ($;., X ... X @,, R) = S[x;, ...,
x,], in particular, R=S[x,..., x.]. And so, (1)—(4) are proved. Further,
recalling that every {; is contained in Vs(R), we have (x5, ") o = 2.5%;™"
for any s€ S and ¢ €@, whence x;sx,'€ S. Hence G/ S is a normal
subgroup of &. Similarly, it is easy to see that (xux; 2. "% ") o¢ = xex 2,
x,7', or what is the same, that x.x;x: "2, € S, whence G/(GNS) is
abelian. (5) is therefore a direct consequence of (1)—(4) and Corollary 1.

Finally, as an application of Theorem 2, we shall present the follow-
ing

Theorem 4. Let a division ring R be abelian with respect to ®, and
of characteristic p. If & =@, X ... XO, where &, ={s’} is of order
D, then there exist elements x, ..., X, € R such that: (1) x,"—xE S,
2) R=S[x, ..., z], B) S[xdNSlxs, «..) Xicy, Xiery +++, X =5 and
(4) Six1/S is abelian with respect to G,

Proof. Evidently, ® € ¢ = I15/s— ¢, is a homomorphism of & into
the additive group S. Hence, by Corollary 3, there exists an element x; €
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R such that z0¢ = x;—1 and %, ¢; = x, for j5~i. Since (x.*) o1 = (x; —1)*
= x,°—1, we have (x#—2x) o1 = x,* —x;, whence it follows x?—x, € S.
Now, the rest of the proof is easy.

Remark 1. Let a simple ring R be Galois over S. If the totality ¥
of all the S-inner automorphisms is abelian, then it is known that V;(S)
is commutative. However, one may remark here that in case R is abelian
with respect to &, Vz(S) is not always commutative. In fact, a quaternion
division algebra will provide a counter example.

Remark 2. The extension R/S considered in Theorem 3 may be re-
garded as a natural generalization of the notion of Kummer's extensions.
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