A THEOREM ON RINGS

HISAO TOMINAGA

It is a well-known theorem of Jacobson that if every element x of a ring R satisfies a relation $x^{n(x)}-x=0$ where n(x)>1 is an integer, then R is commutative. Recently, in his paper [3], I. N. Herstein has generalized Jacobson's theorem as follows: Let R be a ring in which $[x, y]^{n(x,y)}-[x,y]=0$ for each $x, y \in R$ where n(x,y)>1 is an integer and [x,y]=xy-yx. Then R is commutative. On the other hand, in [2], he proved also that if there exists an integer n>1 such that every x^n-x $(x \in R)$ is contained in the center of R, then R is commutative. Corresponding to [3], we shall introduce here the notion of C-rings: A ring R is called a C-ring if there exists an integer n>1 for which every $[x,y]^n-[x,y]$ $(x,y\in R)$ is contained in the center of R.

As one can easily see, there exists a non-commutative ring R with $R^3=0.1$ This fact will show that a C-ring is not always commutative. However, in what follows, one will see that if R is a C-ring then each commutator is a central nilpotent element.

We shall begin our study with the following lemma whose proof proceeds just as in that of [1, Theorem 2].²⁾

Lemma 1. If R is a semi-prime ring" satisfying a polynomial identity of degree n whose every coefficient is either 1 or -1, then R is a subring of the complete direct sum of central simple algebras of rank $\leq \left\lceil \frac{n}{2} \right\rceil^2$.

Corollary 1. Let R be semi-prime. If every [x, y] $(x, y \in R)$ is contained in the center of R then R is commutative.

Proof. Since [[x, y], w] = 0 for each $x, y, w \in R$, R satisfies a polynomial identity of degree 3 with coefficients ± 1 . By Lemma 1, R is a subring of the complete direct sum of S_{α} 's where S_{α} is a central simple algebra of rank $\leq \left\lceil \frac{3}{2} \right\rceil^2 = 1$, that is a field. Hence R is commutative.

Lemma 2. A division ring R which is a C-ring is commutative.

Proof. Let Z be the center of R. If every [x, y] is in Z then R=Z by Corollary 1. Thus, we shall suppose that there exists some u=[a, b]

¹⁾ Let D be a non-commutative division ring. Then $R = \left\{ \begin{pmatrix} 0 & 0 & 0 \\ a & 0 & 0 \\ b & c & 0 \end{pmatrix} \middle| a, b, c \in D \right\}$ is an example of this type.

²⁾ Cf. (5, p. 215).

³⁾ R is said to be semi-prime if the lower nil radical of R is 0 (cf. [4, p. 194]).

not contained in Z. Since zu = [za, b] for each $z \in Z$, there holds $(zu)^n - zu \in Z$. Combining this with $u^n - u \in Z$, we obtain $(z^n - z)u \in Z$. And then, $u \notin Z$ implies that $z^n - z = 0$. Hence we see that Z is a finite field GF(q). Now let $f(\alpha)$ be a minimal polynomial of u over Z. Then, noting that $z^q = z$ for all $z \in Z$, we have $0 = \{f(u)\}^q = f(u^q)$. Hence, by [4, p. 151], there exists an $r \in R$ such that $u^q = rur^{-1}$, that is, $u^q r = ru$. Consequently, $[r, u]u = u^q[r, u]$, and $u^q \neq u$ implies $v = [r, u] \neq 0$. Noting that $u^n - u \in Z$, $v^n - v \in Z$ and $vu = u^q v$, one will readily see that $\{\sum_{i,j=0}^{n-1} z_{ij} u^i v^j \mid z_{ij} \in Z\}$ is a finite field. Accordingly, we have uv = vu, but this contradicts $u^q \neq u$.

Lemma 3. Let R be a prime C-ring. If $x^m = 0$ then x = 0, and if $e^2 = e$ then e = 0 or 1 (if exists).

Proof. If $x^m = 0$, without loss of generality, we may restrict our proof to the case m = 2. Since xrx = [xr, x] for every $r \in R$, $-xrx = (xrx)^n - xrx$ is contained in the center Z of R, whence it follows $xRx \subseteq Z$. Hence we have $(Rx)^8 = R(xRx)Rx = R^2xRx^2 = 0$. And then, R being prime, x must be 0. Next, let $e^2 = e$. Then $(ere - er)^2 = 0 = (ere - re)^2$ for every $r \in R$, from which we have ere - er = 0 = ere - re by the fact proved above. We obtain therefore $e \in Z$. Our second assertion will be readily seen from the fact $eR \cdot A = 0$ where $A = \{er - r \mid r \in R\}$.

The next will be almost trivial.

Lemma 4. If R is a C-ring then so is each homomorphic image of a subring of R.

Lemma 5. A primitive C-ring R is commutative.

Proof. In virtue of Lemma 2, it suffices to show that R is a division ring. In fact, if R is not a division ring then, by [4, Theorem 2. 4. 3], there exists an integer m > 1 and a division ring D such that the complete $m \times m$ matrix ring over D is a homomorphic image of a subring of R, which is a C-ring by Lemma 4. But this contradicts Lemma 3.

Corollary 2. A semi-simple C-ring is commutative.

Lemma 6. Let R be a C-ring with the center Z. Then every [x, y] is contained in Z.

Proof. Evidently, by Corollary 2, u = [x, y] is contained in the radical N of R. If $z \in N \cap Z$ then $(z^n - z)u$ is contained in Z (cf. the proof of Lemma 2), that is, $(z^n - z)[u, r] = 0$ for all $r \in R$. Since $z \in N$, we have z[u, r] = 0. Setting here particularly $z = u^n - u$, we obtain $(u^n - u)[u, r] = 0$. Recalling again $u \in N$, we obtain u[u, r] = 0. Similarly we have [u, r]u = 0. From these, one will readily see that $u^2r = ru^2$, that

⁴⁾ $(z^{n-1}-1)$ operates formally as a regular element.

is, $u^2 \in Z$. Then, in case n is even, $u^n - u \in Z$ yields at once $u \in Z$. On the other hand, in case n is odd, $u^{n-1}r - r = ru^{n-1} - r$ for every $r \in R$, whence we have $r(u^n - u) = (u^n - u) r = u(ru^{n-1} - r)$. Hence, $u^{n-1} - 1$ operating as a regular element, we have eventually ur = ru.

Now we can prove our principal theorem.

Theorem 1. If R is a C-ring then every [x, y] is a central nilpotent element.

Proof. Let N_0 be the lower nil radical of R. Since every [x, y] is contained in the center of R by Lemma 6, Corollary 1 shows that [x, y] is contained in N_0 which is a nil ideal.

Let R be a ring with the center Z. R is called a C'-ring if for each x, $y \in R$ there exists an integer n(x, y) > 1 such that $[x, y]^{mn(x,y)} - [x, y]^m \in Z$ for all natural numbers m. If for every x, $y \in R$ there exists an integer n(x, y) such that $[x, y]^{n(x,y)} - [x, y] = 0$, then R is a C'-ring of course. Theorem 1 is true also for C'-rings. To see this, we shall prove here two essential lemmas which correspond to Lemma 2 and Lemma 6 respectively.

Lemma 2'. A division ring R which is a C'-ring is commutative.

Proof. As in the proof of Lemma 2, we shall suppose that u = [a, b] is not contained in the center Z. Since zu = [za, b] for all $z \in Z$, there holds $(zu)^{nn} \stackrel{z}{=} - (zu)^n \in Z$ where n = n(a, b) and n(z) = n(za, b). Noting that $u^{a(z)n} - u^{n(z)} \in Z$, $u^n - u \in Z$ and $(zu)^{a(z)} - zu \in Z$, we can readily see $(z^{(n-1)(n(z)-1)}-1)z^nu \in Z$. And then, $u \notin Z$ implies $(z^{(n-1)(n(z)-1)}-1)z^n=0$. Hence Z must be of characteristic $p \neq 0$, and algebraic over its prime field P. Now let $f(\alpha) = \alpha^t + z_1\alpha^{t-1} + \ldots + z_t(z_i \in Z)$ be a minimal polynomial of u over Z. Evidently, $W = P(z_1, \ldots, z_t)$ is a finite field, say, GF(q). Hence, as in the proof of Lemma 2, we can find some non-zero $r \in R$ such that $v = [r, u] \neq 0$ and $vu = u^q v$. Now, recalling that $v^m = v + z'$ for some m > 1 and $z' \in Z$, one will easily see that the set $\{\sum_{i=0}^{t-1} \sum_{j=0}^{t-1} z_{ij} u^i v^j \mid z_{ij} \in W(z')\}$ is a finite field. Accordingly, uv = vu of course, but this contradicts $u^q \neq u$.

Lemma 6'. Let R be a C'-ring with the center Z. Then every [x, y] is contained in Z.

Proof. Evidently, u = [x, y] is contained in the radical N of R by the fact corresponding to Corollary 2. If $z \in N \cap Z$, then $(z^{(n-1)(m-1)+1}-z)z^{n-1}u \in Z$ where n=n(x,y) and m=n(zx,y) (cf. the proof of Lemma 2'), that is, $(z^{(n-1)(m-1)+1}-z)z^{n-1}[u,r]=0$ for all $r \in R$. Since $z \in N$, we have $z^n[u,r]=0$. Setting here particularly $z=u^n-u \in N \cap Z$, we obtain $(u^n-u)^n[u,r]=0$. Noting again $u \in N$, it follows $u^n[u,r]=0$.

Similarly, we have $[u, r]u^n = 0$. From these, one will readily see that $u^{2n}r = u^n r u^n = r u^{2n}$, whence $u^{2n} \in \mathbb{Z}$. Further $u^{2n} - u^2 \in \mathbb{Z}$ yields $u^2 \in \mathbb{Z}$. Hence, as in the proof of Lemma 6, we obtain eventually $u \in \mathbb{Z}$.

We have proved therefore

Theorem 2. The following conditions are equivalent to each other:

- (1) R is a C-ring.
- (2) R is a C'-ring.
- (3) Every [x, y] $(x, y \in R)$ is contained in the center of R (and nilpotent).

Corollary 3 (Herstein). If $[x, y]^{n(x,y)} - [x, y] = 0$ for each $x, y \in R$ where n(x, y) > 1 is an integer then R is commutative.

Proof. Noting that $[x, y]^{n(x,y)-1}$ is an idempotent, our assertion is evident from Theorem 2.

REFERENCES

- [1] S.A. AMITSUR, An embedding of PI-rings, Proc. Amer. Math. Soc., 3 (1952) 3-9.
- (2) I.N. HERSTEIN, A generalization of a theorem of Jacobson, Amer. J. Math., 73 (1951) 756-762.
- (3) I.N. HERSTEIN, A condition for the commutativity of a ring, Can. J. Math., 10 (1958) 583-586.
- (4) N. JACOBSON, Structure of rings, Amer. Math. Soc. Colloq. Publ., 37 (1956)
- [5] T. NAKAYAMA and G. AZUMAYA, Algebra II (Theory of Rings), Tokyo, Iwanami (1954), (in Japanese).

DEPARTMENT OF MATHEMATICS,
HOK KAIDO UNIVERSITY

(Received April 20, 1959)