A THEOREM ON RINGS
Hisao TOMINAGA

It is a well-known theorem of Jacobson that if every element x of a
ring R satisfies a relation x"® —x=0 where n(x)>1 is an integer, then R
is commutative. Recently, in his paper [3], I. N. Herstein has generalized
Jacobson’s theorem as follows : Let R be a ring in which [x, y]"®¥—
[x, ¥]1 =0 for each x, y = R where n(x, y) >1 is an integer and [x, y]
=xy—yx. Then R is commutative. On the other hand, in [2], he
proved also that if there exists an integer n>1 such that every x"—x
(x € R) is contained in the center of R, then R is commutative. Corres-
ponding to [3], we shall introduce here the notion of C.rings: A ring R
is called a C-ring if there exists an integer # > 1 for which every [x, »]”
—[x, »] (x, yER) is contained in the center of R.

As one can easily see, there exists a non-commutative ring R with
R*=0." This fact will show that a C-ring is not always commutative.
However, in what follows, one will see that if R is a C-ring then each
commutator is a central nilpotent element.

We shall begin our study with the following lemma whose proof pro-
ceeds just as in that of [1, Theorem 2].”

Lemma 1. If R is a semi-prime ring® satisfying a polynomial
identity of degrvee n whose every coefficient is either 1 or —1, then R
is a subring of the complete direct sum of central simple algebras of

k= E]
rank _[2 .

Corollary 1. Let R be semi-prime. If every [x, y] (x, yER) is
contained in the center of R then R is commutative.

Proof. Since [[x, ¥], w] =0 for each x, y, w € R, R satisfies a

polynomial identity of degree 3 with coefficients = 1. By Lemma 1, R is
a subring of the complete direct sum of S,’s where S, is a central simple

algebra of rank < [%T = 1, that is a field. Hence R is commutative.

Lemma 2. A division ving R which is a C-ring is commutative.
Proof. Let Z be the center of R. If every [x, y] isin Z then R=Z
by Corollary 1. Thus, we shall suppose that there exists some # =[a, b]

000
1) Let D be a non-.commutative division ring. Then R= {(a 0 0)
bcO

example of this type.
2) Cf. (5, p. 215).
3) R is said to be semi-prime if the lower nil radical of R is 0 (cf. [4, p. 194)).

a, b, ch}isan
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not contained in Z. Since zx = [za, b] for each z € Z, there holds (zu)*
—zu € Z. Combining this with #"—u & Z, we obtain (z"—2)u=Z. And
then, u & Z implies that 2’—z = 0. Hence we see that Z is a finite field
GF(g). Now let f(«) be a minimal polynomial of # over Z. Then, not-
ing that z°=2z for all z& Z, we have 0= {f(u)}?= f(«%. Hence, by
[4, p. 151], there exists an » € R such that «#"= rur~', that is, u% =ru.
Consequently, [r, u]u = u*[», u], and u"s&u implies v = [r, #] 5%0.
Noting that «"—u € Z, v'—v € Z and vu =u'p, one will readily see that
{>r5te 260’ | 25€ Z} is a finite field. Accordingly, we have uv = vu,
but this contradicts #*=% «.

Lemma 3. Let R be a prime Cring. If x™=0 then x=0, and if
e’=e then e =0 or 1 (if exists).

Proof. If x =0, without loss of generality, we may restrict our
proof to the case m = 2. Since xrx = [x7, x] for every » E R, —zxrx =
(x7x)* —xrx is contained in the center Z of R, whence it follows *RxC Z.
Hence we have (Rx)’=R(xRx)Rx = R®xRx*=0. And then, R being prime,
x must be 0. Next, let e>=¢. Then (ere—er)’= 0 = (ere —re) for every
r € R, from which we have ere—er =0 = ere—-re by the fact proved
above. We obtain therefore ¢ € Z. Our second assertion will be readily
seen from the fact eR+- A =0 where A ={er—» | » € R}.

The next will be almost trivial.

Lemma 4. If R is a C-ring then so is each homomorphic image of
a subring of R.

Lemma 5. A primitive C-ring R is commutative.

Proof. In virtue of Lemma 2, it suffices to show that R is a divi-
sion ring. In fact, if R is not a division ring then, by [4, Theorem 2. 4.
3], there exists an integer m>1 and a division ring D such that the
complete m X m matrix ring over D is a homomorphic image of a subring
of R, which is a C-ring by Lemma 4. But this contradicts Lemma 3.

Corollary 2. A semi-simple C-ring is commutative.

Lemma 6. Let R be a C-ring with the center Z. Then every [x, y]
is contained in Z.

Proof. Evidently, by Corollary 2, = =[x, y] is contained in the
radical N of R. If 2z NN\ Z then (z'—2)« iscontained in Z (cf. the
proof of Lemma 2), that is, (2"—2) [«, »]=0 for all » € R. Since z€ N,
we have z[w, »]=0." Setting here particularly z = 4" —1, we obtain (x”
—u) [u, ] =0. Recalling again « € N, we obtain u [#, ] =0. Similarly
we have [#, »]u# = 0. From these, one will readily see that #°» =r«", that

4) (z7~1—1) operates formally as a regular element.
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is, #?’€ Z. Then, in case » is even, #"—u € Z yields at once u = Z. On
the other hand, in case # isodd, u"'r—r =ru""' —r for every r € R,
whence we have r(u"—u) = (u"—u) r = u(ru™'—r). Hence, u* ' —1
operating as a regular element, we have eventually ur = ru.

Now we can prove our principal theorem.

Theorem 1. If R is a C-ring then every [x, ¥] is a central nilpotent
element.

Proof. Let N, be the lower nil radical of R. Since every [x, y] is
contained in the center of R by Lemma 6, Corollary 1 shows that [x, y] is
contained in N, which is a nil ideal.

Let R be a ring with the center Z. R is called a C'-ring if for each
%, ¥ € R there exists an integer n(x, »)>1 such that [x, y]™ =¥ —
[x, y]" &€ Z for all natural numbers m. If for every x, yER there exists
an integer n(x, y) such that [z, ¥]1"®¥—[x, y]=0, then R is a C'ring
of course. Theorem 1 is true also for C’-rings. To see this, we shall prove
here two essential lemmas which correspond to Lemma 2 and Lemma 6
respectively.

Lemma 2'. A division ring R which is a C'-ring is commutative.

Proof. As in the proof of Lemma 2, we shall suppose that #=[a, b]
is not contained in the center Z. Since zu = [za, b] for all z & Z, there
holds (2u)"™ = —(zu)"€ Z where n =n(a, b) and n(z) = n(za, b). Noting
that 4" — gy Z, y*—u & Z and (zu)“®—zu € Z, we can readily see
(2 P@E=D 1) 2y & Z. And then, » & Z implies (2"~ V"®V_1) z"=0.
Hence Z must be of characteristic 540, and algebraic over its prime
field P. Now let f{a) = &' +2z,a”'+ ... + z(z; € Z) be a minimal poly-
nomial of # over Z. Evidently, W=2P(z, ..., z,) is a finite field, say,
GF(g). Hence, as in the proof of Lemma 2, we can find some non-zero
7 € R such that v =[r, u] %0 and vu=u%. Now, recalling that o™=
v+2' for some m >1 and 2/’ € Z, one will easily see that the set {33i2}
SR 2w’ | z2i,€ W(2')} is a finite field. Accordingly, #v = vu of course,
but this contradicts #?5% u.

Lemma 6'. Let R be a C'-ring with the center Z. Then every [x, v)
is contained in Z.

Proof. Evidently, u =[x, y] is contained in the radical N of R
by the fact corresponding to Corollary 2. If z & NN\ Z, then (gD
—2)z"'u € Z where n=n(x, y) and m = n(zx, y) (cf. the proof of Lemma
2'), thatis, (2" "™=D*_2z"1[y, ] =0 for all € R. Since 2z N, we
have z"[u, ] = 0. Setting here particularly z=u"—u(E NN Z), we
obtain (#"—u)"[#, r]=0. Noting again z € N, it follows «"[u, »]= 0.
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Similarly, we have [#, »]ua™ =0. From these, one will readily see that
w'r = uw'ru” = ru™, whence »* € Z. Further #*—u*€ Z yields w’E Z.
Hence, as in the proof of Lemma 6, we obtain eventually « € Z.

We have proved therefore

Theorem 2, The following conditions are equivalent to each other:

(1) Ris a Cring.

(2) Ris a C-ring.

(3) Every [x, ¥] (v, y € R) is contained in the center of R (and
nilpotent).

Corollary 3 (Herstein). If [x, y]"®¥—[x, y] =0 for cack x, yE
R where n(x, y)>1is an integer then R is commuiative.

Proof. Noting that [x, y]™™¥"! is an idempotent, our assertion is
evident from Theorem 2,
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