## SOME REMARKS ON GALOIS EXTENSIONS OF DIVISION RINGS

Dedicated to the 60th birthday of Dr. ZYOITI SUETUNA TAKASI NAGAHARA and HISAO TOMINAGA

1°. Let K be a division ring, and L a division subring of K. The left dimension  $[K:L]_t$  means the cardinal number of any linearly left-independent basis of K over L. The right dimension  $[K:L]_r$  will be similarly defined, and in case the left dimension coincides with the right one they will be denoted as [K:L]. In general, the cardinal number of any set S will be denoted as #(S). If for any finite subset F of K the ring L[F] generated by F over L is of finite left (right) dimension, we say that K is left (right) locally finite over L.

Let K be Galois over L. Then the following pretty theorem is shown by N. Nobusawa [5]: Let K be left locally finite over L. If K' is an intermediate subring of K/L with  $[K':L]_i < \infty$  then K is Galois over K'. Our principal aim of this note is to prove Nobusawa's theorem without assuming the left local finiteness of K/L (Theorem 1).

On the other hand, the following fact is known [1, Theorem 7.9.2]: Let K be Galois over L. If K' is an intermediate subring of K/L with  $[K':L]_{\iota} < \infty$  and  $[K':L]_{\iota} < \infty$ , then the two dimensions are equal. It is an open question weither  $[K':L]_{\iota} < \infty$  yields  $[K':L]_{\iota} < \infty$  or not. However, in case K is left locally finite over  $V_{\kappa}(V_{\kappa}(L))$ , we can prove, as a by-product in the course of proving Theorem 1, that the answer is affirmative (Theorem 2).

Finally, as to notations and terminologies used in this paper we follow our previous papers [2], [3] and [6].

2°. In the rest of this paper, we always assume that K is a division ring which is Galois over a division subring L. And we set  $\mathfrak{G} = \mathfrak{G}(K/L)$ ,  $V = V_{\kappa}(L)$ , and  $H = V_{\kappa}(V_{\kappa}(L))$ .

**Lemma 1.** Let K' be an intermediate subring of K/L, and  $\mathfrak{D}$  a Galois group of K/L.

- (i) If  $\#(\{k'\}\) < \infty$  for every  $k' \in K'$ , then  $L(K'\)$  is left as well as right locally finite over L, where  $L(K'\)$  is the division subring generated by  $K'\$  over L.
- (ii) Let K/L be outer Galois. If  $\#(\{k'\} \ \S) \le n$  for every  $k' \in K'$ , then  $[K':L] \le n$ .
- *Proof.* (i) Let F be an arbitrary finite subset of K'. Then  $L' = L(F \mathfrak{D})$  (the division subring generated by  $F\mathfrak{D}$  over L) is Galois over L

with the finite group  $\mathfrak{D}_{L'}$  as a Galois group. Hence, as is well-known,  $[L':L] \leq \#(\mathfrak{D}_{L'}) < \infty$ , whence our assertion will be almost clear.

- **Remark 1.** Let  $N = \{h \in H \mid \#(\{h\} \otimes)\} < \infty\}$ . Then, by Lemma 1 and [6, (a\*)], one will readily see that N is the unique maximal  $\mathfrak{G}$ -normal subring of H that is (left and right) locally finite over L.

The proof of the next lemma will be obtained in the similar way as in that of [5, Theorem 2], and so the details may be left to readers.

**Lemma 2.** Let K' be an intermediate subring of K/L which is left locally finite over L. If L' is an intermediate subring of K'/L with  $[L': L]_{l} < \infty$  then  $K' \cap J(\mathfrak{G}(L'), K) = L'$ .

The next will play an essential rôle in our present study.

**Lemma 3.** Let K' be an intermediate subring of K/L, and let  $K_0 = J(\mathfrak{G}(K'), K), H_0 = K_0 \cap H$ .

- (i)  $[K_0: H_0]_t \leq [H[K_0]: H]_t$  and  $[K_0: H_0]_r \leq [H[K_0]: H]_r$ .
- (ii) If  $[K':L]_i < \infty$  then  $[H_0:L] < \infty$ .
- *Proof.* (i) Let  $\{k_i\} \subset K_0$  be linearly left-independent over  $H_0$ . If there holds a non-trivial relation  $\sum_{i=1}^n h_i k_i = 0$   $(h_i \in H)$  among the  $\{k_i\}$  then, without loss of generality, we may assume that  $k_1 + \sum_{i=2}^n h_i k_i = 0$   $(h_i \in H)$  and  $h_i \notin H_0$  is of the shortest length. Since there exists some  $\sigma \in \mathfrak{G}(K')$  such that  $h_i \sigma \neq h_i$ , there holds  $k_i + \sum_{i=2}^n (h_i \sigma) k_i = 0 = k_i + \sum_{i=2}^n h_i k_i$ . But this yields the contradiction  $\sum_{i=2}^n (h_i \sigma h_i) k_i = 0$ . Hence, we have  $[K_0: H_0]_i \leq [H[K_0]: H]_i$ . The second will be similarly shown.
- (ii) Let h be an element of H such that  $\#(\{h\} \otimes) > [K': L]_i$ . Then h possesses p different images  $h\sigma_1, \ldots, h\sigma_p(\sigma_i \in \mathbb{S})$ , where  $p>[K': L]_i$ . Since  $[\mathfrak{S}_{K'}K_r: K_r]_r = [K': L]_i < p$ , the same argument as in the proof of [4, Lemma 3] proves that there exist some different  $\sigma_i$ ,  $\sigma_j$  and some  $v \in V$  such that  $\sigma_{iK'} = \sigma_{jK'}\bar{v}$ . We consider here the automorphism  $\tau = \sigma_j\sigma_i^{-1}\bar{w}$  where  $w = v\sigma_i^{-1} \in V$ . Then it is easy to see that  $k'\tau = k'$  for every  $k' \in K'$ , that is,  $\tau \in \mathfrak{S}(K')$ . On the other hand, noting that H is  $\mathfrak{S}$ -normal, we obtain  $h\tau = h\sigma_j\sigma_i^{-1} \neq h$ . Thus we see that h is not contained in  $H_0$ , or what is the same, that  $\#(\{h_0\}\mathfrak{S}) \leq [K': L]_i$  for every  $h_0 \in H_0$ . Our asser-

tion follows therefore from Lemma 1 (ii).

Now we shall prove our principal theorem which contains [5, Theorem 2].

**Theorem 1.** Let K be Galois over L. If K' is an intermediate subring of K/L with  $[K':L]_l < \infty$  then K is Galois over K'.

*Proof.* By [5, Lemma 2] and Lemma 3 (i), we obtain  $\infty > [K': L]_t$   $\ge [V: V_K(K')]_r = [V: V_K(K_0)]_r = [H[K_0]: H]_t \ge [K_0: H_0]_t$ , where  $K_0 = J(\mathfrak{G}(K'), K)$  and  $H_0 = K_0 \cap H$ . Combining this with Lemma 3 (ii), we see that  $[K_0: L]_t = [K_0: H_0]_t \cdot [H_0: L] < \infty$ . Hence, by Lemma 2,  $K_0 = K_0 \cap J(\mathfrak{G}(K'), K) = K'$ .

- Remark 2. In [3], the present authors contructed Galois theory of division rings under the conditions  $(\alpha)$ ,  $(\beta)$ ,  $(\gamma)$  and  $(\delta)$ . However, the validity of Theorem 1 enables us to see that  $(\delta)$  is a consequence of  $(\gamma)$ .
- 3°. Our next task is to present a theorem which is related to [1, Theorem 7. 9. 2]. To this end, we set the following lemma, which we believe may be of interest for itself.

Lemma 4. Let K be inner Galois over L. If K is left locally finite over L, then it is right locally finite too.

Proof. Let L' be an intermediate subring of K/L with  $[L':L]_t < \infty$ . We set here  $V' = V_K(L')$ , and  $\{v_1, \ldots, v_m\} \subset V$  be linearly left independent over V'. If  $L'' = L'[v_1, \ldots, v_m]$  then, by [5, Lemma 2], ∞>  $[L'':L]_t \ge [V_{L''}(L):V_{L''}(L'')] \ge [V_{L''}(L):(\text{center of }V_{L''}(L))]$ . Hence, by [1, Proposition 7. 1. 3] and [5, Lemma 2],  $[V_{L''}(L):V_{L''}(L')]_t = [V_{L''}(L):V_{L''}(L')]_r \le [L':L]_t$ . Consequently, noting that  $\{v_1, \ldots, v_m\} \subset V_{L''}(L)$  and  $V_{L''}(L') \subset V'$ , we obtain  $m \le [L':L]_t$ , which means ∞ >  $[V:V']_t = [L':L]_r$  again by [5, Lemma 2].

**Theorem 2.** Let K be Galois over L, and left locally finite over  $H = V_K(V_K(L))$ . If L' is an intermediate subring of K/L with  $[L':L]_l < \infty$  then  $[L':L]_l = [L':L]_r$ .

*Proof.* Let  $H' = V_{\kappa}(V_{\kappa}(L'))$ . Then, by [5, Lemma 2], Lemma 4 and [1, Theorem 7. 9. 2], there holds  $\infty > [L': L]_{\iota} \ge [V: V_{\kappa}(L')]_{\tau} = [H': H]_{\iota} = [H': H]_{\tau} = [H[L']: H]_{\tau}$ . Since  $J(\mathfrak{G}(L'), K) = L'$  by Theorem 1, Lemma 3 (i) gives  $\infty > [H[L']: H]_{\tau} \ge [L': (L' \cap H)]_{\tau}$ . Further,  $[(L' \cap H): L] < \infty$  by Lemma 3 (ii), and so we have  $[L': L]_{\tau} < \infty$ . Now, our assertion is clear by [1, Theorem 7. 9. 2].

Corollary 1. If K is left locally finite over L, then it is right locally finite too.

*Proof.* By [5, Theorem 1], K is left locally finite over H. Our

corollary is therefore a direct consequence of Theorem 2.

## REFERENCES

- [1] N. JACOBSON, Structure of rings, Amer. Math. Soc. Colloq. Publ., vol. 37 (1956).
- [2] T. NAGAHARA, On generating elements of Galois extensions of division rings IV, Math. J. Okayama Univ., 8 (1958) 181-188.
- (3) T. NAGAHARA and H. TOMINAGA, On Galois theory of division rings, Math. J. Okayama Univ., 6 (1956) 1-21.
- [4] N. Nobusawa, On compact Galois groups of division rings, Osaka Math. J., 8 (1956) 43-50.
- (5) N. NOBUSAWA, A note on Galois extensions of division rings, Math. J. Okayama Univ., 7 (1957) 179-183.
- [6] H. TOMINAGA, Galois theory of simple rings II, Math. J. Okayama Univ., 6 (1957) 153—170.

DEPARTMENT OF MATHEMATICS,
OKAYAMA UNIVERSITY

(Received February 21, 1959)