A NOTE ON CONJUGATES 11

Hisao TOMINAGA

In this note, we use the following conventions : By a ring we mean
a ring with an identity, and by a subring we mean one which contains
this identity. By a simple ring we shall mean a two-sided simple ring
with minimum condition for left ideals, and by a primary ring la
completely primary ring) a ring such that the (Jacobson) radical is nilpo-
tent and the residue class ring modulo the radical is a simple ring {a di-
vision ring]. For any non-empty subset B of a ring R, Vz(B) will denote
the centralizer of B in R. If, for each element of a subring S of R with
an inverse in R, the inverse is always contained in S, then S will be called
a rn-subring of R. For example, V3(B) and each subring with minimum
condition for left ideals are =-subrings of R. R* means the multiplicative
group consisting of all regular elements of a ring R. And for any set S,
$#(S) will signify the cardinal number of S.

Recently, W.R.Scott proved the following powerful lemma {3,
p.305): Let D be an infinite division ring, S a proper division subring
of D. Then (D*: S*) = #(D), where (D* : S*) is the group index of
S* in D*. And more recently, in [1], C.C.Faith has pointed out that
the following fact given by F.Kasch in [2] is a direct consequence of
Scott’s lemma: Let S be an infinite division subring of a division ring
D not contained in the centre of D. Then every element d € D which
is outside of Vu(S) possesses infinitely many conjugates xdx™" with
x € S*. On the other hand, in the previous note [4], the present author
has obtained the following which contains Kasch’s : Let R be an infinite
simple subring of a ring U, and T the set of conjugates of an element
te U by all regular elements in R. Then ¥(T) = #(R) or 1.

The purpose of this note is to prove a generalization of Scott’s
lemma, and to present, as its direct consequence, an extension of [4,
Theorem].

Our fundamental lemma is the following :

Lemma 1. Let R be a primary ring with the radical N such that
R = R/N is infinite, and S a n-subring of R. If (R*: S*) < #(R),
where (R* : S8*) is the group index of S* in R*, then S=R.

Proof. Let R= ﬁ Ce;, where ¢,;'s are matric units and C = Vy({e,})
is a completely primary ring. If # =1, then R (whence S) is completely
primary, and let {7,} be a linearly independent left basis of R over S =
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(S+ N)/N, where r, is the residue class of 7,& R. Then, it is
clear that 7, 7' & S* if a5~ 3. Hence, by our assumption (R*: $*) <
#(R), we obtain #(S) =#(R). Andso, for each » & R, we can choose
suitable s,, s., and s € S* such that s;5% s, (mod N), s, (mod N) for
i=1,2, and r—s; =s(r—s,). We obtain therefore r = (1—s)"'(s;—ss,) €
S, whence it follows S=R. Secondly, we shall prove the case n>>1. For
each e, (i5=j), {c + ey | ¢ runs over a fixed complete representative
system of C*, where C =C/(CNN)} forms a subset of R* whose cardinal

number is #(C) =#(R). And so, there exist some ¢,, ¢,€ C* and s € S*
such that ¢,5% ¢, (mod N), and ¢, +e;; = s(c+e;;), that is,

(*) s=(ci+eg)eatey) =i + (1—ciea™")es ey

Since, for each ¢, ¢! €C*, c'¢™' & (CN S)* yields c'c™'& S*, we obtain
(C*: (CN S)*) <#(R)=#(C). And then, CN\ S being evidently a =-
subring of C, the proof for the case n=1 shows CMNS= C, thatis,

SD C. Hence, noting that ¢,5% ¢, (mod N), from (*) one will readily
see that e, is contained in S, accordingly so are all ¢,/s. And then, S

being Z (CN\ S) ey; necessarily, we obtain our assertion S = R.

As an easy consequence of our theorem, we obtain the following ex-
tension of [4, Theorem].

Theorem 1. Lef R be a primary subring of a ring U such that the

residue class ring R modulo its radical is infinite, and T the set of
conjugates of an element t € U by all regular elements of R. Then
either #(T) = ¥H(R) or #(T)=1.

Proof. Since ¥(T) = (R*: Vx(#)*), we can apply Lemma 1 to R and
its -subring Vi (¢). Hence our assertion is almost clear.

Of course, our theorem may be restated in the following way.

Theorem 1'. Let R be a primary subring of U such that the residue
class ring R modulo its radical is infinite, and T a subset of U which
is transformed into itself by all regular elements of R. If #¥(T)<<¥#(R),
then T C Vy(R).

Finally, as a special case of Theorem 1, we obtain

Corollary 1. Let R be a primary subring of U which is of charac-
teristic zero, and T the set of conjugates of an element t € U by all
regular elements of R. Then ¥(T) is either infinite or 1.

Remark. Let @ be an element of a ring A. If xex = x has no non-
zero solutions in A, then g is called a root element. All the results of
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this note except Corollary 1 are still valid for such R that the set of all

root elements of R coincides with the radical N and R/ N is an infinite
simple ring.
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