TANGENT BUNDLES OF ORDER 2 AND
GENERAL CONNECTIONS

TomMINOSUKE OTSUKI

The set of all tensor fields on a differentiable manifold X may be re-
garded as a graded algebra with the contravariant and the covariant orders
over the algebra (X) of all scalar fields on X. Any affine connection of %
defines, as is well known, a differential operator of contravariant degree 0
and covariant degree 1 on the algebra which is called a covariant differen-
tiation. On the other hand, in abstract theory of graded algebras, the
so-called trivial differential operator which maps any element to zero can
be always considered but it can not be regarded as a covariant differen-
tiation derived from classical affine connections in the case of the above-
mentioned algebra. It seems to the author that to construct a general
theory of connections which can deal with these differential operators as
special ones is an interesting problem in differential geometry.

The components of an affine connection with respect to local coordi-
nates are well known as a distinguished example that they constitute a
geometrical object but not a geometrical quantity, because for a coordi-
nate transformation they are transformed on the whole in the same way
as the components of a tensor of type (1, 2) but related with the terms
including the partial derivatives of order 2 of the local coordinates. From
this point of view, can we look on the components of an affine connection
and the components of a tensor of type (1, 2) from a unificative stand-
point and not as entirely different concepts ?

In this paper, the author will give an answer to the above-mentioned
questions. In [4]," the author showed that an affine connection of X may
be regarded as a cross-section of the associated principal bundle of the
tangent bundle 7 (X) into the one of the tangent bundle T*(X) of order 2
and that the classical connections, for instance, the affine, projective,
conformal connections, can be considered from a unificative standpoint
by means of this idea. In this paper, the author will utilize also the tan-
gent budle 3%X) of order 2. An affine connection may be also regarded
as a cross-section of the vector bundle T(X) ® (%), where T7(¥) is the
dual vector bundle of T(X). And so, he will consider as any cross-section
of the vector bundle defines a general connection. Then, the classical
affine connections and the tensors of type (1, 2) are remarkable as special

1) The numbers in square brackets will show the numbers of the references at
the end of this paper.
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ones. The covariant differentiation corresponding to the latters is the
above-mentioned trivial differential operator.

In §§ 1, 2, we shall state the group 22 of all generalized infinitesimal
isotropies, the tangent and cotangent bundles of order 2 and the associated
principal bundle. In §§ 3, 4, 5, we shall define furthermore the tangent
bundle of order 3 and the differentiation “d”. Then, we shall extend the
operation to the vector bundles T*(X)&* and T(X)®* ® T *(X)®".

In §§ 6, 7, we shall study a general connection I and determine a
corresponding operation s so that it transforms 2*(¥) into 7'(¥) and (%)
into T*(X) ® T*X). Making use of this operation, we shall define a
covariant differentiation which is the classical one when I' is a classical
affine connection.

In § 8, we shall prove the naturality for the induced general connec-
tions from general connections by mappings of base spaces and show
some formulas on the Lie derivatives as its application. In § 9, we shall
obtain analogies to the results obtained in [4] for general connections.

In §§ 10, 11, 12, we shall show that we can define a naturally de-
termined affine connection of the induced vector bundle from 7(¥) by
the projection of the associated principal bundle of T*X) which is called
the universal affine connection of 7(X) and investigate the relation be-
tween this connection and general connections of T(%).

§1. The group £} and the tangent bundles of order 2.

Let £ be the group of all generalized infinitesimal isotropies of order
2 at the origin of the n-dimensional coordinate space K", whose any ele-
ment is written as a set of real numbers (a{, a},) such that |a{| 5= 0? and
which was firstly used by the author in [4]. Its multiplication is given
by the following formulas: For any «, 3 € &,

ai(af) = al(a) ai(p),? (1.1)
ah(af) = alla) ab(P) + ala) ai(;3) ar(3), 1.2)

where we regard af, a}, as coordinates of ¥;. We may identify L} = GL(xn,
R) with the subgroup of £2 which consists of all elements « such that
ai(a) = 0 and we may also regard a{ as coordinates of L). Let s be the
natural homomorphism of %2 onto L) given by

2) The set L;Z) of all elements of B?, such that ai’h = ain is a subgroup of B:Z called
the group of infinitesimal isotropies of order 2 at the origin of R? according to C.
Ehresmann [6].

3) We will use the Einstein’s convention and the Latin letters {, j, %, will run
over 1, 2, -, m.
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al(o(a)) = al(a). (1.3)

Let 92 be the kernel of &, that is the subgroup consisting of all elements
« such that a{(a) = 5{. Then we define a mapping 7 : & — 9 by

pla) = ala™) a. (1.4)

Any element a of ¥ can be written uniquely as a product of an element
of L} and an element of 9 by

a = o(a) 4(a). (1.5)

We can easily obtain the following formulas : (a) For any a, 3 € 9,

atb(af) = ahla) + ab(3), (1.6)
(b) forany a € £, 3 =%;

alla™3a) = al(a™) a5 (3) a¥(a) ala), 1.7)
(c) for any o € €2

ai(r(a)) = alla™) ainla), (1.8)
and (d) for any a, a; € &

ah((aay)) = ah(ar™;(a) ar) + ahly(a)). (1.9)

Now let X be any n-dimensional differentiable manifold with suitable
differentiability for our purpose. With any coordinate neighborhood
(U, "), we associate n + »* fields of vectors defind on U which are
denoted by 8u;, 8wy, for convenience’ sake. Let &8u;, 8°vy, be the vector
fields associated with another coordinate neighborhood (V, »'). When
UN Vs g, we assume that they are related mutually as

ou, = a‘i ov;, (1. 10)
: 0%y’ 8’ av*
Gun = 5 G0y + oo % 0. (1. 11)

Thus we obtain at each point x of ¥ an (# - #%-dimensional vector space
independent of coordinate neighborhoods containing the point x, which
we shall denote by 32%(X)>. The union

T(X) = Uz TR

4) We use here the notation (U, ui) which represents an open neighborhood U and
local coordinates u! defined on U.

5) By putting §%#n = §2uni, we shall obtain the tangent space Ti(.’E) of order 2 at
% in the sense of C. Ehresmann [6].
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may be considered naturally as the total space of a vector bundle {T’(¥),
X, r} with the natural projection 7, whose structure group is 22 (in fact
L7 C ¥ but we take this group for our purposes) and the coordinate trans-
formation gy : UN V — &) is given by
J P
(ltj(grv) = S_Z‘ , Cl{u(gvv) = 6Lu7'{0—u‘ . (1. 12)

For the sake of simplicity, we shall denote also this vector bundle over
% by the same notation I%X) and call it the tangent bundle of order 2 of
X. By (1.10), we may identify the vector éu, with the tangent vector
8/6u' and so we may regard the tangent space T.(X) at x as a subspace of
2 (%).

Let {®(X), X, =} be the associated principal bundle of T*(¥), which
we will call the principal bundle of order 2 of X. Any point b € B(X)
may be regarded as a frame of T%(X) at the point x = Z(b) such that

eb) = au, al(3), (1.13)
em(E) = Ou; ai’n(,g)‘l‘ 6214,11: a{(‘g) a’ﬁ(,g) (1- 14)

where ﬁ e €. Corresponding to each a = £}, we define the right trans-
lation r(a) on B*(X) by

eba) = e,(b) al(a), (1. 15)
en(ba) = e, b) ah(@) + end) al(a) ai(a). (1. 16)

Now, let {B(X), %, =} be the associated principal bundle of the tangent
bundle T(X). As is well known, any point b & B(X) may be regarded
as a frame of T(X) at =(b) such that

eb) = ailla) (1.17)

0
u’’

where we use also the same notation e; for B(X) and B*(X) from the above-
mentioned relation between 7(X) and 2%X). Then we obtain a natural
homomorphism ¢ = /92 : BY(X) — B(X) by

elo(b)) = elb). (1.18)
Furthermore for any « € ¥}, we have easily

¢ - r(a) = r(e(a)) - o (1.19)

§2. The cotangent bundles of order 2.

We-shall denote the dual space of $X(X) by I(X) in this paper. The
union
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§>:(:t) = U £€X 95‘:()‘) (2' 1)

may be considered as the total space of a differentiable vector bundle over
X called the cotangent bundle of order 2 of X which we shall denote
simply by the same notation. Now, we shall directly determine this
bundle by means of local coordinates.

For any coordinate neighborhood (U, #') and at each x = U, we con-
sider the direct sum of the zn-dimensional vector space spanned by the
differentials d*u' of order 2 and the tensor product TX(X) @ T#(¥X) of the
dual space T#(¥) of T.(%) of which du* @ du” form a base. Corresponding
to another coordinate neighborhood (V, »'), we consider analogously an
(n + n°)-dimensional vector space with the base {d?v!, dv' @ dv"}. Then,
we relate the two vector spaces at x with each other by the equations

62’ 8%’

d?lo"’ = = dfu‘ + R du' ®' duh, (2. 2)
ou ou“.u
£, ok
dv’ @ dv* = %‘ ;7‘,,_ du' @ du”. (2.3)

Comparing these equations with (1.10) and (1.11), we see that we can
obtain an (# + »°)-dimensional vector space DX) at x which is dual to
T2(X) and its base {d°«', du' @ du"} is dual to the base {ou; 6%uin} of
FI(X). It is clear that Di(X) D T*X) K T*X).

Now in the following, for any vector bundle & = {3, X} over %, we
shall generally denote by # ({§) the vector space consisting of all cross-
sections of §§ over the algebra Y((X) of all scalar fieldson X which is also
considered as a vector space over the real field.

We define a natural differential operator of #(7T*(X)) into #(T*X))

d: ' (T*X) - ¥ (T(X)) (2.4)

as follows : For any w< Z (T*(X)), which is locally written as w = Vidu!,
we put
do = Vdu' + du' ® dV. (2. 5)

Using (2.2), (2.3), we can easily prove that this definition does not de-
pend on local coordinates.

§3. IXX) and D(X).

We can define analogously T¥(X) and ©%X). With any coordinate
neighborhood (U, %), we associate n + n*+ n* vector fields 6u,, 6%,
°um, defined on U. Let 6v, 6%, 6°vsm be the vector fields associated

with another coordinate neighborhood (V, ¢') and then, at each point of
UNV =, weput
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du, = ai dv;,
62145},, = aijh, a'llj -+ a{ (Zy’: 691.)_";, (3. 1)
Pupm = alwov;+ (abh af + al af + al a&) 7vu
+ al af alo"v yem,
where .
) 87 ; 0% ;oo 0w 3.9
Tt ouon'” T utouout” @.2)
Thus, we can obtain a vector bundle over X whose structure group is the
group L3® of all infinitesimal isotropies of order 3 at the origin of R".
Now let ¥ be the set of all (af, al, ai{w) such that |a{| #0. % may be
considered as a group containing L} with the multiplication as follows :
For any a, 3 € &,
al(af) = al(a) ai(p),
ahlad) = alla) at(3) + alw(a) ai(3) an (3),
at(af) = alla) abu(3) + al.(a) (@i(3) ai'(3) + ai(3) ai'(3) +
+ af(3) aw(B)) + ado.(a) ai(3) ai(3) a*(3). (3.3)

The first two equations show that €2 may be regarded as a subgroup of
2% which consists of all elements « such that au(«) = 0. We shall denote
this vector bundle over X and its total space by the same symbol Z*(¥)
and its fibre over x = X by TI(X).

Let D%X) and D(¥) be the dual vector bundle of Z3(X) and its fibre
over x. We shall denote also the total space of this bundle by ©*(X). We
shall construct 9%(X) directly by means of T*(X) in the following.

Firstly, we take the two tensor product bundles D*X) ® T*(¥) and
T*(X) @ D(X) which contain T*(X) ® T*(X) Q® T*(X¥)”. Naturally extend-
ing the isomorphism of T*(X) & T*(X) X T*(X), which corresponds to the
permutation of the second and third components, to T%(X) @ T*X), we
can obtain a vector bundle over X. We shall denote this vector bundle
by X)) R T*(X). Then, we construct a vector bundle containing 7*(¥)
Q@ T*XE)Q T*(X) = T*(¥)®*® such that

DAE) @ THE) + THE) Q T) -+ THX) ® T*(®), 3.4)

6) See [6]. .

7) For any two vector bundles & and $» over the same base space %, the author
will denote by & & B2 and & & &2 the vector bundles over £ whose fibres over each
point of £ are the tensor product and the direct sum of the fibres of § and $2 over
the point respectively, in the following. See [1] and [2].

8) Generally, we shall denote the tensor product bundle 7*(&)& - Q T*X) of m
T*(E) by THEE™.
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where the summation symbol “-’ means the direct sum of 7*(X)&" and
the above-mentioned vector bundles subtracted 7*(X)®". Then, for any
coordinate neighborhood (U, u'), we take an (# + 3»” + »*)-dimensional
vector space at each point x = U, which is the direct sum of the #-dimen-
sional vector space spanned by the differentials d*u' of order 3 and the
(83n* + n")-dimensional fibre over x of the vector bundle over X given by
(3.4). Relating this vector space with the one for another coordinate
neighborhood (V, ¢*) by the equations

v = aldu' + al(du' ® du" + du' ® du* + du'Rdu")

+ alwdut @ du R du', (3.5)
where af, al, al. are given by (3.2), then we can define a vector space
independent of local coordinates by virtue of (3. 3), which we shall denote
by SAD-i(?E). Thus, we obtain a vector bundle over ¥ with the structure
group L? which we shall denote by 5’(%).

Now, on the other hand, we have easily from (1.1) and (1. 2) the
equations :
A%’ Q dv* + dv’ ® dv* + d%' R di*
= alaf (@'  du* + du' ® du* + du' @ du®)
+ (ahat + dlaf, + ala;) du* Q du™ R du'. (3.6)

Hence (3.5), (3.6) and (3.1) show clearly that the subspace spanned
by d%', (d°u' @ du” + du* @ d’u” + d’u’ Q du”), du* Q du™ Q du® at each
point x € U is independent of local coordinates and dual to T¥X) and
these elements form the base dual to the base {6u, 8%uwm, 6°um}. We
shall denote this vector space by Di(X). Thus, we have directly obtained
the dual vector bundle D*X) to T(X).

Nextly, we shall define a differential operator

d: F(THE) — r(TEF), (3.7

which is analogous to the one in §2. For any & € #(D%X)), locally
written as

£ = Udu' + Updu' @ du”, (3.8)
we put
dt = Ud®' + d’u' @ dU, + Un(d’* @ du* + du* @ d*u")
4 dut @ du* Q d U, 3.9)
If we put

E = V,d% + Vydo' @ dv*
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in terms of another local coordinates o', then we have

U ov’ %’ 02) ov*
0 vV U . V -4 1% )
[ ,\‘ui b h = "u"(? J a A h VYke (3 10)

Putting (3. 10) into the right hand side of (3. 9) and using (2. 2), (2. 3) and
(3.5), we get easily
dt = V,d'' + d%’ @ dV, + Vu(dv’' R dv* + dv’ ® d%")
-+ dvj ® dv* ® d V_ﬂ;.

Hence, we see that we can naturally define a differential operator 4 by
(3.9) independent of local coordinates. We can easily prove the follow-
ing

Proposition 3.1. The differential operator d is characterized by
the following conditions : For any f, g <= A(X), &, &, & ¥(D(X)),

(a) d(@*f) = d°f,

(b) dldfRdg) = d*f R dg +df & d’, (3.11)

(c) dE &) = dE + dE,

(d) d(fE) = fdz + EQRdS.

On the other hand, for any & € #(D%(X)), we get from (3.10)

oU, _ 8%’ o' st 8V,
ou" 6utout '’ o1’ ou" ov*
and hence
ol, o’ av* (6V )
oV, _py, = Bv 0v (0V, _ y ), 3.12
ou" "7 But out \av* * ( )

Accordingly, we can define a natural transformation

L ) — (TR @ THE) (3. 13)
by
k= (2 - U ) dut @ du. (3. 14)

Now, (3.9) is clearly rewritten as
de = {UdPu' + Un(d*n* @ du™ - du' Q d*u"+d’u' Q du")
+du' ® du* @ dUa} + (2% - Un) d'u' @ du’. (3.15)
This equation implies immediately

Proposition 3.2. The differential operator d defined by (2.5) and
(3.9) has the properties such that
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d(W(T*(%))) = kernel of v = d7'(#(D(X))). (3. 16).

§4. The vector bundle T*(%X)&™.
Since the vector bundle 7*(X) @ T*(X) is a vector subbundle of D(¥),
we may put
r(THX) Q T*X)) C ¥ (D(X)). (4.1)
By virtue of (3. 11), (b), (c), (d), we get
d(W(T*X) @ T*X))) C #(DHX) R T*X)+ TH*F) Q D)), (4.2)

where the vector bundle D(X) ® T*X) + T*X) Q DXX) over X is well
defined as (3.4) in the last section. In general, extending the isomor-

1+-p(p +1)
L-p(p+1)

) of the m -1 components? to TH*X)®* R X)) R

phism of T*(X)®™*" which corresponds to the permutation (

(p+2)ereneres m(m-+1)
(p+3)-(m+1)(p+2)

T*(X)Y®™-?-1 we can obtain a vector bundle over X which we shall denote
by T*(X)¥? Q D*(F) Q (T*XF)®™=7~1), Then we can define naturally the
differential operator

d: r(T*E)E™) — ’.IT(ZZ:—I—(T*(I)@P ® D(X) R (T*E)®™-r-1)) (4.3)

with the following properties, where “+ is used in the sense as in (3. 4) :
For any f, fi,*, fm €E UAR), &, &, £ € F(TH*HE)S™),

@ @@ Rdf) =S df,@ @ dfs @ F o G(dfpeu® @ df.),

(b) d(& + &) = d& + dE, (4.4)
(c) d(f&) = fdE +EQRdS. ‘

Now, by virtue of (2.2) and (2. 3), we see that at each point x € X
all ddfi Q@ - R df.), df ¥ a’f,m@ e & dfm £ S, fm e A(X), span a
linear subspace of the fibre of qu;!— (T*E)®" K DI(X) R (T*(XE)Q@™ )
over x, of which

d(duil @' @du’M); du'i ® ® du'm+1 (4. 5)

make up a base, where «' are local coordinates containing x. We shall
denote the vector bundle over ¥ with this #™(» + 1)-dimensional subspace
as its fibre over each point x of X by T*(X)®™ "V, T*X)D™*V is a vector

9 That is IR @ ¥rQyrx 1R 39+2:Q 39043 @ ym @ ym+1 = Q@ - Ky B yp+1
KR Ip+3QYp+1 & @ ym+1 Q@ ypar
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subbundle of T*(X)®™*", We have easily that
d(F (T*E)®™)) © w(T*FX)D™). (4.6)
On the other hand, for any & € #(T*()®™"), we put
E= Uy dldu' @ Qdu'») + Uy, du"' Q -+ & dutn+
= Vs, d(dv'' & « @ dv’m) + V; .y, d0"1 @ - Q) dv'ns

m+1

in terms of local coordinates %' and v’. Making use of (2. 2) and (4. 4), we
get ' ’
d(dv' @ -« Q dv'n) = - aln d(du't @ -+ & du')
m—1

+ (go a{} . p alprly @lpee e a{ﬁ:i a{;;:)du‘l R QR du'me1, (4. 7

r+1im+1 P-l-"’

ov’ 3 o'’ .
where af = — J, = ————— . Hence it must be
ou'’ outou’
U’l"'im = a{ll see a{m le'"jm’ (4. 8)
— 3 o e
Uty = (ol o algiy,, @iy -+ alpzt alg) Vi,
+ asl ses aim_u le m+l. (4. 9)

From (4. 8) and (4. 9), we obtain

anl Am _Ul — 01) 1 . ov Im+1 GV_,‘ I " ). (4' 10)
au 1 1 Smert au m+ 31) il m+1

Accordingly, we can define generally the natural transformation

v F(THRB™) = w(THE)D™) (4.11)
by

= QUi — U ) dus @ e @ dutee, (412)

ou St

but we must read T*X)®™*" as D*(X) when m = 1. Now, by means of
(4. 8), we get a natural transformation

o3 P(THEB ™) —» F(T*E)O™) (4.13)
by

tE = Ui, du' @ Q du'tm, (4.14)

On the other hand, for any £ € #(T*®)®"), & = Uy, du'r & - &
du'», we have
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df = Ull---tmd(dutl ® .es ® dulm) +

+ anl...;m du‘i ® ves ® duf,,H.]. (4. 15)
ou'lm=1
Hence, it must be
v =d - — 1. (4.16)

Theorem. 4.1. For the differential operator d and the transfor-
mation v, we get the following sequence

v d .y
P (THE) S @ @) > BT S p(Tr@) S -

d — .
S (THR)B S E(THOB™) S P(T@B™) = (4.17)
such that d is one-one and
image of d = kernel of . (4.18)

§5. The vector bundle T(%)@“""*”.

Furthermore, we shall define the differential operator d for the
vector bundles T(%¥) and T3(X) such as

. {zxf(:r(?e)) - PEE) Q THE), 5.1)
@) - FEE) Q@ THE). (5.2)
For any & = ¥(F%%)), locally written as
E = Ul aui + Um 62um (5. 3)
with respect to local coordinates #!, we put
dE = 0u; K dU* + 8%up, Z (Uldu™ + dU™) + (5. 4)
- agumz ® U"‘dul.

Putting
E = V’av,- + V‘"‘ 6""0;;:

in terms of another local coordinates »’, then we have from (3.1) the
equations :

00’ %’ , av’ af
V=2 Ut s U V= G qr U 69)

Substituting (3. 1) and (5. 5) into (5. 4), we get easily
dE = 80, R AV + 0%, & (V'dv* + d V) = §pn & Vo™,

Hence, we see that (5.4) is independent of the choice of local coordinates.
The differential operator defined by (5.4) has the properties (5.1) and (5.2).
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Now, in general, for a vector bundle over X, for instance,
TEQ™? = T(X)® Q T*X)®",
we can define naturally the operator
p—1
d: F(TER)™?)— (5 +TERR@TER)QTER)S" V)R T*(X)8*"
q—1 .
+ TE®"Q 2+ THE® @ T @ (THER)B ™), (5. 6)

where the summation in the bracket in the right hand side must be read
in the sense as in (3.4). For any & € #(T(X)®'*%),

£ = UyZipduy @ - @ oui, ® dut @ ++ & duy,
d & is in fact given by
de = Ujp d@u, ® - @ du, & duh @ ++ & du’)
+ Ouy & o Bou, @ du’' & -+ Q du&d Ujije, (5.7
d@u, @ - @ oui, @ du’r R - & du’s)
= $10u, ® -+ @ o1, @ T p @ 0, @+ @,
Rdut Q- & dul Q du”
+ 0uy, & -+ Q) Oy, @ ddutr @ -+ @ du'd). (5.8)
By means of (2. 2) and (3. 1), we see easily that at each point z € X
d(Ou,, & - & ou & du't @ - ® du’),
6ui1®---®6u‘”®du’1®---@du"4®du’0+1 (5.9)

span a subspace of the fibre of the vector bundle in the right hand side of
(5. 6) over x which is independent of the choice of local coordinates. We
shall denote the vector bundle over ¥ with this #”*%#n + 1)-dimensional

subspace as the fibre over each point x of X by T(X)& »*", T(¥)®
is a vector sub_bundle of this vector bundle over X. Then we have

Proposition 5.1. d(Z(TE)®??) C ¢ (TX)D »7+) (5. 10)
§6. Connections of 7(%) and T(X) & D(X).

We shall consider any cross-section I" of the vector bundle 7T(X) &
P*(X). In a coordinate neighborhood (U, '), let I' be written as

I = 8u, @ (P! d’u' + I'ldu' du"). (6.1)

If we write this cross-section as
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I = ov; & (Q d°v* + 4, dv* & dv")

in another coordinate neighborhood (V, »'), we get easily the relations

h ﬂvj
P =2 @2, (6.2)
ou’ n 0 n 00’ Bu*
T = Ev_u"‘ (QJ uout + A% %ui %") (6.3)

on UNV = @, by means of (2.2). Making use of (1. 1), (1. 2) and (1. 12),
these equations are written simply as!®

(a'gn-) (Ptja szn) = (ij, Aih) Evu,s (6- 4)

where ¢ is the natural homomorphism ¥2-— L!. By virtue of (6.1), we
can define a natural transformation

A ¥(T(X) & DX) — 1(TE)Q THE) (6. 5)
by
I = Plou; X du', (6. 6)

which is analogous to = defined by (4. 13). As is well known, any cross-
section of 7(¥) ® T*(X) may be considered as a homomorphism of T(X)
covering the identity transformation of X. Accordingly, from (6. 3), we
can easily obtain the following

Theorem 6.1. A classical connection of the tangent bundle T(X)
of X corresponds to a cross-section of T(X) & DNX) such that its image
under A is the identity isomorphism of T(X)V.

Now, for any I' € #(T(X) ® ©%(X)), we can define a homomorphism
n = pp: TX) > TE), ’ 6.7)

which covers the identity transformation of the base space X, by the inner
product

p(X)=< I X>, Xe%IF), . (6. 8)
that is

p@u) = Plou;, n(0un) = I'ihouy, (6.9)

10) Here, we consider the set of all (ai’, a{n) as an algebraic set with the multipli-
cation (1.1) and (1. 2) satisfying the associative law. And so the transformation ¢ may
be naturally extended on this set.

1) A classical connection of the tangent bundle T\X) is usually said an affine con-
nection of £. But, the author will use this term as a pair (I", ¥) of a connection I’
of . 7(¥) and a homomorphism ¢ of 7(X) covering the identity mapping of ¥. When ¢
is the identity transformation, this becomes the one in the classical sense.
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where 8u; = 8/6u', "u,, are the vector fields associated with local co-
ordinates #', because {0u;, 6’} and {d’«', du' @ du"} are dual to each
other.

On the other hand, since T(X) & (%) is a vector subbundle of T*(X)
& D(X), we may regard I'" as a cross-section of THX) ® ©°(%X). Hence we
can analogously define a homomorphism of ®%X) into itself by {w, I'>,
o € DY(X), that is

{ <d2uj’ II> = Pl du' + F‘iJh du' ® duha
L duw' @ du®, "> = 0.

Since i(I") € P(T(X)®™?), it follows that d(i(I") € ¥(T(E®)D"). Ac
cording to §5, T(X)®"? is a vector subbundle of TXX) ® T*X)®* + T(X)
& D*(%) and the latter is also a vector subbundle T(%) & D(¥). Accord-
ingly, we may regard as ¥ (T(X)®"?) C #(F(X) ® D(X)). From (6. 6),
(5.8), we have

d(a() = Plo*upm @ du' K du” + ou;  d*u')-

+ Q}—)‘ ou; & du' K du”. (6.11)

(6. 10)

Then, we obtain easily a homomorphism of D%(¥) into itself by the equa-
tion,
Lo, dQIM) >, o € T(¥), thatis

{(d?u’, dA(r)> = Pldu' +§P gt Q@ dut,
<dw ®du*, d(0(I)> = Pldu' & du”. (6.12)

From (6. 10) and (6. 12), we have the following
Lemma 6.2. The transformation ¢ =o¢r defined by

¢lo) = {w, dQA(N) — T'>, v € D(F), (6.13)

is a@ homomorphism of D(X) into T*X)X T*(X) which covers the identity
transformation of the base space X. For the base d*uw’, du’ & du" of
a fibre of D(X) associated with local coordinates u', we have

{ o(d’w!) = 6P; I“d;) dut K du”
eo(du’ Odu") = Pldu' R du".

(6. 14)

Now, in each fibre (%), we can naturally extend the transformation e
corresponding to the permutation of components of TX(X) & TH(X) to
DiX) by

e(du' @ du") = du® & du*, (d*w’) = d*u’, (6. 15)
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which is independent of local coordinates as is easily seen from (2. 2) and
(2. 3). ¢ is a bundle map of D(¥).

Theorem 6.3. The homomorphism p = egeg: DHX) = T*RE)S? is
a natural extension to D'(X) of the homomorphism ;& p of the vector
subbundle T*X)S® of the vector bundle D(X), where p is the homomor-
phism of T*(X) on itself given by

plo) = Lo, 2> (6. 16)
and it is the dual of the restricted homomorphism (6.7) on T(X).
Proof. Using local coordinates #', we get from (6. 6)
p(duw’) = Pidu', (6. 17)
(2t & p) (Ao’ & du*) = P{ Pidu' Q du. (6. 18)
Moreover from (6. 14), we get

J — "
g—gg - Nh) di* & dud'

e¢(du’ & du*) = Pldu* & du'

eg(d®u’) =

and

~ g2 _ (8P} 3 kA g0
p(dPus) = 5 'Yy ) eg(du* & du')
o P} <.
- (W: ~ I'd) Prdu' & dud,
pldu’ & du®) = Pleg(du* @ du') = P! Pidu' @ du.
The proof is finished.

We shall denote 2 simply by . in the following. Then the last equa-
tions are written as useful formulas :

2 _ (0P] 3 kg4 & n
t(d Zt)—- Ak F;k P,,du ‘\>_</'du, (6.19)
! ou

plduw’ & du*)y = P{ Pidu' & du” (6. 20)

We will call p = ur the homomorphism iuduced from I'. According to
Theorem 6.3 and (6.9), the homomorphism ;. defined on T*(X), T(X),
T*(%) and D%(X) may be naturally extended to any tensor product bundle
of these vector bundles over X. We shall denote these homomorphisms
also by the same symbol n. For instance, n: (X)) & D(X)— T(X)S"?
is given by



158 ToMmINOSUKE OTSUKI

y
1(0%un, @ d’w’) = I'j; 2"“1;" - Fc’z) Piou,, X du' @ du,
(Bu, ® d’w’) = P"‘(a—P—g — F’) Plou, R du' X du’

23 ) i PP [X] Fl m » (6. 21)
1(0°uu @ du’ @ du®) = I'ty, PP} dun @ du' @ du’,

p@u @ du’ @ du*) = PP P! Ptou, Q du* R du'.

According to the above-mentioned circumstances, we will then call
any cross-section I' of T(X) @ ©°(X) a general connection of the tangent
bundle T(X) of ¥ and say that I' is of the type P when i(I')= P &
w(T(X) @ T*(X)), or a P-connection of the tangent bundle T(X) of X.

Remark. In the classical theory of differential geometry, as is well
known, the suit of the components I/, of an affine connection is one of
the most handy and important geometric objects which are not geometric
quantities,'? that is, not a tensor of type (1, 2). In fact, the components
of a connection in the classical sense resemble the ones of a tensor of
type (1, 2) only in the point that they are of contravariant order 1 and
covariant order 2, but they belong to entirely different notions. But in
our generalized sense, they becomes relatives with each other, that is,
the components I';%, of an affine connection of X are the second com-
ponents of an 1-connection and the components 73/, of a tensor of type
(1, 2) are the ones of a O-connection by means of (6.3), where 1 and 0
denote the identity isomorphism and the zero homomorphism of T(X) res-
pectively. We shall give two interesting general connections which are
not of the above-mentioned types.

Example 1. When P = —1, thatis —I is classical, (6.3) becomes
and (6. 9), (6.17) and (6. 19) become respectively
(8uy) = —0ui,  p(un) = I'dybuy,
pdv’) = —du?, p(d*uw’) = '’y du' @ du”, (6.23)
Therefore 2> = p2 - p is given by
£@u) = dus,  p(un) = —I'ch Buy,

p(du’) = du’, pi(dw’) = I''ydu' Q du®,
and these equations show that
(pzr ) = p-r. (6.24)

12) See [8], p. 68.
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Example 2. Let X be a complex analytic manifold of complex dimen-
sion n#. Let the local coordinates «*, i = 1, 2, :-- 2n, be the » real parts
and the »# imaginary parts of local complex coordinates 2z’ = #’ + /"= 1
u"tJ. Let P be the operator deterimined by the complex analytic struc-
ture of %, that is

P=1= ( g? —06%)_ (6. 25)
Then (6.9), (6.17) and (6. 19) are written as
pOus) = 0toss, 1(Bhnss) = —0us, ,u(ézu;\,,) = I}, ou,,
pldu’) = —du™’, p(du’) = du’,

‘u(dgu”) = F}\vh duk ® duﬂ+h —I-'Ayn-i—h duA ® du”‘?

hence we have

‘u‘"(ﬁu;\) = “—'611)‘, /lg(ﬁgu)m) = P,\jp 6u,,+j -—]—'K'SJ 6‘uj,
pdw) = —duw,
W duw) = —T'ndu™ Q@ du” + I du' @ du*—

— T du Qdu™ + I'lopen dut Q du™™™
= —TI'2du'Q@du® -+ I''., du' @ du®
and
1£@uy) = dun, pNduw) = duw,
#(@Pup,) = —I'¥y 6u,ey + T'3F 0uy,
W dw) = =T dw* @ du® + Ty, du' Q dul.

§7. Covariant differentiations and regular general connections.

Now, for any general connection I' € ¥(7T(X) ® T‘(¥)), we define
a covariant differentiation D = Dr by

D=p-d: ¥(TEREP") - #(TE)B1Y), (7.1)

where d and ;2 = pp are the transformations in §5 and §6 respectively.
Since 4 is given by
/l(aui) = P{ au_,, lu(agum) = ]—'ijn auj,
w(du?) = Pldu', wdw’) = — A% Ptdu* ® du®, (7.2)
where we put
| 0P
dut’
for any & & #(T (X)) written locally as
£ = U,'»}IZZ"J; Buy, - Qou, S du Q- Q@ du’s,

Aijk = I‘ljk- -

(7.3)
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we get from (5. 7), (5.8) and (4. 4)

aU P
DE = =22 0y @ - @ 0w, @ duh @+ Q duh @ du)

p—-1
+ Ul ,u_{ § Ouy, @+ Q ous @ Fus, &+ @ ouy,
R du’r Q - R du?s R du'
q-1
-+ 26”11 ® nee ® 8141”

t=0

® du' @ @ du' @ dwen @ (duwes @ - @ du'}
[BUJI L. Py e Plp Py Pla P,
» 1 q
+ Ui {Z Piy e Py I'is+)y Plstz o« Plip Py« Pl P,
— 55 Ply - Pip Ply- Pl My Plgzz - P4 P }]
Xoup, @+ R 0w, @ duh1 Q) -+ R dur @ du™,

that is
= Uli%e, 0un, @ -+ Q0un, @ dutt @ -+ Q du*a @ du™,

UJ1 Jq

7 Bl

Ukdr, = Pl Piz Pl Pi P,
4

1My
- T -

+ 3 Plie Pl PpenPlerz o Plo Ujriip Py - Pla P,
— X Pl Pl Ukl Plyoe Pl Mezy Plivz oo Pl Py,
(7.4)

Now let us consider only connections I' such that A(I") is an isomor-
phism of 7(X) and call them fo be regular. Then (P!, I'Y,) belongs to
L%, Accordingly, we get from (1.9), (1.4) and (6. 4)

’f,‘((d‘gvv) (P}, /) = V(Pij, '),
77((@%’: Atjn) gvv) = (0' . gvv) 7,’(Qi’, Adjh) 8vu,

-
=3

hence
(a'gvn) W(Pf, I’fn) = ?(Q{, Aijh) gvo.

This equation shows that » (P}, I'}) is associated with an 1-connection 'I"
in local coordinates u*. We will call this 1-connection 'I" the contravariant
part of I'. Putting anew

(N~ = Qlou; ®du', (7.5)
I = du; @ (d%’ + 'I'h du' @ du®) (7.6)
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and using (1. 8), we get
'Thh = QI or I'h = PL'TH. 7.7

On the other hand, we can consider the induced connection'® ""I"
from the classical connection 'I" by the isomorphism (i(7I"))? of the tan-
gent bundle T(X) covering the identity mapping of . We will call this
l-connection ""I" the covariant part of I'. Putting

"p o= pu; ® (d’ +"r'ddu & du), (7.8)
we have
nrd = P39 1t @)
=(ra - 220 o
or
ré = nré i+ 90 (7.9)

Using p! = por and p' = gy, (7.2) can be written as

'u(ﬁu,-) =pn 1(Bu;) = p p"(0uy),
‘u(a?u»m) = Pi ,ngn ?m; = ,u('ffh Guk) =N ‘It'(agum)

, 0Py .
= (”]"ﬂh Pi - 6—11_': ) ou ;.
w(du?) = np(du’) = p p'(du’) (7.10)
w(d*u’) = ="' P Prdu' @ du* = p p''(d*u’)
=—(P,”I‘i —(&)P,Ldu R du™

We will call the restriction of pr on the tensor product bundles of
T(X) and T*(X) the induced homomorphism of order 1 from the general
connection I' which we denote by 4 = J7r. Then we have obtain the
following

Theorem 7.1. For any regular general connection I' € ¢ (T(X) R
LXX)), the induced homomorphism py of I' is the product of Ir and
the homomorphz‘sm e which is the identity mapping on T(X) and T*(X),
wer on T (X) and e on DX(X), that is

pr = Ap * fir. (7.11)

We will call this homomorphism pur the basic homomorphism of the

13) See [2], §1 and §23.
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regular general cennection I'. Then we can define a covariant differen-
tiation by

D = Dy = pr - d, (7.12)

which we will call the basic covariant differentiation of the regular con-
nection I'. We get easily

D=7-D. (7.13)

For any £ € F(TE)S"?), £ = U}g.‘i‘.}; ouy Q@ bui, @ du’r Q- Qdu’s,
we have

DE = Uji: ,q”(’)‘ut]@---®6u,p®du’1®---®du’q®dui,

4 i 6UJ "'-7 17
Ujl.hjl’” = ]l 4 -+ 2 'sz Ujl o 1 s+l"jp
1 g ou s=1 ]
f Lgrererasresnsmanennes
1 pm 1°2
- E IS U s seoimscar- -’q (7.14)

tel

Accordingly, from (7. 4) and (7. 14), we obtain
Ulgdem = Pl Pl Ulptly, Pl Pl Ph (7. 15)
Example 1. When P = —1, we have from (7. 7) and (7. 9)
l]"‘}h o _PIJIL; ”Pi"?& — —F(Jn,
hence
pAr = p_r,  pr = ADJir = Ap oI
Accordingly, we get (6. 24), because
(ur)* = ar* pr = (&p*ar) *pr-r = pr.
Example 2. When P = I in Example 2 in §6, we have
', = iy, Y = — I,
NPy = —Ieey, Tavie = '
by (7.7), (7.9). Hence it follows that
e, = "ritl, 3, = =",
Ty = =" 'Tide = "T'0.

Since I' = 1, we get (ur)' = ur.

§ 8. The naturality and the Lie derivatives.

Firstly, we shall discribe some concepts on bundle homomorphisms .
of vector bundles.
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Let = {8, %, =, 9} and §' = {3". ¥, =/, 9’} be two vector bundles
and h: 3'— B be a bundle homomorphism covering a given mapping s :
¥’ — X. We denote the dual vector bundle' of § by %*. Then, we can
define naturally a transformation of #(¥*) into #(§'*) denoted by /#® as
follows : For any £ € #(F*), 2’ € B/, we put

<2, hCED> = ha!, ED. 8.1)
When § = T(%), §' = T(X') and & is the differential mapping d+» of ',
h® = (d)® is 4* in the ordinary sense.

Furthermore, when dim ) = dim ¥)' and % is a bundle mapping, that
is an isomorphism on each fibre of ', we can define naturally a trans-
formation of #(%) into #(®') denoted by %9 as follows: For any £ €
#(F), we put ’

WS E(x") = (B[ D)7 (EGp (D)), (8.2)

when % is the induced bundle mapping of y-, we denote /S by +-°.
Now, for any v»: X’ — X, we define a bundle homomorphism

dopr 1 THE') — THX) (8. 3)

covering +f as follows: Let (U', ') and (U, «') be coordinate neighbor-
hoods of ' € ¥ and x = \;f(x’), then we put

dAlr(Gu's) = — Ouy, (8.4)
- &u‘ ﬂ ou' out
dg\!l‘(()’ulda) = W oUy + EIW aulp 6 Uine (8. 5)

We can easily see that this definition of dx)» does not depend on local
coordinates and d.)r  T(X') is the differential mapping dyr of 4 in the
ordinary sense. We will call duw)r the differential mapping of order 2 of
. We shall denote (d-y)® by . For any f, fi, f, € ARX), we get
immediately from (8. 4) and (8. 5) the equations

G Hdf, @ dfy =80 AL ) guie@ auk = a(f )R d(for ),

ou'* ou 0, 1B
(8.6)
VHE) = 95,;’ W) gy 6"u(,{ a"fz du"™ @ du® = d(f-y) (8.7)

14) See [2], §1.
15) As is well known, dy is usually written as {y, the author will use also this
notation in some sections in this paper.
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and hence we have the following formula :
d - 1[/~* = 1/1'2* .- d. (8 8)

We get easily from (8. 4) and (8. 5) the following

Lemma 8.1. Ifdim X' = dim X and «r: X' > X is regular, then

dy: T(X) > T(X) and dofy 1 T(E') — T(X) are bundle mappings.

In this section, from now on we assume that the conditions in this
lemma are always satisfied. Here we shall explicitly show (d)© and
(dr)©. For any £ € y(TXX)), & = U'dus+ U™ uq, we get from (8. 2),
(8. 4) and (8. 5) the following equations :

ou'’ 6u

_oulou” o’ ou )
T 8ut 0" ouTou’

_ ou™ a*u’ ou ou'™
Y (Ul_ ou™ou"” out ou" UM) D (0ut's) +

U'ou,+ U0%uy=U'du, +U"‘(

1 L
4 _6%_ ou Um dgl‘l,.(a%lljk%

ou' ou"
hence
2,, 1) 143
(d)SE = (g”l Ut %‘.— U“‘) ou', + g” gz Uy,  (8.9)

here we assume that + is homeomorphic on the coordinate neighborhood
', u').
Accordingly, for any & € #(T(X)), &€ = U'6u,. we get
d(dy)SE) = d(a" Ut ou'y)

tdulk’

ou 2 ou
— o, ® d(a—f U‘) +ou @2 U

((d)E® ;r*)(df:‘) = (d)2 @ ¥*)6u, ® dU* + un Q U'du")
au

_l_

*u’’ . ou’ au™ ;
+(W6“" B Pu) ® Ul

2 13
=ou; R d g::[ U’) +Fu' @ g%f Utdu'™,

where we omitted «* for the calculations of the right hand sides, hence
we have the formula

d-(dy)® = (dn)° B *) - d. (8.10)
This formula is analogous to (1.17) in [2].
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Now we take a general connection I" € #(T(X) Q (%)) of X given by
(6.1). Then we will call I’ = ((d-)© Q ¥ I' € ¢ (T (X') Q@ D*(X") the
induced general connection from I" by the mapping +». We shall write I/
explicitly. By means of (8.7) and (8.9), we get easily

I = ((dy)3 Q ¥) (0w, @ (Pid*u' + TI'i du' @ du)}
Jm
- o |7 (2 a0 @ e O, )
L ?u” o du” & du”‘}

= 0u', R (P} d*u"? + I'dut’ @ du™),

+ I

where we put

ou'
m
P T =

ou'
ou' S ou'’ (8.11)
m Ou’”’( . ul . out " )
m o U .
* o Y ouout? " el ou (8.12)
Hence we put
ou’ - Ful-
yeo = (g’ a'rnaz;n) (8.13)

on U’ Ny~ "(U), these equations (8.11) and (8. 12) can be written as
a(\/"FU') ° (Pli’, r’fn) = (‘;"*P‘j’ \”'*r‘jn) * Yrvvr, (8' 14)

which is analogous to (6. 4).

Then, by means of (7.2), (8.9) and the above equations, we obtain
easily

P~ 3]
Mre e (dz\ll')e 6111 = Hnre (%{’ 6u'_y) = ——u P’j ou k
= ﬁuh, P'L au k (dl‘lf)e (P? auh) = (d'\ll‘)e . .M[‘ 6”1,

Y 2,13 12 1
ftre (d”!"){9 Uy = e (%E a”,J -+ gzi gZh o°u Jk)

9%u" ou'? ou™
= DU prgy, - 247 24 g
au"ﬁu‘ IR Ut bu” ou's
ou ~ o
5‘ ]11 n ou’ 3 (d 1}1)d iy 6’u”,,

hence
nre * (d'_r‘\‘!l‘)e = (d’\]l‘)e < /l Te (8. 15)
Nextly, by means of (7. 2), (7.3) and (8.7), we obtain easily
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it i
Mot \jp*du‘ = ptr’ —a—u du”) = gz%j P'idu"‘

aui)

{ 0u” k
h. ,k du’ = '\!J- *Hrp du',

sl kg2t — U 2 1) 1 1k
pre e prrdou '!Lr\/(a“—’"jdu +6u’*" ~du QX du

o i
= 2 (ra = 228) Py @du + PA PP du™ @ du”

u” . W
™ oulou™ L ™ ou" ou" W 6u"
+ P aI;ua i P P'T} du™ @ du'™
_ aut ou' 8P
"‘{_ :ut 6u”‘ P?n " P:” rla 3 P+ =5 ou Bul au”n g
62 P[ Pll d I?L®d 23
ou"ou” “ “
_ du™ ou' oum ou
_{ "“Pta Zrria Po ™ ou"ou™ P+ ou ”(Pi ’n) P”}
du™ @ du'*

du™ ou' o PL ou' ou™
={ 2 P!a ™ ou™ t 5wl ou™ P”} du" @ du”

= = (r - B Pt Gl i @ e

= — ( e — ng:") Piy*du™ @ yrdu' = (y* @ W*) » pr &P,
hence
s p* = ¥ i, (8.16)
pre s = (" @ *) - e (8.17)
Generally, let us.put
PP = (@08 D (¢*)8: H(TER™)
HTE)®™9) (8.18)
and analogously consider the transformations
(dy)E)&* @ (d:p)© @ (AP @ (y*)B1*D,
s=0, 1, p—1; (8.19)

((d'\!/‘)@)@p R («[/-*)®‘ R ’\lrik ® (l!ﬁ*)®.’q-n—1),
= 0, 1;"',(]—1; (8.20)
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which operate on the spaces of cross-sections corresponding to the vector
bundles over X in the right hand sides of (5. 6). Furthermore, let

_— -1 M
,lp.@:p.qﬂ) . !lf(Z + T(%)@l ® z‘:(}’) ® T(:{)@fﬁ—s—l) ® T*(x)@(q*n
8§=0
q- .
=3+ TS @ THOS @ D) @ (THR)D*)
t=0
— ¥ (the corresponding vector bundle over X') (8.21)
be the transformation which operates on each parts of a decomposition of
any element according to the structure of the vector bundle in the round
parenthesis of the above equation as the operator (_8_. 19) or (8. 20) respec-
tively. It is easily seen that this definition of ®™'" js well defined.
And then we put

11,},(g’;cz).qm | B(TER)B P21y = qr@’"““’. (8.22)

After these transformations prepared, we shall obtain easily the fol-
lowing formulas by means of analogous calculations :

d- 1r,,,®(p.q> — \[Pg(p,qv-l) - d, (8. 23)
g - ‘I"gmhn — 1,'r®"""”’ < e (8. 24)
Hence, we obtain the analogous formula on the covariant differen-
tiations to (1. 17) of (2] :
Dp - 1!,\@,(11.«1) = pp - d - 4p®(p,q) = pp - x]l\@-(p'”” od
= ‘I’.g.'p.q-l-l) < up - d = ‘k.@(p.qﬂ) . DI‘-
Theorem 8.2. For any regular mapping + : X' = X, dim X' = dim

X, and any general connection I' of T(X), the following equation of the
naturality holds good

Dy - 1]1*@’?"1‘ = 1[r®(p'u;—l) » Drp. (8. 25)
Now we assume furthermore that X' = X, +» = 4 is depend on the

real parameter ¢ and +», = 1. Then, we may consider as «" = ', and
so we put #'+ e = i,

Ayl
Wi(u) = u’ + (7\?)‘:015 + o,

D), ) = Ew)

Then we get from (8. 11) and (8. 12)

m ~m_ OET AP ok, v OF
Plj=((Jl_57t+"')(Pi—}_a—z‘:gkt—f'”)(og—‘_a‘—jt'*’"')
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m

=Py +

Ek E P, + P 3{“)t+

S T PO

i h
n (r.’h +a——£¢‘;"§8t + ---)(3} + gf,t - )(a’,;+""5 t+ - )}
o, oI

1
ouon’ kan GE Ije + I"" 6E

=5+ (pr
h

+1‘,,.65)t+---.
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Therefore, we have the following formula on the Lie derivative of a
general connection :

£: ' =1lim, (dy )P QW) I — T
¢

J k
= o0, @ (2ot — 25 pr 1 py BN

J'.___a_fh O_‘Z_ﬂii k _Q,Ei ko J ag J agk)x
+(P"’au'°au’+ 6u’°£ au*]‘ Tin g T T ou"

du' Q du®
= du; Q {£(P)) d’u' + £(I'vh) du' @ du)}. (8. 26)

Analogously, we can define the Lie derivative of any cross-section
of a vector bundle over ¥, which is constructed from the vector bundles
T(®), TA(X), T*ZX), *X) by means of the tensor product and the sum of
vector bundles, with respect to the tangent vector field & = £ 6u,, for
instance, for V& ¢(T(X)®"?), we define £V by

‘lrt@‘p.q) V-V

; (8.27)

£§V = llmt_.o

§9. The canonical mapping pr for I
In the following sections, we shall deal exclusively with regular ge-
neral connections. Let I be such a general connection. For coordinate
neighborhoods (U, #') and (V, ¢*), UNV s @, we have
&°v’ v ov* o

- 0v; + W W Vjke

~0
Uy = ————
ouou'

Making use of ' = pp(= 75"« ur on TH(X)) in §7, we get
/L'Bzum =

a—,,v,\—,,zav,-l— o R
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hence

1 — ) 0%un = a—a:; gz—’; (1 — ') v, 9.1)
which can be written as

(1 = p)Puin = (1 — p)) vy al(gvo) anlgvo)- (9.1

For any b € =~ %(U), e(b) = ai(3) du;, we put b = p(b) by
edb) = edb), (9.2)
end) = (1 — p') 8un al(3) ai(3)
= @un — I'h QF dun) al(3) al(). ©.3)

By means of (9. 1), we see easily that p is well defined on the whole space
B(X) stated in §1 by (9.2) and (9. 3). We will call this mapping p= pr:
B(X) = B(X) the canonical mapping for the general connection which is
a cross-section of the fibre bundle {®%(X), B(X), }.

Since we have e(ba) = e,(b) ai(a) for any « € L., we get easily

ei(P(b“)) = efba) = e,b) al(a) = eJ(P(b)) ai(a)®
and
en(p(ba)) = (1 — p) us ai(3a) ak(3a) = en(p(d)) al(a) ai(a).
Since af(«) = 0 for « € L!, we obtain immediately the formula :
pr - 1(a) = t(a) - pr ©.4)

by means of (1. 15) and (1. 16).
Conversely, let be given a cross-section p of {B7(X), B(X), 4} satisfy-
ing (9.4) and an isomorphism P of T(X) covering the identity mapping

of X. For (U, #'). b € z7'(U), b = p(b), we put
ea(d) = du; al(3) + Fuy al(3) ai(3).

By (9.4), we have p(ba) = p(b)a for any a« € L. Hence, by means of
(1.9) and (1.7), we get

@ty ((Fa)™) = af(pla3)
= ah(F(a)37) + ah((37)) = ah(4(5™),
which shows that
T = ah(7(3™)

16) The two e; in the middle of this equation may be regarded as e; : B(X)— T(X).
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depend only on the coordinate neighborhood (U, #'). Hence 'I'%, are the
components of an 1-connection 'I" of the tangent bundle 7(X) with respect
to the local coordinates #'. By (7.7), putting I, = Pi'I’'#, we can

obtain a P-connection I" and we can easily prove thst pr =p.r =p. Hence,
we have

Theorem 9.1. Any regular general connection I' of the tangent
bundle T(X) of X determines a cross-section pr of {B(X), B(X). o} inva-
riant under the right translations of B(X). Conversely, such a cross-
section p and an isomorphisme P of T(X) covering the identity mapping
of X determine a general connection I' such that p = pr and P = 2.

§10. The universal affine connection.
Let us consider the induced vector bundles'”
{8.(%), BE)} = =*{T®), %}, (10.1)
{Bi(x), BF)} = = {TR), ¥ (10. 2)
from the tangent bundles T(X) of order 1 and Z*(X) of order 2 by the pro-
jections = : B(X) = X and T : B (X) — X of their principal bundles {B(%),

X, z} and {B*(X), X, 7} respectively. Let {e¢;} and {C; e} be the natural
cross-sections of the induced vector bundles, that is

v(eb)) = eyd) (10. 3)
and

T(edB)) = eud), T(En(d)) = enld), (10. 4)
where »: B,(X) > T(X) and v : Bi(X¥) —» TY(X) are the induced bundle
mappings by = and =. We may regard the induced vector bundle

B.(%) B(X)

| |

B(X) -— B(x)

e
x _ _B®
SN L
TE) —> ZA(X)

UE) = 7{T@E), %} = {B.(%), B@)}

as a vector subbundle of =< {T*X), X¥}. which we will call the universal
vector bundle of ¥X. We may regard ¢ as the natural cross-sections of

17) See [2], §1.
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the universal vector bunde of X.

On the other hand, if we regard & as functions defined on U and take
b! such that bl af = 4/ for a moment, we obtain from (5. 3) the following
equations :

de, = d(a} oun)

= a? 0®un. ® du® + 0ur R dal
a(bire; + bl biey) @ du* + ble; Q dat
=e; @ {bldal + bl al du*} + e; & bldu*,

I

where (b{, b{,) = (ai, al,)”'. Based on these equations, we can define a
sort of differentiation
d: w(@(TE) - r@EH(TRX) ® THB(X))) (10. 5)

by :

de, = ¢, & =l + ¢; ® ¢, (10. 6)
and

d(f'e) = flde, ~ & R df, (10.7)
where f' are any functions on °(X) and

¢ = bidu'. (10. 8)

i = bl dal + bial du". (10.9)

¢’ are differential forms on B(X) but they may be considered on B*(X) as

the differential forms transformed by s*. At the end of this section, we

shall prove that ={ are well defined on the whole space B%(X).
Furthermore, by virtue of (10. 6) and (10. 7), we can define a natural

affine connection for the universal vector bundle W(X) whose covariant
differentiation is given by

D¢, = ¢; @ =, (10. 10)
and whose developing part is given by
dy = ¢, @ 0’ € ¢(0(X) Q& T*(B(X))).® (10.11)

We will call this connection the universal affine connection of X.

Now, let I" be a regular general connection of ¥ and p = pr be the
canonical mapping for I" defined in the last secticn. Making use of (9. 3)
and (10.9), we shall calculate p*z{. Writing (9. 3) as

en(d) = ali(3)0u; + al(3) ai(B) 8°us,
we get
al(7) = al(3), ain(3) = —'T'% ai(3) ai(3).

18) See [2], §L.
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hence
= bi(ﬂ) 'I‘{kn.
Accordingly, we have
o=l = bi(dal + 'I'v ai du®) = I (10. 12)
which are the differential forms on B(%) for the classical connection 'I" as
is well known. Hence, we have
Theorem 10.1. For any regular general connection I', pr*ai are
the differential forms on B(X) for its contravariant part 'r.
Proposition 10.2. For any coordinate neighborhood (U, u*) and
any b z'(U), let b= r(3)@us, 8uwn), 3 E &3, then =i can be written
as
wl = al(37 df) — ab(5(3)) 0%, (10. 13)
and they are independent of local coordinates.
Proof. From (10. 8) and (10.9), we have
a = al(p7'dp) + al (7)) ai(3) du*
= al(p7'dB) + al(8™) al(p) ai(®) o'
= a{(ﬁ"dﬁ) + aijn(;g_lﬂ(ﬂ)) o
= dl(FdH) — ahla(3™ ) 0"
— al(gdp) — ah(z () 0"
For another coordinate neighborhood (V, v), UN V@, let b= r(ﬁ)
(6vi, 6%vw), then we have easily
B =g f | (10. 14)
because (1. 10) and (1. 11) can be written as
(us, 8°un) = r(gvv)((Bvi, 3vin)).
Accordingly, we have
E—l dﬁ = (37" gov) d(gvv A),
a(3dp) = al(37'd3) + al3™) ak(gur dgrv) ai(3)
and by (1.8) and (1. 9) '
a7 (3) = ably(gve )
= a{n(‘/j(ﬂ)) + a‘iih(j‘?-lyl‘(gf"l/)(?)r
@y (6" = ah((MO + al(3™) atly(gre)) ai(3) an() "
ab(z(AN0" + al(F)atu(p(gvv)) duai(3)
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= a7 (N + al(37) a(guvr dgvv) ai(3).
Hence we have
ad(FdB) — ahlg(D" = al(F'dP) — ahl7(3))0"

9

Theorem 10.3. For the right translation r(a) of B'RX), a € &,
we have
1()*0’ = dlla™) 8, (10. 15)
tla)*z{ = alla™) {=f + a}fz(y(a'")) 0'} ai(a) (10. 16)
= al(a™) al(a)ar — aily(a)) ai(a™')0'.
Proof. (10.15) holds good evidently. For (10.16), we have
r(a)*z! = alla™37'd(3a)) — a{n(y(ﬂa‘)) r(a)*e"
= al(a™) ai(37'd3) ai(a)
— lahla y(Da) -+ ahlya)} a0
= alla){ai(37d3) — au( (N} alla) — ally(a)) ai(a™)s*
= alla™) al(a) =} — all (a) di{a )",
— aijh(p(a')) ala™)d* = abhao(a)) at(a™")o*
= al(a™) an(s(a) a™)al(2)8",

hence
r(a)*z! = al(a) {zF -+ tlf.’l(y(a'_')) 7'} ai(a).

Corollary 10.4. We have especially for a € L),

r{a)*x! = al(a™) =k ai(a) (10. 17)
and for a € Y
r(a)*nd = = + al(a™") 0" (10. 18)

§11. The vertical tangent vector fields of B(X).
In this section, we shall consider the vertical tangent vector fields on
B*(X) defined as follows.

Let Yj, Y,” be the tangent vectors at the neutral element of £} such
that

Y =6/0al. Y/ = 08/0al, (11. 1)

and at any point b € B*(X), we define the corresponding tangent vectors
to B(X) by
QYb) = db(Y)®, QF(b) = db(Y)), (11.2)

199 The notation Q} will not be confused with the one used for the inverse of
J(I'y= P in §7 in the following sections.
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where b is regarded as the admissible mapping of {87(X), X, 7}, b: £ —
7 (z(b)). We will call Q) and Q% the first and second basic vertical tan-
gent vector fields of the principal fibre bundle B*(X) respectively. We
shall write Q%, QY in terms of local coordinates of B'(¥). Making use of
(1.1) and (1. 12), for the left translation /(;3) of £}, we obtain

1(3)s Y? =[8(a (ﬂ)a(w)):l (a )

6 ai(«) day
a(a (9) ahm(a) + a t( ?) ah(w) am(a)) a
- l: ‘ 8 al(a) ‘ :L aaf.

= as(3) (" fc) + aj (F‘)( ) a3 <aam)

1(,3)* Y;n — [:6(a}"(ﬂ) dﬁ»z(a) + aﬁ(ﬂ) a}‘t(ﬂ’) a (a))

0 a{,.(a) 6 a;d

7L 6
= (ﬂ) (aa;’,‘,)a -

Hence, regarding «’, af, alx as local coordinates of B*X), the tangent
vector fields @) and Q¥ can be written as

and

Q) = a%o/oaf - a},8/0ak + ai;0/0ak, (11. 3)

Q" = a%o/oal,. (11. 4)
Conversely, from the above equations we obtain easily

0/oal, = b5 Q, (11.5)

8/oal = b} (Qk — @ B Q7 — @b b Q7). (11.6)

Furthermore, for the right translation r(a) of the principal bundle
B*(X) of order 2, & € ¥2, and b = r(3)(Pu;, 8°uw), making use of (11.3)
and (11. 4), we obtain

(@) Qj(6) = a5(3) r(a)s (8/0al)s + au(3) r(a)« (3/0ain)e

+ arB) r(a)y (3/ 50;51)3

- aj<ﬂ>{[f’;“§i"’“” MCRIS - ol (Zas,)a,}

(s [ 25057 10 + o [ 5]} e
= a(3) {al(a) (8/8a})ga + @rila) (0]0ak: )pa}
+ {a/%(3) @(e) aila) + anfB) anla) ala); (9/0an)sx
= a¥(3) ai(a) bi(Ba) {Qh(ba) — amn(Ba) bi(Ba) QM (ba)
— ah.(Ba) by(3a) Q' (ba)}
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+ {a¥(3) diula) + a5 () arla)al(a) + ai; (B) aifa) ai(@)} bi(3a)Q7(ba)

= ai(a) aj(a™") Qu(ba)

- al(a) aj (a’ ]) bs(ﬂ.L) {ai(ﬁ) af;.n(a') + diu-(ﬂ) aﬁ,(a') a%(a)} leh(bﬂ’)

— ai(a) a(a™) bi(3a) {ai(3) dhnla) + a1 d3) ai(a) apla)} Q¥ (ba)

+ aoala) aa™) QT (ba)

+ bi(Ba) {ah(B) anla) aila) + arf7) aila) aia)} Qv'(ba)

ai(e) at(a™) Q\(ba) + diula) a(a™?) Q7 {ba)

— al(e) {aj(a™) ai(a™) arala) + biBa) a5.(3) ai(a)} QP (ba)

— al(a) {a7(a™) alla™) armla) + b(3a) aid3) ai(a)} Q¥ (ba)

+ bi(3a) {ah(3) anla) ai(a) + aif®) anla) ai(a)} Q*(ba)

= a;(a') a}"(af—]) Qf,.(ba’) + af..z(a') dlj(a—]> Q;m(bﬂ')

— ai(a) a7 (a™?) {am(;(a)) Q1 (ba) + ah.((a)) Q¥(ba)}

= aila) df(a™") {QUba) — ain(4(a)) QI"(ba) — am(y(a)) Q7 (ba)}
+ anla) di(a™) Q¥ (ba)

and

(a)y QF(0) = a5(3) r(a)« (8/dain)s
= k( 9)[ O(aml(l a)) 6 )ﬂa

oain(y) im "
1(19) a,,.(a) arh(a) (a/oaml )Bm
= a%(3) aw(a) ai(a) by 3a) Q" (ba)
' = dal(a) aa) ai(a™) Qi (ba).

Theorem 11.1. The vertical tangent vector fields QY and Q% of
the principal bundle B(X) of order 2 of X are operated by the right
translation r(a) of B'(X), o € ¥2, as follows :

1{a)y Q) = anla) df(a™) {QF — ah.(y(a)) Q1 — alu(y(a)) Qi*}
+ aj(a) da™") QF, (11.7)
I‘(af)* m = a,n(a)al (a) a}(a ]) Q’"l. (11. 8)

Corollary 11.2. For any a € L, we have
r(a)s Q% = anla) di(a™) Q. (11.9)

Lastly, from (10.8), (10.9), (11.3) and (11.4), we get easily the
following equations :

<Q5 ¢> =0, (11. 10)
QS an> = on o5, _ (11.11)
<QYF, 68> = QP =iy = 0. (11.12)
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§12. The field of universal tangent planes and the modified
differential mappings of right translations.

At any point b € B%(X), we denote by N, the tangent subspace of all
tangent vectors X such that

which is of dimension # + n°. Let N be the field of N, on B*(¥). We will
say any tangent vector belonging to N to be proper and call N, the uni-
versal tangent plane at b.
For any X& N, and any « € £, by means of (10. 16) and (11. 11),

we get

<r@)X, =12 = <X, r(a)*=>

= X, alla Nal(a)=r — al(y(a)) ai(a™) 6>

= — al(y(a)) aila™) 6'(X)

= — amlp(a)) a(a™) 0(X) < Q% =l >,
hence it follows that

r(a)s X + ain(7(a)) a(a™) 0'(X) Qiba) E Ny
Owing to the above result, we define a mapping on T(B%X)) as follows :
For any X € T,(B(%)),

ra)X = r(a)x X + d;‘;m(p(a’)) al(a™) 64(X) Qi(ba). (12. 2)

We will call r(a) the modified differential mapping of the right trans-
lation 1r(a).

Theorem 12.1. The modified differential mapping t(a) of the
right transiation r(a) of B(X) has the following properties :

i) 1(a) is an isomorphism of the tangent bundle T(B(X)) covering
r(a),
ii) T(a) operates for vertical tangent vectors to B (X) in the same
way as r{a)x and t(a) = r(a)x if and only if « € L},

iii) f(&) Ny = Nba, (12. 3)
and

iv) for any a, a; € 22, X € T(B(X)),

r{a)) T(a) X = t{aa)) X + atj;(af’p(a') ay) 0* (r{aa)sx X) X
X {ahi(p(@) Qi (baar) — dily(ar) Qi (baay) — i (7(y)) QR (baar)}
(12.4)

Proof. We have proved that r(a) N, C N,, and from (11. 2) we see
easily that r(a) = r(a)y« if and only if ah(;(«)) = 0, thatis z(a)E L) N
N2 ={e}. The first part of ii) is evident from (12. 2), (11. 10) and (11. 12).
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We shall prove iv) and then i). By means of (12. 2), we have
T(a;) (T(@)X) = r(ar)x {r(a)s X + al(4(a)) 0" (1(a)x X) Q5(bar)}
+ @i nly (@) 67(r(an)s {1(a)s X + al(7(a) 6'(1(a) X) Qi(ba)}) Qi(baas)
= r{a)x r(a)xX + al(7(a)) 0" (1(a)s X) r{a:)x Qi(bar)
+ apm( (1)) 07(r(ar)« 1(@)s X) Qi(baar)
+ @il 7(@r)) @l (7(a)) 6" (t(a)x X) 6™ (r(ar) Q¥ba)) Qbaa).
Using (11.7), (10. 15) and (11. 10), we have
= r(aa)x X
+ ai(7(a)) 0'(x(a)xX) [aila)) aiai?) {Qilbaar) — ai(y(ar)) Q¥ (baas)
— au(y(ar) Q' (baay)} + ailar) al(ar™) QF(baay)]
+ an(ylar) 6" (rlaar)s X) Qi(baay)
+ @l 7(ar)) ali(5(a)) 6} (r(a)s X) a7 (a5?) 6°(Q}(ba)) Qi(baay).
Furthermore, using (1.7), (10.15) and (1. 8), we have
= raa;)x X
+ @ulai’7(a) a:)5'(rlaar)s X) {QUbaay) — aily(ar)) Q¥ (baas)
- agk(&(aﬁ)) Qf"(ba‘a'l)}
+ aulai g (a)ar) 0'(r (aa)« X) ani(y(as)) QP (baas)
+ @ml7(ar)) 67(r (aay)s X) Qi(baay)
= r(aa)x X
+ lanlai’y(a) a) 4 ah(y(a))} 6 (r(aa)s X) Qibaay)
+ af (a’l_l r/(a‘)al) 01(1'(!10‘1)* X) {a}l k(‘/,(a'1)) Q?k(baa'l)
— @5 (5(a) Qi (baar) — dl;(7(a))) Qi (baay)},
hence, using (1.9), we obtain the formula (12. 4).
Nextly, we suppose that r{a)X =0, X& T,(8(X)). Then, by (12. 4)

in which we put a; = o™, we get
p ’ g

0=X -+ a{z(way(a) a™) 6'(X) X {anuly(a™)) QY(b)
— @ul7(a™) QiNb) — aif(;(a™") QF(b)}
= X—aj (7;(&_])) 0'(X) {(l}w(?}'(ﬂ'-l)) QY (b)
— a5i(7(a™)) Qi) — ak; (4 (a™)) QY ()},
since r(e) = r(e)x = the identity mapping of T(B%(X)) by ii). It must be
X = ai(7(a™) 6(X) {ahuly(a™) Q1) — allz(a™) Qi (d)
— ar;(z(a™)) Q1)

hence X must be a vertical tangent vector of B%(X). In accordance with
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ii), we have T(a)X = r(a)4X. As is well known, r(a)y is an isomorphism
of the tangent bundle T(B'(X)) of B(X). Accordingly, it must be X = 0.
Thus, i) has been proved.

Lastly, iii) follows immediately from i) and the fact that r(a) N, C
Nua. The proof is finished.

Now at each point b € B*(X), let Q; the »* dimensional tangent
subspace spanned by Q%(b).

Corollary 12.2. The mapping T(a) is a representation of L as
transformation mod Q.

Now, we shall determine (r(a))® = r'(a) which was generally de-
defined for any bundle homomorphism of a vector bundle into another
one in §8. For any a € 22, w € ¥(T*(B(X))) and X € T(B* (X)), by de-
finition, we have

(")) (X) = w(r(a)X)
= w(t(@)«X + at(7(a)) 0'(r(a)«X) Qi(ba))
= w(r(a)eX) + al(3(a)) 0'(1(a)x X) w(Q)(ba))
(r(a)*)X) + al(z(a)) (t(a)*0")(X)(Q3)(ba)
= (r(@)*o + al(y(a)) (@) (ba) r(a)*") (X),

hence we get the formula

(@) w = r{a)* {0 + ai(z(a)) w(Q)) 6'}. (12.5)
Especially, for ¢/, ={, we obtain
t'(a) 0! = r(a)*6’ = alla™) 0" (12. 6)

by means of (11.10) and
t'a)ri = r(a)* {xl + ahl(y(a)) zI(QL) 6'}
= r(a)*={ + al(4(a)) r(a)* ¢'
= al(a™) alla) ak — al(y(a)) aila™)8" + al((a)) r{a)* 0
= ala™) ai(a) =i,
that is
t(a)nl = al(e™) ai(a)m (12.7)
by means of (11.11), (10.16) and (10. 15).
Lastly, we shall show a relation between the field of universal tan-
gent planes and regular general connections.
Let I" be any regular general connection of T(X) and p = pr be the

canonical mapping for I' defined in §9. At each point b € B(x), we
define a tangent subspace by
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H, = T,(BX)) N ps (Nowy), (12. 8)
that is X € T,(B(X)) belongs to H, if and only if p4XE N,w, namely
CpaX 7> = <X, p*el > = <X, 0]> = 0.
Hence we have

Theorem 12.3. H,is the n-dimensional horizontal plane at b for
the 1-connection 'I" which is the contravariant part of I'.%0
The well known property that for any a € L},

1{a)y H, = Hu (12.9)
is implied immediately from (9. 4) and (12. 3) as follows :
r(a)y Hy = r{a)s To(B(X)) N rla)y px (Nomy)
= Tou(B@E) N p3'(r(a)s Nowy)
= Tw(BE) N px'(Nowa) = Hoa,

since f(a) = r(a)* for any « € L.
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