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Let K be a Galois extension field of finite degree over the ground
field L. Then, as is well-known, K possesses a linearly independent L-basis
of the form {ks}, where o runs over the Galois group &* of K/L (normal
basis theorem). Evidently this proposition may be interpreted in the fol-
lowing way: K is ®*L,-isomorphic to &*L,, where L, means the right
multiplication by L. After several extensions of the normal basis theorem
to division rings and other rings with outer Galois groups, F.Kasch put
forward his consideration along the line of the above interpretion, and
obtained some interesting results for rings with not necessarily outer
Galois groups [3]". One of the purposes of this paper is to present sup-
plementary remarks to Kasch's work (§1). In §§2—4, we shall deal
mainly with strictly Galois extensions, for which a sort of normal basis
elements can be found, more precisely, for some finite subgroup of the
Galois group we can find a normal basis element. Almost every result
stated in §2 has been given in [2] and [9], however §2 will play a pre-
paratory role for §§ 3—4. In § 3, we shall consider the structure of simple
rings treated in §2. Further §4 contains a remark on quaternion alge-
bras, and we shall conclude our study with an appendix contairiing several
results on group rings over simple rings (§35).

1. Throughout the present paper except §5, R will denote a simple
ring (with an identity element and minimum condition for one-sided
ideals), and & a group of autmorphisms of R.

Definition 1. R is said to be w-Galois with respect to & when the
subring S of all &-invariants (S = J(&, R)) is simple. Or, for a simple
subring S of R, we say that R/S is w-Galois if there exists some & such
that S = J(®, R). In case R/S is w-Galois with respect to &, & will be
called a Galois group of R/S, and the group of all S-automorphisms of
R the Galois group of R/S. Further, if R/S is w-Galois and V,(S)? is a
simple subring then R/S is said to be Galois (or R is Galois over S). ¥

Definition 2. Let R be Galois and finite over a simple subring S. If

1) Number in brackets refer to the references cited at the end of this paper.

2) For any non-empty subset X of a ring U, Vy(X) means the centralizer of X in U.

3) One readily sees that R is Galois and finite over S if and only if S= J(®, R)
for some regular group ® (in Nakayama's sense [6]).
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R is &*S,-isomorphic to ®*S,® (as a right-module) then we say that
normal basis theorem holds for R[S, where &* is the Galois group of
R/S.

Definition 3. Let R be Galois over S. R is said to be commutativel y
extended from S if R=SQ®py s C for some field C (cf. (1.

Our first result is the next theorem.

Theorem 1. Let R be Galois and finite over S. Then, for any &
with S= J(&, R), the Si-endomorphism ring of R coincides with OR, :
Homg(R, R) =GR, if and only if V(®) is two-simple, where V(O)
means the subring generated by all regular elements v € R with v =
v e @, ‘ P

Proof. Let &* be the Galois group of R/S, and J*= Vx(S)?. Then,
as is well-known, (&* : 3*) - [ Ve(S) : Va(R)] = [R : S]< % and Homyg,
(R, R) = ®*R, = Z:,g{;o-* Vz(S). ® R., where X means the tensor product

over Vi(R),( = Vr(R),) and +* runs over some fixed complete representa-
tive system of &*/3* (cf. [6]). Similarly, OR,= > s V(®)XR,, where

o runs over some fixed complete representative system of &/& M J*.
Noting that /& N J* = GJI*/J* and V(G) C Vi(S), we readily see that
G*R, = GR, if and only if Vi(S) = V(®) and &* = @J*. However, if
V(®) is (two-sided) simple then a similar argument as in the proof of
Homgs (R, R) = ®&*R, shows that @R, is simple (cf. [6]), and so GR, =
Homg, (R, R), completing the proof.

Now, replacing U and R in [8, Theorem] by R and Vx(S) respec-
tively, we readily obtain the following

Lemma 1. Let R be Galois over S. If the Galois group of R[S is
finite then either Vu(S)= Va(R) or Vr(S) is finite.

Theorem 2. Let R be Galois (and finite) over S. If the order n of
the Galois group &* = &(R/S) of R/S coincides with [R:S]: ord. &*
=[R:S], then Va(S) = Va(R).

NProof. As ord. (&*/ IZIS_‘,)) = [V(V(S)): S],” we obtain ord.
Ve(S) = [R: Va(Ve(S))]. Thus, it suffices to prove that if R is inner

4) v; and v, means the left and the right multiplications by v respectively. Simi-
larly, for any subset X, X, = {x.|x € X}.

5) For any subset X, X denotes the totality of inner automorphisms induced by
regular elements contained in X. And so, f’Fg) is the subgroup of &* consisting of
all inner automorphisms.

6) [ :]; and [ :]» denote the left and the right dimenions respectively. And in
case [ :]i=[ :]» they are denoted as [ :].

7) Recall here that Vg(Vg(S)) is outer Galos Over S,
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Galois over S and n» =[R :S] then # =1. By Lemma 1, either Vi(S) =
Vr(R) or Vi(S) =h§1Dehk where e,y’s are matric units and D = Vi s ({ex:})
is a finite field, say GF(g') with {d,, ---, d.} as an independent basis
over C =V,(R). Then we may, and shall, restrict our attention to the
latter case. At first we shall prove m = 1. Suppose, on the contrary,
m =1, then the following set U(C Vx(S)) defines s(m” + 1) ( > ») diffe-
rent inner automorphisms: U={d{(i=1, -, s), ¢"1}i(1 tew) G=1,-, 5

k%k), di(l‘*‘e}”) (1 —I—e];,.) (i = 1, ety S k%l), di z2=1 e:_,m_“.] (l‘ = 1, Ty, S)}.

This contradiction shows m = 1, thatis, » =s. Now let D* and C* be
the multiplicative groups consisting of all non-zero elements of D and C
respectively. If n > 1, then the index of C* in D*( = ord. ®) is
(¢"—1)/(g — 1) > n, which is a contradiction.

In his paper [3], F.Kasch proved that, in case R is a division ring,
in order that normal basis theorem holds for R/S it is necessary and suf-
ficient that either Vz(S) = Vi(R) or Vi(S) © S. Moreover, for simple
rings too, he verified the sufficiency of the above condition, We shall
prove here that the condition is necessary as well for our Galois exten-
sions. ®

Theorem 3. Let R be Galois and finite over S, and let &* be the
Galois group of R[S. Then the following conditions are equivalent to
each other :

(1) Normal basis theorem holds for R/S.

(2) [@&*S.: S.],=[R: S].

(8) Either Vi(S) =Vx(R) or Vi(S) C S.

Proof. (3) = (1) is contained in [3, Satz 7], and (1) = (2) is trivial.
Now we shall prove (2) = (3). Throughout the proof, we shall set Vi(S)

n
= 3 De;; where e,'s are matric units and D = Vi 5({ey}) is a division
1, =1

ring. To our end, it suffices to show that if V.(S) % V.(R) and V.(S) &
S, then there exist a regular element » € V,(S) and a finite set {s;} con-
sisting of regular elements of Vi(S) which are linearly independent over
Vz(R) such that ¥ = v,#;' is a linear combination of #;'s with coefficients
(e R) not all in S,. Since in case » =1 the proof proceeds just as in
that of [3, Satz 10], in what follows, we shall restrict our attention to
the case »>1.

Evidently the regular elements 1 and all fi;=14¢; (f, j =1, -, n;
i 5= j) are linearly independent over V,(R), and similarly in case # is

8) Kasch’s definigion of Galois extensions is rather general than ours(cf. {3, p. 455]).
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n
even so are the regular ones f; = e + D) €;4-54(i = 1, -, n). Noting
j=

that Va(S) M S = Vi(S) is a field contained in the center of Vi(S), it is
clear that no nondiagonal elements of V,(S) are contained in S. Now we
are going to prove our assertion by distinguishing two cases:

Case 1. S is not of characteristic 2. Evidently, in this case, 1+
fis (5= 7) are all regular :irilJ not contained in S. And so, the following
is our desired relation : (1+ /) = 1(1 + fi,)' + fi i1 + fi) )

Case I1. S is of characteristic 2. We shall distinguish further two
cases: (1) n is odd. In this case, one readily sees that « =1+ 3 fi_

i=2

is a regular element not contained in S. Accordingly we have & =1 (™),
+ {5_] Siou(ficuwu™),.. (2) n is even. There holds 1 = 3} f; obviously, and
=2 =]

sol = :Z f:(f ) is a required relation. We have completed therefore our
i=1

proof.

Remark 1. Of course in case R is a division ring, the notion of w-
Galois coincides with that of Galois, and the simplicity of V(®) in Theorem
1 is superfluous, whence Homy (R, R) =GR, for any & with S= J(O, R).

2. In case R/ S is outer Galois, as is well-known, there exists a normal
basis, (or what is the same, normal basis theorem holds in our sense).
In [2] and [9], this fact is extended to some wider class of Galois ex-
tensions. We shall summarize here principal results cited there together
with several supplementary remarks.

Definition 4. Let R be w-Galois with respect to a finite group ©.
For any » € R, Tg(r) = 2] ro that is contained in S = J(®, R) is called

o€@

the &-trace of r. If {reo|s € ®} forms an independent (right) S-basis of R
then » is a &-normal basis element (abr. &-n. b. e.) of R over S.

The next definition is, in case R is a division ring, nothing but to
say that ® is of finite order.

Definition 5. & is called an F-group if it is of finite order and V(®)
(cf. Theorem 1) is two-sided simple, that is, V((¥) contains no proper two-
sided ideals other than the zero-ideal. Particularly, if V() is a two-sided
simple integral domain, then the F-group is said to be a DF-group.

Lemma 2. Let ® be an F-group, and sel S = J(®, K). Then R is
Galois over S, [R:S| Zord. ®, and VI®) = Vp(S) which is finite over
Ve(R). And of course there holds Homg(R, R) = GR,.. In particular,
if & is a DF-group then V,(S)is a division ving.

Lemma 3. Let & be a DF-group, and set S = J(&, R). Then any
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subgroup O of ® is a DF-group too, and Vi(S) is a division ring where
T=J(9, R).
Proof. By Lemma 2, V(®) = V,(S) is a division ring finite over
Vi(R), accordingly V(9) is so as a subring of V.(S) containing Vz(R).
Now, by the light of Lemma 2, we may set the following definition.

Definition 6. Let & be an F-group, and set S = J(&, R). Iford. ®
=[R : S] then we say that R is strict/y Galois over S with respect to &
(or simply R/S is strictly Galois).

The next is [2, Theorem 2] (or a corollary of [9, Theorem 1]).

Theorem 4. If R is strictly Galois over S=J(&, R) with respect to
& then R possesses a &-n.b.e. over S, and R is &*S,-homomorphic to
®&*S, where &* = G(R/S).

Further, the next is also a corollary of [9, Theorem 2].

Theorem 5. Let R be strictly Galois over S with respect to ®, © an
F-group of order n > 1 which is a normal subgroup of ®, and let T =
J(O, R). Then the following conditions are equivalent to each other :

(I) rERisa ®n.b.e. over Sif and only if the D-trace of r is a
G-n. b. e. over S, where S = &/ and G may be considered as an auto-
morphism group of T.

(I1) S is of characteristic p 50 and n is a power of p.

Corollary 1. Let R be a simple ring, & an F-group of ovder n, and
R be strictly Galois with respect to &, If R is of characteristic p5%~0
and n is a power of p then r ER is a &-n. b. e. over J(®, R) whenever
the S-trace is regular. And the converse is true when n>1,

As a consequence of Corollary 1, we obtain the next which contains
[1, Lemma 1] and [1, Corollary to Lemma 12].

Corollary 2. Let R be of characteristic p5=0 and strictly Galois
over S with respect to & of order p*. Then a necessary and sufficient
condition that R is commutatively extended from S is the existence of
an element ¢ of Va(R) with non-zero &-trace. Further, when it is the
case, any normal intermediate simple subring of R/S is also commuta-
tively extended from S.

Proof. If T(c) # 0 (c € Va(R)) then {cs|s € B} is an independent
S-basis of R contained in V,(K) by Corollary 1. Accordingly = S[ Vu(K)]
= S Qryus) V:(R). The converse is also clear.

Finally we shall prove the following

9) Cf. also the errata for [2] to appear in the Notices of Amer. Math. Soc.
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Corollary 3. Let a division ring R of characteristic p5<0 be strictly
Galois over S with respect to & of order p°. If normal basis theorem
holds for R/S, then each element with non-zero G-trace is a generating
element of R over S. (Cf. also Corollary 4.)

Proof. By Theorem 3, either Vi(S)= Vi(R) or Vx(S) S S. Since in
the first case there is nothing to prove (because of Corollary 1), we
assume hereafter Vx(S) S S, and let Tg(r) #= 0. Recalling that G(R/S)
C BV(S). © BS,, any r € ®(R/S[r]) is represented uniquely in the
form r = 3) a#s,, with s, € S. Hence we have r =r¢r = %}g (ra)s,, whence,

€@
{ro| ¢ € B} being an independent S-basis of R, we obtain s, = 0 for all
o5t1 and s, = 1, thatis, - = 1. Thus we have proved the corollary.

3. In this section, we shall use the following conventions, unless
otherwise specified : R is a simple ring with the center C of characteris-
tic p5=0, & a DF-group of order , and S = J(®, R).

If X is the subgroup consisting of all inner automorphisms contained
in & then J(, R) = Vi(V.(S)) evidently. Our first lemma is the next

Lemma 4. [R: S] divides p°.

Proof. Incase e =1, R/S is either outer or inner Galois. If R/S is
outer Galois then, as is well-known, [R: S] = p. Thus we assume R/S

is inner Galois, and set ® = {1, , -+, ”~'}. Then »” = ¢ for some ¢ €
C, whence one can readily see that the polynomial x* —¢ € C[¥] is
irreducible. And so, Vx(S) = C[v»] yields [V(S): C] = p, thatis, [R: S]
= p. Now we proceed with induction for ¢, and assume ¢ > 1. Take
a normal subgroup * of order p. Then, by Lemma 3, P=J(P, R) is a
simple ring over which R is of dimension p and V.(S) is a division ring
(of finite dimension over V,(P)). Thus &, (the restriction of ® onto P)
is also a DF-group. Noting that ord. ®, is a proper divisor of ord. ® =
p°, our induction hypothesis yields at once that [R:S] =[R: P]-[P: S]
is a divisor of p°.

Lemma 5. If the order of & is greater than 1 :p*>1, then S¥ C.
Proof."™ If, on the contrary, S= C then (R is a division ring
and), the center of & being different from the identity group, the
center of & contains a subgroup @ = {T, v, -, 0*"'t of order p. Now let

lrend it - .
¢ = # be an arbitrary element of ®. Then «™'vu = u v u~' = v implies

ve = vc with some ¢ & C. Further, as 7» = p” = 1, there exists some

10) As is readily seen from the proof, Lemma 5 can be generalized as follows:
Let © be a DF-group of order p*(p a prime and e >0) of a simple ring R. If the
center C of R contains no primilive pth roois of 1, then J(®, R)+C.
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¢, € C such that »» = ¢,. Then one can easily see that ¢, = u# "0’u =
(v6)? = v°c® = ¢oc?, thatis, ¢” = 1, whence we have ¢ = 1. Hence there
holds that ve = v for each # € ® and so » must be contained in C, that
is, » = 1. But this is a contradiction.

Theorem 6. Let R be a simple ring of characteristic p5%0, and &
a DF-group of order pt. Then Vi(S) = C[Vs(S)]. where S= J(®, R).
Proof. At first, let e = 1. Since in case & is outer our assertion

—~

is clear, we assume ® is inner and set & = {1, 2, ---, """}, Then Vx(S)
= C[v], and so Vg(S) = V(S) as desired. Now we shall proceed with in-
duction for e. Assume ¢>1, and denote by C, the center of Vx(S).
Then the group of all the inner automorphisms contained in & induces a
Galois group J, of Vz(S)/ C,. Since the order of J, divides p°, Lemma 5
shows that ord. ¥, = 1, that is, Vx(S) = C,. Finally, suppose Vz(S) 2
C[Vs(S)]. Since Vz(S) = V(®), ® contains an inner automorphism de-
fined by an element » not contained in C|[ Vs(S)]. Then evidently e
C for some d >0, whence ¢ is inseparable over C[ Vs(S)]. However, this
contradicts the fact that V:(S) is (Galois and so) separable over C[ Vs(S)].
Hence Vz(S) has to coincides with C[ V¢(S)].

Now, by [4, Theorem 1], the next is a direct consequence of the
preceding theorem.

Corollary 4. Let R be a division ving of characteristic p %0, and
® a p-group. Then Vi(S) is a field, and therefore, for any intermediate
subring T of R]S, T = S[t] with some t.

In the last corollary, R can be obtained by successive cyclic ex-
tensions (of degree p). And so, we may apply the proof of [1, Corollary
2 to Theorem 9] to see the next

Corollary 5. Under the same assumption as in Corollary 4, if S
is a perfect field then R is commutative.

Remark 2. In case ® is inner, Vp(S) © S by Theorem 6, and so it
is clear that, for any intermediate simple subring T of R/S, 7/S is also
inner Galois. In connection with this fact, we may remark here the fol-
lowing general fact: Let R be a simple ring which is inner Galois and
finite over a simple subring S, and let T be an intermediate simple
subring of R/S. Then S is the fixrving of some inner automorphism
group of T, or what is the same, T is inner Galois over S if and only
if the center of T is contained in S.

Proof. As the only if part is almost clear, we shall prove here the
if part only. Our assumption V;(T) & S implies Vz(S) is an algebra over
Vr(T). On the other hand, V:(S) is a central simple algebra (of finite
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rank over V;(T)). These facts enable us to apply Wedderburn’s theorem
to prove Vi(S) = Ve(T) Qv ) Vo s (Va(T)) = Va(T) ®VT'.1') Vz(S). From
the last relation, we see that V,(S) is simple, and so we have SC J (I/’:(TS;, )
= Vo (Vz(S)) = Vo (Ve(S) ®VTCT) Va(T)) € Va(Ve(S)) = S, proving our
assertion.

4. Evidently, in case R/S is strictly Galois with respect to cyclic ©,
Ve(S) is a field. However, the converse part of the following theorem
shows that this is not always true for general case.

Theorem 7. Let R be a simple ring with the center C, and let
[R:C]) =4, If R/C is strictly Galois with respect to &, then C is not
of characteristic 2, and R is a quaternion algebra, and convesely.

Proof. As [R:C] =4, R is either a central division algebra or the
complete 2 X 2 matrix ring C, over C. In case R is a division ring, C is
not of characteristic 2 by Lemma 5. Thus, in what follows, we restrict
our attention to the case R = C.. Supposing, on the contrary, that C is
of characteristic 2, one readily sees that, for »r @ R, ' € C if and only

if 7 is of the form (§ %), Andso, © = {T (?1\51/) (ET»’) (c/\l;/)}

d: ¢ d: cs d, ¢,
with some &, ¢;, d, € C. Noting that V(®) = R, we see that 1, and the
matrices (g‘ Ié‘)’s are linearly independent over C. But this is a contra-

ity .

diction, because (2,[8) 's are linearly dependent clearly. Hence C is not

of characteristic 2 in either cases, accordingly, as is well-known, R is a
quaternion algebra over C.'” The converse part will be almost evident.

5. In [9], the notion of group rings over primary rings played an
important role. Taking consideration of this situation, we may state here
several results on group rings over simple rings.

Throughout this section, & be a finite group of order »#, and S a
simple ring with the center Z. Then, as is shown in [5, Corollary to
Theorem 14], the group ring &S is a Frobenius ring. Moreover, noting
that S = GZ .S, we readily see that @S is semi-simple if and only if
S is either of characteristic zero or of characteristic p = 0 not dividing
n. In what follows, our attention will be mainly directed towards non-
semi-simple @S. We set here the following lemma.

Lemma 6. Let A be an algebra of finite rank over Z with an iden-
tity.

11) Cf. [3, p.460].
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(1) A®:zS is primary decomposable if and only if A is so.

2) AQ,S is uni-serial if and only if A is so.

Proof. Noting that a—a .S and A—-A M A are mutually inverse
1-1 correspondences between (two-sided) ideals a of A and ideals 2 of
AR:S, the first proposition is almost clear. Thus we shall prove (2) only.
At first, suppose that A is uni-serial. Then [5, Theorem 16] yields that
A/a is Frobenius for any ideal a. As (A@:S)/A=(A/ANA)&K:S for
any ideal % of AR .S, (A ®:S)/2 is Frobenius by [5, Theorem 14]. Hence
A Q.S is uni-serial by [5, Theorem 16]. The converse part also will be
shown in the similar way.

Now, combining Lemma 6 with Theorems 1 and 6 of [7], we obtain
the following theorem at once.

Theorem 8. Let S be of characteristic p 50, and n = p'n' with
(p, n) =1,

(1) @S is primary decomposable if and only if & contains a normal
subgroup of index p°.

(2) OS is uni-serial if and only if & contains a normal subgroup
of index p* and a p-Sylow group of & is cyclic.

The following theorem is contained essentially in [9, Corollary 2].

Theorem 9. Let & be of order n> 1. Then the following condi-
tions are equivalent to each other :
(1) X ox, € OSis regular if and only if D) x, € Sis regular.
€@ €@

(2) Sis of characteristic p %0, and n is a power of p.

(3) ®&Sis primary.

Proof. The equivalence of (1) and (2) is a special case of [9, Corol-
lary 2]. @S is primary if and only if 8Z is (primary and so) completely
primary. Thus the equivalence of (2) and (3) is also clear by [9, Lemma
3].

Corollary 6. Under the assumption of Theorem 9, the following
conditions are equivalent to each other :

(1) ”EZ@M&:‘r € 8S is regular if and only z'faEZé’x, € S is non-zero.

(2) Sisa division ring of characteristic p5=0 and n is a power of p.
(3) ®S is completely primary.
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