A NOTE ON GALOIS THEORY OF PRIMARY RINGS

Hisa0 TOMINAGA

1°. A ring R (with 1) will be said to be primary [completely pri-
mary) if the (Jacobson) radical N of R is nilpotent and R/N is a simple
ring with minimum condition (for one-sided ideals) [a division ring]. As
is well-known, the centre of a primary ring is completely primary, and
the characteristic of a primary ring is zero or a power of a prime (cf. [8,
p. 125]). The purpose of this note is to extend the results in [1]" to
primary rings (Theorems 1, 2).

Now we shall begin our course with several remarks concerning pri-
mary rings, which may be more or less known but do not seem to the
author to have been explicitly stated in literature.

Lemma 1. Let RS1 be a ring, S31 a primary subring of R
with minimum condition. If R is S-right regular?, then R possesses a
linearly independent ( finite) S-right basis.

Proof. As is familiar, S may be regarded as a complete matrix ring
over a completely primary ring C (with minimum condition): S=>] Ce,.

m m 1,J=1
Then, S = 3>)p e4S, whence we have R = > @ e, R. Evidently e,,R(=

ia) i=]
ey R) and e, R( = e, R) are S-isomorphic, and so they are decomposed
into directly indecomposable S-submodules in the same number, say k.
While each indecomposable direct summand of R is isomorphic to e;; S(=
ey S) because of the S-right regularity of R, so that R is S-isomorphic to
the direct sum of mk copies of ¢S, whence so is to the direct sum of
k copies of S, We have proved therefore our assertion.

Lemma 2. Let RO T 2 S be rings with the same identity element
1,and let S be a primary ring with minimum condition. If R, T possess
a linearly independent finite T-right basis {r,, -+, r.} and a linearly
independent finite S-right basis {t,, ---, tn} respectively, then T is a
direct summand of R as an S-right submodule.

Proof. Let M be the radical of S, and let S/M be the direct sum of
s irreducible right ideals. Then the following (into) homorphisms T/T M
=TI TNRM &(T+ RM)/RM = (r,T + RM)/RM yield u = v =y,
(i=1, -, n), where u, v, and v, are S/M-lengths of T/TM, T/TN\RM,

b Cf. also the errata for [1] to appear in the Notices of Amer. Math. Soc.
2 An S-right [left] module m is said to be S-right [left] regular when a direct
sum of a certain number of its copies is isomorphic, as S-module, to the direct sum
of a certain number of S itself (cf. [3]).
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and (»,T + RM)/RM respectively. Since (S/ M)‘”’” > (T|TM)™ =~
R/RM = 2 (».,T+RM)/RM imply smn = un < 2 v;, where () means

the direct sum of j copies of *, it is clear that (sm )u-v v, (=1, n).
On the other hand, R/RM = (T+ RM)/RM@U/RM with some S-submodule
U. Now, noting that the S/M-length of (T + RM)/RM is sm, it follows
that U/RM possesses a linearly independent S/M-basis {%;, ***, %mw-n},
where #; is the residue class modulo RM containing #., whence R =T

m'n-—1) min—1)

+Z xS+ RM. Then, applying [6, II] to R/(T + Z u,S), we obtain
ml~1)

R=T+ E u, S. Comparing the Slengths of the left and right terms,

min—1)

we readily see that R = T@/EZ] uiS (and that {u,, ***, #mn-s;} is linearly
independent over S).

Corollary 1. Let R2T 2S5 be rings with the same identity element
1, and let S be a primary rving with minimum condition. If R possesses
a linearly independent finite T-right basis and S-right basis as well,
then the Ri-module Homg )_(T, R) consisting of all the S.-homomorphisms
of T into R coincides with (Homs (R, R))r, the restriction of Homs (R, R)
onto T,

Proof. As is well-known, T is S-right regular (cf. [3, p. 206]) and
so, by Lemma 1, possesses a linearly independent finite S-right basis.
Thus, R =T@ U by Lemma 2, whence each « € Homs (7, R) can be
extended to an element of Homs (R, R).

Remark 1. Of course, Lemmas 1, 2 and Corollary 1 are valid sym-
metrically if “right” and “left” are exchanged each other.

" We shall conclude this section with the following lemma and its
corollary.

Lemma 3. Let S be a completely primary ring, and & a group of
Sfinite order n=>1. Then the following conditions are equivalent to each
other :

(1) GSis completely primary, where 8S is the group ving (defined
as usual) of ® over S.

(2) S is of characteristic p(p; prime) and n = p°.

And, when one of the above conditions is fulfilled, the radical of

BSis> (1 —a)S+ OM, where M is the radical of S.
1#0€®

Proof. One will readily see that the mapping 2 : % o Xy — %@Xf,,
ot o

3) For r € R, x» and x; mean the right and left multiplications induced by x
respectively. Similarly, for XS R, X, = {x,;jx = X} and X; = {x:]lx = X}.
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where x, means the residue class modulo M containing x,, defines a ring
homomorphism of ®S onto S = S/M. And then ,7'{0} = Z (1 —0)S +

M=>(1—-aS+ &M
1£0€@

(1) = (2). Naturally, 27'{0} is the radical of &S and nilpotent. If S
is of characteristic zero, then (X ¢1)=1n - 1540, but on the other

2]

hand, (32 ¢1) (1 —<) =0 for any - % 1 of &. This contradiction shows
sE€

that S is of characteristic p"= 0. Now, let # = p*»’ with (n/, p) = 1,
and suppose that »' > 1. Then for any prime divisor ¢ of #', we can
find a ¢-Sylow group & of &. We set here x, = 1 and 0 according as &

is in Q or not. Then A(3} & x,) is a power of ¢, and so it is not zero (in
L436)

S) While, (E g %,) (1—7)=0for any r % 1 of T, which is a contradic-
tion.

(2) = (1). We shall prove that 27'{0} is nilpotent (and so that i™"{0}
is the radical of @S). In case ¢ = 1, noting that (1—¢)™ = 0 for each
o € ®, it will be easy to see that (17'{0}) »~"#**™ = (, where m is the
nilpotency index of M. Thus we shall proceed with induction for ¢. Let
¢>1 and  be anormal subgroup of & of order p. Then p(3 s x.) =

- — _ €@

> ¢ %, defines a ring homomorphism of &S onto &S, where ®=8/9, and
oe®

#7*{0} is the ideal generated by {1 — 4|y € 9} and M. Accordingly,
noting that ¢/(1 — 7)o = o' 6(1 — a7y o) for ¢’, s=® and y,E9, we readily
obtain (p7'{0})**™ = 0, where % is the nilpotency index of the radical of
OS. Since s 26@(1—0)5 +®M) is contained in the radical of &S by our

1#o

induction hypothesis, there holds p((47*{0})") = 0, where / is the nilpo-

tency index of the radical of ®S. Hence we have our assertion
('{-—] {0})1 h+m) . 0.

Corollary 2. Let S be a primary ring with minimum condition, &
a group of finite order, and D a normal subgroup of order n>1. Then
the following conditions are equivalent to each other :

(1) %ax, EO®S is regular if and only if X 5 x, € GSis so, where
_ o€ 436
O =8/D and 7 means the residue class of o modulo 9.

(1) S is of characteristic p(p; prime) and n = p°.

Proof. 1}o(§@a X)) = %@E %, defines a ring homomorphism + of the
group ring S onto ©S, and {0} is the ideal generated by {1—5|7 = D}.

(I) = (II). Given any a € \»*{0}, (I') implies that 1 —a € \zf’{i}
is regular, thatis, v '{0} is a quasi-regular ideal. Thus, as &S satisfies
minimum condition, +,"'{0} is nilpotent. Accordingly, nilpotent is the
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subringl#zn6 @(1—‘9) Vs(S) which may be considered as an ideal of the group

ring ©Vs(S). From this fact, one readily sees that Vs(S) is completely
primary. Hence the completely primary ring Vi(S) is of characteristic
p(p; prime) and » is a power of p by Lemma 3.
(I1) = (I). HVs(S) is completely primary by Lemma 3 again, and so
Iﬁgﬁ}@(l — 7)Vs(S) is nilpotent. From this we can readily see that «»~'{0} is

nilpotent. Hence (I’) holds good.

2°, Throughout this secton, R be a primary ring with minimum
condition, N and Z be the radical and the centre of R respectively, and
® be a finite group of automorphisms of R. V(®) will mean the subring
of R generated by Z and all regular elements v with ;27" € &*. We con-
sider here the following conditions ;
(1) (V(®)+ N)/ N)- Vgyx(R/ N)is simple, (whence V(®) is primary.)®
@) If {p(i) =1, p(a), =+, a(3)} is a complete representative system
of /&, = {1, &, ---, 7}, where ®, is the totality of inner auto-
morphisms contained in &, then the R;-R;-modules R; and p(a)R:
(7 5 1) have no isomorphic composition residue modules.

(3)) V(O) possesses a linearly independent Z-basis {v.} such that {v..}
is linearly independent over R;.

(3,) V(®) possesses a linearly independent Z-basis {«.} such that {u.}
is linearly independent over R..

In case & satisfies (1), (2), and (3,) [(1), (2), and (3,)], @ is called
an Frgroup |F,-group)]. And if & is an F;-group as well as an F,-group,
then it is an F-group.

The following remarks will be readily seen from Nakayama’'s papers
[4] and [5] (and of course the corresponding remarks are true for F,-
groups): Let @ be an Fi-group then GR, = SV(®),R, = X p(a) V(®), R,
yields that the independent basis {r.} in (3;) is finite. And @I//?(B’)") is
evidently a regular group in Nakayama’s sense [5], and so, setting S =
J@®, R)= {xER|xs =x for all s €®}?, Sis a primary ring with mini-
mum condition, moreover (S+ N)/ N is simple. Further V(®) = V(S),
&R, = Homs (R, R), R possesses a linearly independent S-right basis, and
[R:S8],=(1:®,) - [V(®):Z] < #O (the order of ®).

4 In case R is a simple ring (with minimum condition), V(®) is the subring of R
generated by all the regular elements » with viw,~' €.

5) In general, for any non-empty subset X of a ring A4, Va(X) will signify the
centralizer of X in A.

6) /17(6) denotes the totality of inner automorphisms induced by regular elements
contained in V(®).

7) x0 means the image of x by o,
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If ® is an F-group then [R: S), = [R: S],, where S = J(®, R). In
particular, when [R : S]® coincides with #®, we say that R is strictly
Galois with respect to the F-group .

Remark 2. If & is outer then the conditions (3,) and (3,) are super-
fluous, and so the notion of F,-group coincides with that of F,-group. On
the other hand, in case R is a simple ring, it will be easy to see that &
is an F-group if and only if V(®) is two-sided simple. Moreover, in case
R is a division ring, the notion of F group is trivial, and R is strictly
Galois with respect to @ if and only if @ is a finite group with[R: J(®, R)]
= #@.

In what follows, S will mean J(&, R). For any » € R, Tglr) = %ra
43

(€ S) is called the ®-frace of r. And if {ro|s € ®} forms an inde-
pendent S-(right) basis of R then 7 is called a S-normal basis element
(abr. @-n. b. ¢.) of R. In general, R may be regarded as a right $S-module
where &S is the group ring of & over S. And R possesses a 3 -n.b.e.
when and only when R is &S-isomorphic to 8S. Particularly, if S satis-
fies minimum condition, it is well-’known that each element of &S is
either a regular element or a zero divisor. Thus we obtain the following
lemma at once.

Lemma 4. Let S satisfy minimum condition, and r be a &-n. b. e.
of R. Then for a €SS, ra is also a G-n.b.e. if and only if a is re-
gular in &S,

Our first theorem is the following (cf. [1], [3] and [7]).

Theorem 1. Let R be a primary ving with minimum condition. If

R is strictly Galois with respect to & = {ay, *+, 4.} then R contains a
&-n. b. e.

Proof. By the remark stated previously, Homs(R, R) = GR, (S =
J(®, R)). Since [R:S]=[Homs/(R, R):R,].,, OR, = }nj@ R, .. Evidently
@S, = é@sr s(=®S) is a ring with minimum (wh:z-rice maximum) con-
dition. i=1|\Iow let {7, »-, 7.} be an independent S-right basis of R. Then
it is clear that {r, *--, 7.,} forms a linearly independent &S.-basis of

Hom;(R, R), and so R is &S,-isomorphic to &S, by [2, Satz 4], which
completes our proof.

Lemma 5. Under the same assumption as in Theorem 1, if @ is a

8) In case the left dimension [R : Sj: coincides with the right one [R : S]», they
are denoted as [R : S].
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subgroup of & which is an F-group then G(J(9, R)) = 9.

Proof. T = J(9, R)is a primary ring with minimum condition, and
S-left regular [3, p.206], accordingly T possesses a linearly independent
S-left basis by Lemma 1. Thus, by Corollary 1, we have Homsl(T. R)=
®r R,. Further, as Hom, (R, R) = DR,, it follows that #® = #H:(G:9)
= [DR,.:R,), - [GR,: R],=[R:T] - [T:S] =##@, whence we have
#9=[R:T]and (&: H)=[T: S]. Now, our assertion B(J(9, R)) =D
is an easy consequence of the last fact (& : &)}(=[T: S]) = [G:R,: R,]..

Corollary 3. Under the same assumption as in Theorem 1, if 9 is
a normal subgroup of & which is an F-group, then G = &/ may be re-
garded as a group of T =J(9, R), and [T: S] = #G® (and of course
J@®, T) =2S).

Now we are at the position to prove our principal theorem which con-
tains the result in [1].

Theorem 2. Let R be a primary ring with minimum condition. If
R is strictly Galois with respect to ®, O an F-group of order n>1 that
is a normal subgroup of ®, and if T= J(9, R), then the following
conditions are equivalent to each other :

(1) »E R is a On. b. e. if and only if the D-trace of 7 is a Gn. b. e.,
where & = G/ 9.

(I1) S is of characteristic p° (p ; prime) and n = p°.

Proof. R possesses a &-n.b.e. » by Theorem 1. Then, in virtue of
Corollary 3, Tg(r) is a ®-n.b.e. of T, that is, T is ®S-isomorphic to
®S. Noting that To(ra) = Tg(r)y(a)) for each « € @S, Lemma 4 yields
the equivalence of (I) and (I"), where v~ means the ring homomorphism de-

fined in the proof of Corollary 2. The rest of the proof is contained in
Corollary 2.

Corollary 4. Let a division ring R be strictly Galois with respect to
®, and © a subgroup of & of order n>1. If N signifies the norma-
lizer of ©in ®, N=J(N, R) and T = J(©, R), then the following con-
ditions are equivalent to each other :

() rE R isan Nn.b.e. (of R/N) if and only if the D-trace of v
is an N/ O-n.b.e. (of T/N).

(Il,) S is of characteristic p5=0 and n = p°.

9) G(J(®, R)) is defined to be the set {s =G{x o ==z for all x = J(®, R)}.
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